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LETTER

Design of Linear Phase IR Digital Filters Based on

Eigenvalue Problem

SUMMARY It is known that an anticausal IIR filter can be
realized in real time by using the time reversed section technique.
When combined with a causal IIR filter, the overall transfer func-
tion can yield exact linear phase characteristic in theory. This
paper presents a new method for designing complex IIR digital
filters with exact linear phase. The design problem of IIR filters
with exact linear phase can be reduced to magnitude-only filter
design. The proposed procedure is based on the formulation of
an eigenvalue problem by using Remez exchange algorithm. By
solving the eigenvalue problem to compute the real maximum
eigenvalue, the solution of the rational interpolation problem
can be achieved. Therefore, the optimal filter coefficients are
easily obtained through a few iterations. The proposed design
algorithm not only retains the speed inherent in Remez exchange
algorithm, but also simplifies the interpolation step because it has
been reduced to the computation of the real maximum eigenvalue.
Several examples are presented to demonstrate the effectiveness of
the proposed method.

key words: IIR digital filter, linear phase filter, eigenvalue prob-
lem, approximation theory

1. Introduction

In many applications of digital signal processing, digi-
tal filters are required to possess linear phase responses.
It is well known[1],[2] that FIR filters with symmet-
ric or antisymmetric impulse responses yield exact lin-
ear phase. Unfortunately, FIR filters generally require
higher order than IIR filters to meet the same magni-
tude specifications. IIR filters can be classified into two
categories, causal and noncausal. Design of causal IIR
filters have been studied in [3]-[8], but its phase re-
sponse is only approximately linear in passband since
poles are restricted inside the unit circle. Noncausal IIR
filters can yield exact linear phase when both poles and
zeros exist in mirror-image pairs. To realize noncausal
IIR filters, it must be divided into causal and anticausal
parts. Anticausal filters can be realized by using time re-
versal for finite length inputs, or using the time reversed
section technique for infinite length inputs[9]. It has
been shown in [9] that noncausal TIR filters with exact
linear phase have better performance than FIR filters
and causal IIR filters. Design of noncausal IIR filters
with exact linear phase only needs to optimize the mag-
nitude response. The procedures proposed in [9] and
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[10] are based on the conventional analog filter theory,
so the resulting digital filters are restricted to have equal
order numerator and denominator. For magnitude op-
timization of IIR filters, some methods have also been
proposed by using Remez exchange algorithm in [11]
and [12]. Since all zeros are restricted on the unit circle,
the algorithm of [ 11] used two approximation intervals
and worked separately with numerator and denomina-
tor polynomials, but the extent of the designable filters
is restricted. In [12], the rational interpolation problem
was solved by using Newton method, and then a large
amount of computational cost is required with increas-
ing order. It is also shown in [11] and [12] that IIR
filters with different order numerator and denominator
are more effective than one of equal order numerator
and denominator in narrow-band and wide-band ap-
plications.

Recently, complex digital signal processing have
found many applications in communication, radar,
sonar and so on [14]. Design of complex digital fil-
ters has attracted considerable attention. Complex fil-
ters have greater freedom than real filters. Real filters
can be viewed as a special case of complex filters if
the frequency response satisfies complex conjugate re-
lation between positive and negative frequency. In this
paper, we consider design of complex IIR filters with
exact linear phase, and different order numerator and
denominator.

The purpose of this paper is to develop a new
method based on eigenvalue problem for designing com-
plex 1IR filters with exact linear phase. First of all, we
derive a necessary and sufficient condition of filter coef-
ficients for obtaining exact linear phase characteristics.
According to the necessary and sufficient condition, the
design problem of linear phase IIR filters can be re-
duced to magnitude-only filter design. We formulate
the design problem in the form of an eigenvalue prob-
lem by using Remez exchange algorithm. After solv-
ing the eigenvalue problem, we can get more than one
eigenvalues in general. Then, we must search for one
eigenvalue that corresponds to the solution of the ra-
tional interpolation problem. In this paper, we intro-
duce a new and very simple selection rule where the
rational interpolation is performed if and only if the
real maximum eigenvalue is chosen. Therefore, we can
obtain the solution of the rational interpolation prob-
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lem by computing only one eigenvector corresponding
to the real maximum eigenvalue. To arrive at equirip-
ple magnitude response, we make use of an iteration
procedure so that the optimal filter coefficients can be
easily obtained. The new design algorithm not only re-
tains the speed inherent in Remez exchange algorithm,
but also simplifies the interpolation step because it has
been reduced to the computation of the real maximum
eigenvalue. In general, the design algorithm converges
rapidly with a few iterations and computes efficiently
without any initial guess of the solution. Several exam-
ples are designed to demonstrate the effectiveness of the
proposed method.

2. IIR Filters with Exact Linear Phase

Let H(z) be the transfer function of a complex IIR filter
with numerator order N and denominator order M

N
E anz "
n=0

H(z) = "—— = Hi(z" ") Ha(2), (1
Z bz~ ™
m=0

where a, = anr + jan; and by, = by + jbm; are com-
plex coefficients. H(z) is an arbitrary transfer function
whose poles lie inside and outside the unit circle, and
can be allocated to two transfer functions H;(z~') and
Hy(z). Both Hy(z) and H,(z) are causal IIR filters. It
has been shown in [9] that the anticausal filter Hy(z™*)
can be realized by using time reversal for finite length
inputs, or using the time reversed section technique for
infinite length inputs. Therefore, H(z) can be realized
in real time.

To obtain exact linear phase response, the zeros of
H(z) have to lie on the unit circle or occur in mirror-
image pairs, and the poles have to occur in mirror-image
pairs off the unit circle. Therefore, the filter coefficients
satisfy a, = aX_,, and by, = b},_,,, where z* indicates
complex conjugate of z. The magnitude response of
H(z) can be obtained by

N
@) chTCn(w)
. N w —0
T = = 1=
) = Doy = , @
> dT Dy (w)
m=0
where when N is even,
aminyzyr 0<n< ¥ 3)
Cn = ,
(i Y <n<N
0.5 n=0
TCp(w) = { cosnw 1<n< 4)
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and when N is odd,
Gni(Ni1)/2)r 0SS 5t )
Cp = )
Ansg % é T g N
cos(n + 3w 0=n< 2
TCp(w) = (n+2 2 (6
sin(n—%)w % <n<N

M must be even since the poles are not allowed to locate
on the unit circle,

. bimiaryzyr 0=m< AL o
" b Mom<M
0.5 m=0

Therefore, the design problem can be reduced to
magnitude-only filter design.

3. Design of Linear Phase IIR Filters

In this section, we describe design of linear phase IIR
filters with optimum magnitude response in the Cheby-
shev sense based on eigenvalue problem. When N
and M are given, and the desired magnitude response
|H4(e7)] is specified in the interest bands R € [, ]
(e.g., passband and stopband), the aim is to find a set of
filter coefficients a,, and b,, to minimize the maximum
error between the magnitude response and the desired
magnitude response. Therefore, we want to find ¢, and
d.m in Eq.(2) in such a way that the magnitude function
with a positive denominator satisfies

W (w)|E@W)| = W(w)IH(e™)| - |[Ha(e™)]] < 6
(we R)0)

where E(w) is an error function, W(w) is a weighting
function, and § (>> 0) is the maximum error to be min-
imized.

To solve the magnitude Chebyshev approximation
problem, we utilize Remez exchange algorithm and for-
mulate the condition for |H (e?“)| of Eq. (2) in the form
of an eigenvalue problem. By selecting extremal fre-
quencies w; (i = 0,1,---, N + M 4+ 1) in the bands R,
we formulate |H (/)| as

W (w;) E(w;) = (=1)Ds, (10)

where [ = 0 or 1 to guarantee § > 0 , and the denomi-
nator polynomial D(w) must satisfy

D(w)+0

Substituting Eq.(2) into Eq.(10), we can rewrite
Eq. (10) in the matrix form as

(for all w). 1
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PA=6QA, (12)
where A = [co,¢1,- -+, en,do, d1, -, dp]T, and the el-
ements of the matrices P , @ are given by
Tc’j<wi> j:O717"'1N
Fij =9 —[Ha(&)|TD; n_1(w;) g
j—N-1=0,1,---,M
(13)
0 j=0,1,---,N
— 1)+
Qij = LTD< )
J W(wl) J—Nfl(wl)
Jj—N-1=0,1,---,M
(14)

Once the desired magnitude response |H;(e’)| and the
weighting function W(w) are given, it is seen from
Egs.(13) and (14) that the elements of the matrices P
and @Q are known. Therefore, it should be noted that
Eq. (12) corresponds to a generalized eigenvalue prob-
lem, ie., § is an eigenvalue and A is a corresponding
eigenvector. It is well known that there is a nontrivial
solution A in Eq.(12) if and only if the determinant
satisfies

P —6Q|=0. (15)

Since P and Q are (N + M +2) by (N + M +2) matri-
ces, Eq. (15) has more than one solutions of § in general.
Therefore, we can obtain at least two solutions by solv-
ing the eigenvalue problem of Eq. (12). To minimize the
maximum magnitude error, the filter coefficients must
satisfy the condition of Eq.(11). However, it is not
guaranteed that the solutions obtained from Eq.(12)
have satisfied Eq.(11). Therefore, we must search for
which solution satisfies Eq.(11) in the obtained solu-
tions. When P is a singular matrix, we can get § = 0
from Eq. (15), hence a solution can be obtained by solv-
ing the linear equations P A = o . If the solution sat-
isfies Eq.(11), then we have obtained the desired mag-
nitude response. However, it is generally impossible to
obtain the desired magnitude response in the practical
design problem. Therefore, P is a nonsingular matrix
in general. For example, it can be easily proven that
the matrix P is nonsingular in the cases of lowpass fil-
ters, bandpass filters and so on. Equation (12) can be
rewritten into the standard eigenvalue problem;

T A =X\A, (16)

where T' = P7*Q, and A = 1/6. Here, will we ask
whether Eq. (16) has a solution that satisfies Eq.(11)?
If exists, does which eigenvalue correspond to the so-
lution? We see from Eq.(10) that the sign change of
E(w) is caused by the sign change of whose numera-
tor or denominator polynomial. When the numerator
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polynomial changes its sign, E(w) crosses 0 to change
its sign. When the denominator polynomial changes
its sign, E(w) crosses co. Therefore, there exist more
than one solutions depending on the sign change of
E(w) through 0 or co. To satisfy Eq.(11), F(w) must
change its sign through 0. When the optimum Cheby-
shev approximation to the desired response exists, there
are (N -+ M +2) extremal frequencies of E(w) [15],[16].
Hence Eq.(16) has at least one solution that satisfies
Eq.(11) if the extremal frequencies are appropriately
selected. By the uniqueness of the optimal solution, the
solution is unique. Now, we answer the second ques-
tion. In Eq. (10), we can choose [ = 0 or 1 to guarantee
the solution that satisfies Eq. (11) having a positive er-
ror 6. Therefore, we seek through only the positive and
real eigenvalues.

Theorem 1: The real maximum eigenvalue corre-
sponds to the solution that satisfies Eq. (11) when the
optimum Chebyshev approximation exists.

Proof: Let |H,(e’*)| be the solution with §,(> 0)
that satisfies Eq. (11), |H,(e’“)| another solution with
6n(> 0) that doesn’t satisfy Eq.(11), and H(w) =
|Ho(e7)| — [Hn(e7%)] = Eo(w) — Fn(w).

A) Assume that §, = 6,, we have H(w;) = 0 from
Eq.(10), then H(w) has (N + M +2) zeros in (—m, 7.
However, H(w) has at most (N + M) zeros in (—m, 7).
Therefore, we can conclude that &, =+ &,,.

B) Assume that 6, > §,. It is seen in Fig.1 that
H(w) has one zero in the interval [w;,w; 1] when E,, (w)
crosses 0 to change its sign, and two zeros when FE, (w)
crosses oo. There are (N + M + 2) interpolated inter-
vals in (—m, 7] (including transition band). We suppose
that there are I intervals where E,(w) changes its sign
through oo, hence H(w) has (N + M + I + 2) zeros in
(=m,7]. However, H(w) has at most (N + M) zeros
in (—m, 7). Therefore, we can conclude that b0 < Oy
Ao = 1/6, is the real maximum eigenvalue. The theo-
rem is proven.

— En(w) Eo(w)
w0 |

e |
WANA
NIVIAVARN

FREQUENCY (w)

ERROR E(w)

|
i
i

Fig. 1 Interpolation of E(w).
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We have proven that the real maximum eigen-
value corresponds to the solution that satisfies Eq. (11).
Therefore, we can obtain the solution of the rational
interpolation problem by finding only one eigenvector
corresponding to the real maximum eigenvalue. Since
we are interested in only the real maximum eigenvalue,
this computation can be done efficiently by using the
iterative power method without invoking general meth-
ods such as the QR technique[17],[18]. In order to
obtain an equiripple magnitude response, we make use
of an iteration procedure to get the optimal filter coeffi-
cients. Since we have obtained the solution that satisfies
Eq.(11), we assume that the denominator polynomial
is positive without any loss in generality, and can con-
sider it as a weighting function in the FIR applications.
Therefore, the algorithm converges in general with a
few iterations as same as the design of FIR linear phase
filters. The design algorithm is shown as follows.

Procedure {Design Algorithm of Linear Phase IIR
Filters}

Begin

1. Read numerator order N and denominatpr order
M, the desired magnitude response |H4(e?“)|, and
weighting function W (w).

2. Select initial extremal frequencies Q; (: = 0,1,
-+, N+ M + 1) in the interest bands R.

Repeat

3. Setw; =; (i=0,1,--- N+ M+1).

4. Compute P, Q by using Egs. (13) and (14), then
find the real maximum eigenvalue to obtain the fil-
ter coefficients ¢,, and d,,, that satisfies Eq. (11).

5. Search the peak frequencies ; (i = 0,1,---,J) of
the error function E(w) within R.

-6. Reject the (J — N — M — 1) superfluous peak fre-
quencies and store the remaining frequencies into
the corresponding €2;.

Until  Satisfy the following condition for the pre-
scribed small constant € :

End .

4. Relations of Real-Valued Filters

In this section, we discuss design of linear phase IIR
filters with real coefficients. Design of a real-valued fil-
ter with real coefficients a,, and b,, is included in the
complex filter design problem as a special case if

{ Hy(e™7¥) = Hj (&™)

17
H(e %) = H*(ed9) a7

i
/
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Therefore, the above design algorithm can be used to
obtain the real filter coefficients by the condition of
Eq.(17). Unlike the case of complex filters, the ap-
proximation can be done only in the frequency range
[0, 7] in the case of real filters. Hence, the computation
can be greatly decreased. For obtaining a linear phase
IIR filter with real coefficients, the poles of H(z) have
to occur in complex conjugate and mirror-image pairs
in quadruplets or in reciprocal pairs on the real axis
all off the unit circle, while the zeros occur in complex
conjugate and mirror-image pairs, or in reciprocal pairs
on the real axis, or in complex conjugate pairs on the
unit circle, or at z = 1. Therefore M must be even,
by = byi—m and a, = Fay—_n. By the symmetric or
antisymmetric a,, and odd or even N, there are the fol-
lowing four types of filters. We assume that Type I is
the filter with even N and a, = ay_n, Type II odd
N and a, = ay_n, Type Il even N and a, = —an_n,
and Type IV odd N and a,, = —an—,. Similar to linear
phase FIR filters, Type I filters can be used to design all
kinds of filters, but Type II, III and IV filters have some
restrictions, e.g., Type II filters cannot be used to design
highpass filters because one zero locates at z = —1. The
magnitude response of H(z) can be expressed as

L
co + 2 g Cp, COS MW

|H (™) = F(w) e . as)
do +2 Z dm cosmw
m=1
where
N/2 (Type 1)
N —1)/2 Type 11
L) wenp e )
N/2-1 (Type 11I)
(v—-1)/2  (TypelV)
al4n 0<n<L
(Type I)
Ar+n+1 — Cn+l Oéﬂ,éL—l
an n=1°I
(Type II)
Cpn = Cn4+2 — OL4n+2 0<n<LL-2 (20)
—QLtnt2 L-1<n<L
(Type I1I)
Cn+1_aL+.n+1 Oé’ﬂ,éL—l
—aN n=1.L
\ (Type IV)

and



618
1 (Type I)
2 cos g (Type 1T)
Fw) = 2sinw (Type 111) (22)
2sin % (Type IV)

Therefore, we can similarly formulate |[H(e’*)| of
Eq. (18) in the form of an eigenvalue problem. The ma-
trices P and Q in Eq. (12) will become (L + M /2 +2)
by (L + M/2 + 2) matrices, hence the computation can
be greatly decreased. FIR filters are included in IIR
digital filters as a special case if M = 0. When M =0,
linear phase IIR filters will become linear phase FIR
filters, and Eq. (12) degenerates into a set of linear equa-
tions which is the well-known McClellan—Parks algo-
rithm[1],{2]. In the McClellan-Parks algorithm, the
linear equations are not required to solve since the La-
grange interpolation formula is employed. However, the
eigenvalue problem is required to solve in our method.

5. Design Examples

In this section, we present several design examples to
demonstrate the effectiveness of the proposed method,
and compare the performance of the filters with differ-
ent order numerator and denominator.

Example 1: We consider design of linear phase IR
filters with N + M = 16, passband [0.27,0.47] and
stopband [—=, 0], [0.77,7]. The weighting function is
set to (1,100) in the passband and stopband. First,
we designed one filter with N = M = 8. The result-
ing magnitude response is shown in solid line in Fig. 2,
and the stopband attenuation 107.7 dB is obtained. We
have also designed two filters with N =10 and M =6
or N =6 and M = 10. The magnitude responses are
shown in Fig.2 also, and the stopband attenuations are
94 dB and 121.1 dB respectively. It is seen in Fig.2 that
the magnitude errors decrease when N decreases and
M increases. Therefore, the filters with more poles and
less zeros are effective in narrow passband applications.
Next, we compare the number of multipliers per sample
of the filters with different N and M. It is known in
[9] that the anticausal filter H;(z) is required to imple-
ment twice in the time reversed section scheme. Hence
we decompose H(z) into the all-pole filter H;(21) and
Hj(z) that has all zeros of H(z). Hi(z) and Hy(z) are
implemented in direct-form structures. H;(z) requires
M /2 complex multipliers, and Hy(z) is M/2+ N/2+1.
Therefore, a total of 3M/2+ N/2+1 complex multipli-
ers are required. The filter of N = M = 8 requires 17
complex multipliers, and the filters of N = 10, M = 6
and N = 6, M = 10 are 15 and 19 respectively. The
filters with N < M require most multipliers.

Example 2: We consider design of linear phase IIR
filters with N + M = 12, passband [0.27,7] and stop-
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Fig. 2 Magnitude responses of Example 1.
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Fig. 3  Magnitude responses of Example 2.

band [-0.87, —0.27]. The weighting function is set to
(1,10000) in the passband and stopband. Three filters
with N=M=60or N =8and M =4 or N =4
and M = 8 are designed, and the magnitude responses
are shown in Fig.3. The stopband attenuations of the
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filters are 93.64 dB, 95.66 dB and 91.64 dB respectively,
then the filter of N = 8 and M = 4 has best magni-
tude response. We also compare the number of mul-
tipliers per sample of the filters. The filter of N = 8
and M = 4 requires 11 complex multipliers, while the
filters of N = M = 6 and N = 4,M = 8 are 13 and
15 respectively. Therefore, the filters with less poles and
more zeros are effective in wide passband applications.

Example 3: We consider design of real IIR filters of
[9] with passband [0,0.67], stopband [0.657, 7], and
passband attenuation 0.01 dB for comparison purposes.
In [9], the filter of N = M = 14 is designed and the
stopband attenuation 73 dB is obtained. The magnitude
response of the filter is shown in solid line in Fig. 4, and
isn’t optimal in the Chebyshev sense because all zeros
of H(z) are double zeros on the unit circle. We have
designed the filter of N = M = 14 with a weighting
function (1,10.26) in the passband and stopband, and
the magnitude response is shown in dotted line in Fig. 4.
The passband and stopband attenuations are 0.01dB
and 79 dB respectively, and is optimal in the Chebyshev
sense which is the same as the result of [10]. There is
approximately 6 dB improvement in stopband attenua-
tion. We also designed one filter of N = 16 and M = 12
with a weighting function (1,13.3) in the passband and
stopband. The magnitude response is shown in breaked
line in Fig.4 also. The stopband attenuation is 81.3 dB
and biggest in the above filters, while the passband at-
tenuation is 0.01 dB. To satisfy the above specification,
the order of FIR filters is required to exceed 140. The
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(b) Passband detail.
Fig. 4 Magnitude responses of Example 3.
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filters with different N and M cannot be designed by
using procedures of [9] and [10].

6. Conclusions

In this paper, we have proposed a new method for de-
signing linear phase IIR filters with exact linear phase
and optimum magnitude response in the Chebyshev
sense. The design procedure is based on the formu-
lation of an eigenvalue problem using Remez exchange
algorithm. We have introduced a new and very simple
selection rule where the rational interpolation is per-
formed if and only if the real maximum eigenvalue is
chosen. Therefore, the solution of the rational interpo-
lation problem can be achieved by computing only one
eigenvector corresponding to the real maximum eigen-
value, and the optimal filter coefficients can be easily
obtained through a few iterations. The new design al-
gorithm not only retains the speed inherent in Remez
exchange algorithm, but also simplifies the interpolation
step because it has been reduced to the computation of
the real maximum eigenvalue. The proposed procedure
can be extended to design of IIR digital filters with ar-
bitrary frequency responses.
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