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PAPER

A New Class of Complex Compact-Supported

Orthonormal Symmlets

Xi ZHANG†a) and Toshinori YOSHIKAWA†, Regular Members

SUMMARY This paper presents a new class of complex-
valued compact-supported orthonormal symmlets. Firstly, some
properties of complex-valued compact-supported orthonormal
symmlets are investigated, and then it is shown that complex-
valued symmlets can be generated by real-valued half-band fil-
ters. Therefore, the construction of complex-valued symmlets can
be reduced to the design of real-valued half-band filters. Next,
a design method of real-valued half-band FIR filters with some
flatness requirements is proposed. For the maximally flat half-
band filters, a closed-form solution is given. For the filter design
with a given degree of flatness, the design problem is formulated
in the form of linear system by using the Remez exchange algo-
rithm and considering the given flatness condition. Therefore, a
set of filter coefficients can be easily computed by solving a set
of linear equations, and the optimal solution is obtained through
a few iterations. Finally, some design examples are presented to
demonstrate the effectiveness of the proposed method.
key words: symmlets, orthonormal wavelets, compact-supported

wavelets, complex-valued wavelets

1. Introduction

The discrete wavelet transform (DWT), which is imple-
mented by a two-band perfect reconstruction filter bank
(PRFB), has been extensively used in many digital sig-
nal and image processing applications [1]–[5]. Among
the numerous existing wavelets, real-valued compact-
supported orthonormal wavelets have been most widely
used. The associated PRFB’s have real-valued and
finite impulse responses (FIR). In many applications
such as image coding, one desirable property for
wavelets is symmetry. It is well-known that there does
not exist any nontrivial real-valued compact-supported
orthonormal symmetric wavelets (called symmlets), ex-
cept for the Haar wavelet [7]. To get symmlets, at least
one of the above properties has to be given up. One pos-
sible solution to this dilemma is to construct complex-
valued symmlets [8], [10], [12]. In case of real-valued
symmlets, it is known that the associated PRFB’s
are exactly linear phase. However, for complex-valued
symmlets, symmlets may be symmetric or conjugate-
symmetric. If it is conjugate-symmetric, then the asso-
ciated PRFB’s are required to be exactly linear phase,
which had been proved to be impossible also [12].
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Hence, the only possibility is to construct symmetric
(not conjugate-symmetric) symmlets, where the associ-
ated PRFB’s are not exactly linear phase. Notice that
there is a wrong explanation in [10]. A class of complex-
valued compact-supported orthonormal symmlets has
been presented in [8] and [12], which are constructed
from the Daubechies’s real-valued wavelets, and has
been also applied to image subband coding in [8] and
[10]. It is known [5], [8] that symmlets can be efficiently
implemented since its symmetry, and the symmetric ex-
tension method can be employed when it is applied to
image subband coding.

In this paper, we present a new class of complex-
valued compact-supported orthonormal symmlets.
Firstly, we investigate some properties of complex-
valued compact-supported orthonormal symmlets and
relation between symmlets and half-band filters. We
show that complex-valued symmlets can be generated
by a real-valued half-band filter, then the construction
of complex-valued symmlets can be reduced to the de-
sign of real-valued half-band filters. Next, we propose a
design method of real-value half-band FIR filters with
some flatness requirements. For the maximally flat
half-band filters, we give a closed-form solution. For
the filter design with a given degree of flatness, we for-
mulate the design problem in the form of linear system
by using the Remez exchange algorithm and consider-
ing the given flatness condition. Therefore, a set of filter
coefficients can be easily computed by solving a set of
linear equations, and the optimal solution is obtained
through a few iterations. Finally, we present some de-
sign examples to demonstrate the effectiveness of the
proposed method.

2. Complex-Valued Orthonormal Symmlets

Assume that ψ(t) is a basic wavelet function, the
wavelet transform (WT) to f(t) (f ∈ L2(R)) is defined
as

FW (a, b) =
1
a

1
2

∫ ∞

−∞
f(t)ψ̄

(
t− b

a

)
dt, (1)

where x̄ denotes complex conjugate of x, and the di-
lation/contraction and translation parameters are a ∈
R+, b ∈ R. When discretized, a = 2−k and b = 2−km
(k,m : integer), in general.

It is well-known that the dyadic wavelet bases can
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be generated by a two-band PRFB {H(z), G(z)}, where
H(z) is a lowpass filter and G(z) highpass. The scaling
function φ(t) and wavelet function ψ(t) are related with
{H(z), G(z)} in frequency domain as follows;


φ̂(ω) = H(ej ω

2 )φ̂
(ω
2

)
=

∞∏
k=1

H(ej2−kω)

ψ̂(ω) = G(ej ω
2 )φ̂

(ω
2

) , (2)

where φ̂(ω), ψ̂(ω) are the Fourier transforms of φ(t) and
ψ(t), respectively. If both H(z) and G(z) are FIR fil-
ters, then the generated wavelet bases are compact-
supported. The orthonormality condition that H(z)
and G(z) have to satisfy is


H(z)H̄(z−1) +H(−z)H̄(−z−1) = 1

G(z)Ḡ(z−1) +G(−z)Ḡ(−z−1) = 1

H(z)Ḡ(z−1) +H(−z)Ḡ(−z−1) = 0

, (3)

where H̄(z) has a set of coefficients that are complex
conjugate with ones of H(z). Assume that H(z) is a
FIR filter of order N with complex-valued coefficients
hn;

H(z) =
N∑

n=0

hnz
−n, (4)

where N is odd. To be symmlets, its impulse response
has to be symmetric or antisymmeric, i.e.,

hn = ±hN−n. (5)

However, it should be noted that if hn is antisymmetric,
then the magnitude of H(z) becomes zero at ω = 0, i.e.,
H(1) = 0, so that it is not lowpass filter. Hence, the
impulse response must be symmetric. The frequency
response of H(z) is given by

H(ejω) = e−j N
2 ω

(N−1)/2∑
n=0

hn cos
(
N

2
− n

)
ω

= e−j N
2 ωĤ(ejω). (6)

It is clear that the phase response is not linear since
hn is complex-valued. Only if hn is real-valued,
H(z) will be exactly linear phase. Unfortunately, it
is well-known that the only solution for real-valued
compact-supported orthonormal symmlets is the Haar
wavelet. For complex-valued filters, in order to have ex-
actly linear phase, the coefficients should be conjugate-
symmetric, i.e., hn = ±h̄N−n. However, it has been
proved in [12] that there does not exist any nontriv-
ial complex-valued solution also. Notice that the sym-
metry condition of Eq. (5) is different from the lin-
ear phase condition. Hence, there exist some solu-
tions for complex-valued compact-supported orthonor-
mal symmlets. It can be seen in Eq. (6) that Ĥ(ejω) is

a polynomial of cosω and then an even function. From
the orthonormality condition of Eq. (3), the highpass
filter G(z) can be constructed from H(z) as

G(z) = z−N H̄(−z−1), (7)

whose impulse response gn is antisymmetric, i.e.,

gn = −gN−n. (8)

As a result, the generated scaling function is symmetric,
while the wavelet function is antisymmetric.

3. Design of Symmlet Filters

In this section, we describe how to design the filterH(z)
associated with complex-valued compact-supported or-
thonormal symmlets.

3.1 Property

Since H(z) is complex filter, it is difficult to ap-
proximate simultaneously its magnitude and phase re-
sponses. Before designing H(z), we define a product
filter P (z) as

P (z) = H(z)H̄(z−1). (9)

Since H(z) has a set of symmetric coefficients, the co-
efficients of P (z) are also symmetric. The coefficients
of H(z) and H̄(z−1) are complex conjugate each other,
then the coefficients of P (z) are real. In order to sat-
isfy the orthonormality condition of Eq. (3), P (z) can
be expressed in the form

P (z) =
1
2
+

M∑
m=0

pm[z−2m−1 + z2m+1], (10)

where pm is real, and N = 2M + 1. This is why the
order N of H(z) must be odd. In the following, we
examine relation of zeros between H(z) and P (z). The
symmetric relation in Eq. (5) implies that if zi is a zero
of H(z), then z−1i will be also its zero. Therefore, all
possible zeros of H(z) are a zero located at z = −1, or
a pair of complex-conjugate zeros (ejθi , e−jθi) on the
unit circle, or a pair of real reciprocal zeros (ri, r

−1
i ),

or a pair of complex reciprocal zeros (zi, z
−1
i ), where

θi is real (�= 0 or π), ri is real (�= ±1), and zi is
complex (|zi| �= 1). Note that H(z) must have odd
number of zeros located at z = −1 because the or-
der N is odd and the coefficients are symmetric. Then
H̄(z−1) has a zero located at z = −1, and/or a pair of
complex-conjugate zeros (ejθi , e−jθi), and/or a pair of
real reciprocal zeros (ri, r

−1
i ), and/or a pair of com-

plex reciprocal zeros (z̄i, z̄
−1
i ). Therefore, P (z) will

have sets of double zeros at z = −1, and/or dou-
ble complex-conjugate pairs (ejθi , e−jθi), and/or double
real reciprocal pairs (ri, r

−1
i ), and/or quadruple config-

urations (zi, z̄i, z
−1
i , z̄−1i ). If P (z) with such zeros can
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be designed, then we can factorize P (z) to get H(z).
When P (z) has more than one sets of quadruple con-
figurations (zi, z̄i, z

−1
i , z̄−1i ), there are several possible

choices. If all the zeros within the upper semi-unit cir-
cle are selected for H(z), then the normal symmetric
complex (NSC) filter is obtained [8]. If the zeros within
the unit circle are selected alternatively for H(z) and
H̄(z−1), then the approximately linear phase symmet-
ric complex (ALPSC) filter is obtained [12].

From Eq. (10), the magnitude response of P (z) is

P (ejω) =
1
2
+ 2

M∑
m=0

pm cos(2m+ 1)ω, (11)

which satisfies

P (ejω) + P (ej(π−ω)) = 1. (12)

This means that the magnitude response of P (z) is an-
tisymmetric about (π

2 ,
1
2 ). That is, P (z) is a half-band

filter. If the magnitude is 0 in the stopband [ωs, π],
then the magnitude response of P (z) becomes 1 in
the passband [0, ωp], where ωp and ωs are the pass-
band and stopband cutoff frequencies, respectively, and
ωp + ωs = π. Therefore the approximation needs to
be done only in the stopband. It is seen that P (z)
in Eq. (10) has (M + 1) unknown coefficients pm, thus
there are 2(M + 1) independent zeros because of the
symmetry of the filter coefficients. P (z) has a total of
2(2M + 1) zeros, in which 2M dependent zeros have
been used for satisfying the orthonormality condition
in Eq. (3) so that the passband is naturally formed.
Therefore, we just need to optimize the stopband re-
sponse by locating the 2(M +1) independent zeros. To
obtain a good stopband response, all the independent
zeros are required to locate on the unit circle. For ex-
ample, in the Daubechies’s wavelets, all the indepen-
dent zeros are located at z = −1 to get the maxi-
mally flat filters. Since P (z) has a set of real sym-
metric coefficients, its zeros occur in quadruple config-
urations (zi, z̄i, z

−1
i , z̄−1i ), and/or in complex-conjugate

pairs (ejθi , e−jθi) on the unit circle, and/or in real re-
ciprocal pairs (ri, r

−1
i ), and/or at z = −1. Note that

the zeros located at z = −1 must be double because
the order 2N of P (z) is even. To construct H(z)
from P (z), we should force the complex-conjugate ze-
ros (ejθi , e−jθi) and the real reciprocal zeros (ri, r

−1
i )

to be double. To obtain double complex-conjugate ze-
ros (ejθi , e−jθi), we just need to make the magnitude
response P (ejω) ≥ 0. Unfortunately, there is not any
method to ensure double real zeros. Somtimes P (z) has
no real zero, then we can factorize P (z). Recall that
H(z) must have odd zeros located at z = −1, then the
number of the zeros of P (z) at z = −1 is an odd mul-
tiple of two. Therefore, the number 2(M + 1) of the
independent zeros, which should locate on the unit cir-
cle, will be an odd multiple of two also, i.e., M is even.
The number 2M of the dependent zeros, which do not

locate on the unit circle, will be a multiple of four. In
this case, we have found through numerical examples
that the dependent zeros frequently occur in quadru-
ple configurations (zi, z̄i, z

−1
i , z̄−1i ), and then there is

no real zero. Therefore, we can factorize P (z) to get
H(z) when M is even. However, there is no solution
for odd M since there always exist some real zeros.

3.2 Maximally Flat Filters

To get regular symmlets and to have some vanishing
moments, H(z) is required to have at least one zero at
z = −1. We assume that H(z) has 2K + 1 zeros at
z = −1, then P (z) is

P (z) = (1 + z)2K+1(1 + z−1)2K+1Q(z), (13)

where 0 ≤ K ≤ M/2 and Q(z) is a linear phase FIR
filter of order 4(M − K) with real-valued coefficients.
From Eq. (13), we have

∂iP (ejω)
∂ωi

∣∣∣∣
ω=π

= 0 (i = 0, 1, · · · , 4K + 1), (14)

which corresponds to the flatness condition. By substi-
tuting the magnitude response of Eq. (11) into Eq. (14),
we get



M∑
m=0

pm =
1
4

(i = 0)

M∑
m=0

(2m+ 1)2ipm = 0 (i = 1, 2, · · · , 2K)
(15)

When the maximally flat filters are needed, i.e., K =
M/2, we can obtain a closed-form solution given by

pm =
(−1)m
2m+ 1

M∏
i=0

(
i+

1
2

)2
(M −m)!(M +m+ 1)!

. (16)

3.3 Filter Design with Given Flatness

It is known that the maximally flat filters are poorly
selective. Frequency selectivity is also thought of as a
useful property for many applications. However, fre-
quency selectivity and regularity somewhat contradict
each other. For this reason, we consider the design of
H(z) that has the best possible frequency selectivity
for a given degree of flatness. When 0 ≤ K < M/2,
we wish to get an equiripple magnitude response by us-
ing the remaining degrees of freedom. Firstly, we select
(M − 2K + 1) extremal frequencies ωi in the stopband
[ωs, π] as follows;

ωs = ω0 < ω1 < · · · < ω(M−2K) < π. (17)

In order to have double complex-conjugate zeros on the
unit circle, we must force P (ejω) ≥ 0. Then we apply
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the Remez exchange algorithm in the stopband and for-
mulate P (ejω) as

P (ejωi) =
1
2
+ 2

M∑
m=0

pm cos(2m+ 1)ωi

= (1 + (−1)i) δ, (18)

where δ (> 0) is magnitude error. Equation (18) can
be rewritten as

M∑
m=0

pm cos(2m+ 1)ωi −
1 + (−1)i

2
δ = −1

4
. (19)

Therefore, a set of filter coefficients pm can be obtained
by solving the linear equations of Eqs. (15) and (19). In
order to achieve an equiripple magnitude response, we
make use of an iteration procedure to get the optimal
solution. The design algorithm is shown as follows.

3.4 Design Algorithm

Procedure {Design Algorithm for Symmlets}
Begin

1. Read M,K, and the cutoff frequency ωs.
2. Select initial extremal frequencies Ωi (i =
0, 1, · · · ,M − 2K) equally spaced in the stopband
[ωs, π].

Repeat
3. Set ωi = Ωi (i = 0, 1, · · · ,M − 2K).
4. Solve Eqs. (15) and (19) to obtain a set of filter
coefficients pm.

5. Search for the peak frequencies of P (ejω) in the
stopband, and store these frequencies into the cor-
responding Ωi.

Until Satisfy the following condition for the pre-
scribed small constant ε (ε = 10−4 in general):{

M−2K∑
i=0

|Ωi − ωi| ≤ ε

}

6. Factorize P (z) to construct H(z) and G(z), then
generate the scaling function φ(t) and wavelet
function ψ(t).

End .

4. Design Examples

In this section, we present two design examples to
demonstrate the effectiveness of the proposed method.
Example 1 : We consider the design of the maximally
flat filter with N = 21, i.e., M = 10. By setting K = 5,
the maximally flat filter is obtained from Eq. (16). By
factorizing the resulting P (z), ALPSC and NSC fil-
ters are obtained. ALPSC and NSC filters have the
same magnitude response, which is shown in Fig. 1 in

Fig. 1 Magnitude responses in Example 1.

Fig. 2 Phase responses in Example 1.

Fig. 3 Scaling function of ALPSC filter in Example 1.

the solid line. In Fig. 1, the magnitude responses of
M = 8 (N = 17) and M = 12 (N = 25) are also
shown for comparison purposes. The phase responses
of ALPSC and NSC filters are shown in Fig. 2, with re-
moving linear phase −Nω/2. Note that since Ĥ(ejω)
is an even function, only the positive frequency part is
shown. It is seen that ALPSC filter has a smaller phase
error than NSC filter. The scaling and wavelet func-
tions generated by ALPSC and NSC filters are shown in
Fig. 3 to Fig. 6, respectively, where the solid and dotted
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Fig. 4 Wavelet function of ALPSC filter in Example 1.

Fig. 5 Scaling function of NSC filter in Example 1.

Fig. 6 Wavelet function of NSC filter in Example 1.

lines denote the real and imaginary parts, respectively.
It is clear that the scaling function is symmetric, while
the wavelet function is antisymmetric.
Example 2 : We consider the filter design with N =
21 (M = 10), K = 4, ωp = 0.4π and ωs = 0.6π. The
filter has been designed by using the proposed method.
We then factorized P (z) to obtain ALPSC and NSC
filters. Their magnitude and phase responses, with re-
moving linear phase −Nω/2, are shown in Fig. 7 and
Fig. 8, respectively. In Fig. 7, the magnitude responses

Fig. 7 Magnitude responses in Example 2.

Fig. 8 Phase responses in Example 2.

Fig. 9 Scaling function of ALPSC filter in Example 2.

with K = 3 and K = 5 are shown also. It is seen that
the filter of K = 5 is the maximally flat filter, and the
magnitude error decreases with a decreasing K. It is
seen in Fig. 8 that ALPSC filter has a smaller phase
error than NSC filter. The scaling and wavelet func-
tions generated by ALPSC and NSC filters are shown
in Fig. 9 to Fig. 12, respectively.

5. Conclusions

In this paper, a new class of complex-valued compact-



ZHANG and YOSHIKAWA: A NEW CLASS OF COMPLEX COMPACT-SUPPORTED ORTHONORMAL SYMMLETS
1745

Fig. 10 Wavelet function of ALPSC filter in Example 2.

Fig. 11 Scaling function of NSC filter in Example 2.

Fig. 12 Wavelet function of NSC filter in Example 2.

supported orthonormal symmlets have been presented.
Firstly, some properties of complex-valued compact-
supported orthonormal symmlets are investigated, and
relationship between complex-valued symmlets and
real-velued half-band filters is shown. Since the con-
struction of complex-valued symmlets can be reduced
to the design of real-valued half-band filters, a design
method for real-value half-band FIR filters with some
flatness requirements has been proposed. For the max-
imally flat half-band filters, a closed-form solution is

given. For the filter design with a given degree of flat-
ness, a set of filter coefficients can be easily computed
by solving a set of linear equations, and the optimal so-
lution is obtained through a few iterations, because the
efficient Remez exchange algorithm has been applied in
the stopband. Finally, some examples have been de-
signed to demonstrate the effectiveness of the proposed
method.
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