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Design of IIR Nyquist Filters with Zero

Intersymbol Interference

SUMMARY  This paper presents a new method for designing
IIR Nyquist filters with zero intersymbol interference. It is shown
that ITR Nyquist filters with zero intersymbol interference have
some constraints on frequency response, i.e., both magnitude and
phase error in passband are dependent on stopband error. There-
fore, the frequency response is required to optimize only in stop-
band. The proposed procedure is based on the formulation of
an eigenvalue problem by using Remez multiple exchange algo-
rithm in stopband. Then, the filter coefficients can be computed
by solving the eigenvalue problem, and the optimal solution with
equiripple stopband response is easily obtained by applying an
iteration procedure. The proposed procedure is more computa-
tionally efficient than the conventional methods.
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1. Introduction

Nyquist filters play an important role in designing
digital transmission systems and filter banks[1]-[10].
Nyquist filters are used to band-limit data spectrum
and minimize intersymbol interference. To obtain an
exact zero intersymbol interference, every Nth impulse
response coefficients is required to be restricted to zero
except for one coeflicient. Then, they can also be used
as efficient decimators and interpolators. There are two
kinds of structures for Nyquist filters, FIR filters and
IIR filters. Since FIR filters have exact linear phase
response and the filter coefficients correspond to an
impulse response directly, design of FIR Nyquist fil-
ters have been exhaustively studied in [1]-[6]. How-
ever, FIR filters generally require high filter order for
meeting stringent magnitude specifications. For IIR
Nyquist filters, the conventional design requires both
time- and frequency-response optimization [7]-[10]. In
[7], Nakayama and Mizukami have proposed a class of
new transfer functions for IIR Nyquist filters which have
exact zero intersymbol interference. Therefore, only the
frequency response of the filters is required to optimize
by using the proposed transfer function. In [7] and [8],
the multistep optimization method is used to optimize
the frequency response of IIR Nyquist filters. However,
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since the optimization algorithm at each step is based
on the iterative Chebyshev approximation that applies
linear programming techniques at each iteration, it re-
quires heavy computations and the initial value for filter
coefficients.

In this paper, we present a new method for design-
ing IIR Nyquist filters with zero intersymbol interfer-
ence. First, we show that IIR Nyquist filters with zero
intersymbol interference have some constraints where
the sum of the frequency responses at some related fre-
quencies keep unity regardless of what the values of the
filter coefficients are. Therefore, both magnitude and
phase error in passband are decided by stopband error,
then the frequency response is required to optimize only
in stopband. By applying Remez multiple exchange al-
gorithm in stopband, we can formulate the design prob-
lem in the form of an eigenvalue problem[11],[12].
Then, the filter coefficients can be computed by solving
the eigenvalue problem, and the optimal solution with
equiripple stopband response is easily obtained after ap-
plying an iteration procedure. The proposed procedure
is more computationally efficient than the conventional
methods because it has been reduced to computation of
the absolute minimum eigenvalue. Finally, we present
some design examples to demonstrate the validity of the
proposed procedure.

2. Property of IIR Nyquist Filters

To minimize the intersymbol interference, Nyquist filter
H(z) is required to have an exact zero crossing impulse
response, i.e.,

1
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where K and M are integers. It is known in [7] that
the transfer function that satisfies the time-domain con-
ditions of Eq. (1) can be expressed in the form
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where N,,, Ny are integers, and the filter coefficients a;, b;
are real, bp = 1. Hence, only the frequency-response op-
timization is required by using the above transfer func-
tion. In frequency domain, H(z) is required to be a
lowpass filter with linear phase, whose passband and
stopband cutoff frequencies w, and w, are given by

1-p
Ldp: m

Mo 3)
w. — LEP
s M

where p is a rolloff rate.

Before approximating the frequency response, we
observe the properties of IIR Nyquist filters with zero
intersymbol interference. Assume that H(z) is the K-
delay version of H(z), i.e.,
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then the frequency response of H(z) can be obtained by
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It is well-known that the exponential function satisfies
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Therefore, we get
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where 0 < wy £ w,. Equation (7) means that
the sum of the frequency responses at the frequencies
wo+ 2% (m =0,1,---, M —1) keep unity regardless of
what the values of the coefficients a; and b; are. Since
H(e7?7=%)) = H*(e/*), Eq. (7) can be rewritten as

L—1 M-1
H(e0) =1 H(e™*) = Y H*(e*), (8)
k=1 k=L

where L = L%J , W = 2’“7”+w0 for0<k<L L -1,
andwk=2(M—A;kM—wo for L <k<M-—1. z* and
|z| denote the complex conjugate and integer part of z,
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respectively. It is clear from Eq.(8) that if its stopband
response is 0, then the frequency response of H(z) will
be 1, ie., H(z) = 2~ X in passband. Therefore, both
magnitude and phase error in passband are decided by
stopband error. Let 6; be the maximum magnitude er-
ror in stopband, the maximum magnitude and phase
error in pasband are

{ 6p < (M —1)8s

9
Af < sin~H(M — 1), ®
In practical designs, 6, and A8 are usually much smaller
than this upper limits. Since 6, and Af are guaranteed
to be relatively small for a small value of §,, the filter
design can concentrate on shaping stopband response.
It can also be explained according to the pole-zero lo-
cations. H(z) has I (= N, + Ng— [£] — | ¥=2K 1)
independent zeros which are used to provide the de-
sired stopband response. The independent zeros have
to locate on or nearby the unit circle to minimize stop-
band error. The poles and the remaining zeros off the
unit circle are used for satisfying the time-domain con-
ditions of Eq. (1) so that passband response is naturally
formed. In the following, we will directly apply Remez
multiple exchange algorithm in stopband to design IIR
Nyquist filters with zero intersymbol interference.

3. Design of IIR Nyquist Filters

In this section, we describe the complex Chebyshev ap-
proximation of IIR Nyquist filters with zero intersymbol
interference based on the eigenvalue problem.

3.1 Formulation

As shown in Sect. 2, only the frequency response in stop-
band is required to optimize in design of ITR Nyquist
filters with zero intersymbol interference. Since H(z)
has I independent zeros to form stopband response, we
can select J (= [£|+1) extremal frequencies w; in stop-
band as follows;

ws =wy <wy < <wyg <, (10)

where w; < m when I is odd because there exists one
zero at w = m, and wy = m when I is even. We apply
Remez multiple exchange algorithm in stopband, and
formulate the condition for H(e/) as follows;

Iﬁ_r(ejwl) — 5363'9(%-)7 (11)
where 6, is magnitude error and #(w) is phase re-

sponse in stopband. Substituting H (e7*) of Eq. (5) into
Eq.(11), we divide Eq. (11) into the real and imaginary
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parts as
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where J; = J for odd I, and J; = J — 1 for even I
because Eq. (11) has not the imaginary part at wy = 7.

Equations (12) and (13) can be rewritten in the matrix
form as

PA =6QA, (14)
where
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cos(f(wg) — NgMuwp) T

0 - cosOlwy) -
0 - sinf(wp)

cos(@(wy) — NgMwy)
sin(f(wo) — NgMuwp)

0 - sinf(wy,) -+ sin(f(ws,) — NgMwy,) |

(17)

It should be noted that Eq. (14) corresponds to a gener-
alized eigenvalue problem, i.e., §5 is an eigenvalue and
A is a corresponding eigenvector. Therefore, in order to
minimize the magnitude error és, we must compute the
absolute minimum eigenvalue by solving the eigenvalue
problem of Eq.(14). Then, the corresponding eigen-
vector gives a set of filter coefficients. By appropriately
selecting the initial extremal frequencies w; and its phase
6(w;), we apply an iteration procedure to attain the op-
timal solution with equiripple stopband response. The
selection of the initial extremal frequencies w; and its
phase 8(w;) will directly influence convergence of the
iteration procedure. In the following, we will discuss
how to select the initial extremal frequencies w; and its
phase 6(w;).

3.2 Selection of Initial Value

In the design algorithm, arbitrarily selecting the ini-
tial extremal frequencies w; and its phase 8(w;) cannot
guarantee to converge to the optimal solution. Hence,
it is very important how to select the initial value. It is
known that [ (z) has I independent zeros in stopband
which must locate on or nearby the unit circle. We as-
sume that all the initial zeros locate on the unit circle,
ie., z; = eTI%;

W < <wg <--- <y, £, (18)

where wy;, = m when [ is odd, and @w;, < ® when I is
even. A possible choice of @; is to pick these frequen-
cies equally spaced in stopband. Other distributions
may also be prefered to decrease number of iterations.
From Eq. (5), we have
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By by =1, Eq. (19) can be rewritten into
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which is a set of linear equations. By solving the above
linear equations, we can obtain a set of filter coefficients,
whose independent zeros locate on the unit circle. Then,
we can compute the frequency response of H(z) by using
the obtained filter coefficients, and search for the peak
points in stopband to get the initial extremal frequen-
cies w; and its phase #(w;). Since we have selected the
initial locations of I independent zeros all on the unit
circle, there must exist J extremal frequencies including
the cutoff frequency in stopband. Therefore, The de-
sign algorithm is guaranteed to converge to the optimal
solution. The design algorithm is shown as follows.

3.3 Design Algorithm

Procedure {Design algorithm of IIR Nyquist filters}
Begin
1. Read N,,, Ny, M, K and p.

2. Select initial locations of independent zeros @; (i =
1,2,---,J1) equally spaced in stopband.

3. Solve Egs.(20) and (21) to obtain a set of filter
coefficients a; and b;.

4. Compute frequency response of H(z) by using the
obtained filter coefficients, then search peak fre-
quencies in stopband as initial extremal frequencies
Q; (i=1,2,---,J) and compute its phase 0(£;).

Repeat
5. Setw; =8Q; fori=1,2,---,.J.

6. Compute P and Q by using Egs.(16) and (17),
then find the absolute minimum eigenvalue of
Eq.(14) to obtain a set of filter coefficients a; and

b;.

7. Compute frequency response of H (%), then search
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peak frequencies Q; (i = 1,2,--.,J) in stopband
and compute its phase 0(£2;).

Until  Satisfy the following condition for prescribed
small constants ¢ :
{1 —w;i] <€ (fori=1,2,---,J)}

8. Check stability of H(z) by finding the locations of
poles.

End.

In the above design algorithm, the obtained filters
are not guaranteed to be stable. The stability of H(z)
must be checked in step. 8 by computing the locations of
the poles. The stability of Nyquist filters are generally
dependent on the specifications of the filter, i.e., N,,, Ny,
M and K. When numerator order N,,, denominator or-
der Ny and M are given, the group delay must be chosen
as K = Ky, to guarantee the obtained filters to be sta-
ble. Kmpin is the minimum group delay for the stable
filters. In our experience, Ky, is directly proportional
to N, and Ny, and inversely to M in general.

4. Design Example

In this section, we present some design examples to
demonstrate the validity of the proposed design method,
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Fig. 1 Magnitude responses of Example 1.
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and compare the performance of the filters with the con-
ventional methods.

Example 1: We consider design of the IIR Nyquist fil-
ter of [7] with the following specifications: N, = 15,
Ng =1, K =9, M =4 and p = 0.3 for comparison
purposes. The filter is designed by using the proposed
procedure. The magnitude response of the resulting fil-
ter is shown in Fig. 1, and the group delay is shown in
Fig.2, all in solid line. The passband and stopband
attenuations are 0.08 dB and 38 dB, respectively. The
maximum error of group delay is 0.65 sampling period
in passband. The results in [ 7] are also shown in dashed
line in Fig.1 and Fig.2. It is clear that the results of
the proposed method and [7] are almost same. The
pole-zero locations of two filters obtained from the pro-
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Fig. 3 Pole-zero locations of Example 1.
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posed method and [7] are shown in Fig.3. It is seen
in Fig. 3 that the filter of the proposed method has 13
independent zeros all on the unit circle in stopband,
while one of [7] has some zeros nearby the unit circle.
To compare computation times, we have executed the
proposed algorithm and the algorithm of [7] on SUN
SP/IPX. The proposed algorithm required only several
seconds while the algorithm of [7] needed more than
10 minutes.

Example 2: We consider design of an IIR Nyquist fil-
ter with V, =32, Ny =2, K =19, M = 7 and p = 0.15.
The filter is designed by using the proposed procedure,
and the magnitude response and the group delay are
shown in Fig.4 and Fig.5, respectively. It is seen in
Fig. 4 that the magnitude response is equiripple in stop-
band. We have also designed many filters with various
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Fig. 4 Magnitude response of Example 2.
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K. We have found that when K < 18, the obtained fil-
ters have some poles on or outside the unit circle, and
will become unstable. Therefore, we have K, = 19,
and must set K > 19 to obtain the stable filters.

5. Conclusions

In this paper, we have proposed a new method for de-
signing IIR Nyquist filters with zero intersymbol inter-
ference. We have shown that IIR Nyquist filters with
zero intersymbol interference have some constraints on
frequency response where both magnitude and phase er-
ror in passband are decided by stopband error. There-
fore, the filter design requires to optimize the frequency
response only in stopband. The design procedure is
based on the formulation of an eigenvalue problem by
using Remez multiple exchange algorithm in stopband.
Therefore, the filter coefficients can be obtained by com-
puting the absolute minimum eigenvalue, and the opti-
mal solution with equiripple stopband response is easily
achieved by applying an iteration procedure. The pro-
posed procedure is more computationally efficient than
the conventional methods.
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