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SUMMARY  This paper presents a new method for construct-
ing orthonormal wavelet bases with vanishing moments based
on general 1IR filters. It is well-known that orthonormal wavelet
bases can be generated by paraunitary filter banks. Then, syn-
thesis of orthonormal wavelet bases can be reduced to design of
paraunitary filter banks. From the orthonormality and regularity
of wavelets, we derive some constraints to IIR filter banks, and
investigate relations between the constrained filter coefficients and
its zeros and poles. According to these relations, we can apply
Remez exchange algorithm in stopband directly, and formulate
the design problem in the form of an eigenvalue problem. There-
fore, a set of filter coefficients can be easily computed by solving
the eigenvalue problem, and the optimal filter coefficients with an
equiripple response can be obtained after applying an iteration
procedure. The proposed procedure is computationally efficient,
and the number of vanishing moments can be arbitrarily speci-
fied.

key words:  orthordrmal wavelet, paraunitary filter bank, IIR
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1. Introduction

Wavelets have received considerable attention in vari-
ous fields of applied mathematics, signal processing,
multiresolution theory, and so on during past sev-
eral years. The connection between continuous-time
wavelets and discrete filter banks was originally investi-
gated by Daubechies, and is now well understood [1]-
[11]. Wavelet bases can be generated by perfect recon-
struction two-band filter bank solutions. In this paper,
we consider a paraunitary filter bank, which, when iter-
ated, generates orthonormal wavelet bases. Paraunitary
filter banks can be implemented using finite impulse re-
sponse (FIR) or infinite impulse response (ITR) filters.
The case of FIR filters, which lead to compactly sup-
ported wavelets, has been examined in detail in [2],[9]—
[11]. In this paper we also restrict ourselves to IIR
filters, which lead to more general wavelets of infinite
support [5]. Design of IIR paraunitary filter banks com-
posed of allpass filters have been discussed in [7] and
(8] also. By using allpass filters, the filter bank can be
implemented by fewer multipliers. However, the transfer
function produced by parallel connection of two allpass
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filters is limited, and the design methods in [7] and [§]
cannot be used to generate wavelet bases with specified
vanishing moments, where the vanishing moment im-
plies that the generated wavelet varies smoothly in time,
and is useful for compression of smooth functions by
wavelet transforms and so on [2]-[6].

In this paper, we propose a new method for con-
structing recursive orthonormal wavelet bases with van-
ishing moments based on general IIR filters. Since syn-
thesis of orthonormal wavelet bases has been reduced
to design of paraunitary filter banks, we only require
to consider design of IIR paraunitary filter banks with
an additional flatness constraint. First of all, we de-
rive some constraints to IIR filter banks from the or-
thonormality and regularity of wavelets, and investigate
relations between the constrained filter coefficients and
its zeros and poles. According to these relations, we
can find that the magnitude response of the product fil-
ter is antisymmetric between passband and stopband.
Therefore, we can apply Remez exchange algorithm in
stopband directly, and formulate the design problem in
the form of an eigenvalue problem [12],[13]. By solving
the eigenvalue problem to compute the absolute mini-
mum eigenvalue, we can get a set of filter coefficients as
the corresponding eigenvector. Then, the optimal filter
coeflicients with an equiripple response can be easily
obtained after applying an iteration procedure. The
proposed procedure is computationally efficient, and
the number of vanishing moments of wavelets can be
arbitrarily specified. Finally, we present some design
examples to demonstrate the validity of the proposed
procedure.

2. Wavelets and Filter Banks

Assume that ¢ (t) is a basic wavelet function, the wavelet
transform (WT) to a signal f(t)(f € L(R)) is defined
as

At = [ : Feyw (%)dt, ()

where z* denotes the complex conjugate of x, and
the dilation/contraction and translation parameters are
a € Rt b € R. When discretized, a = 2=% and
b = 27%m (k,m: integer), in general. The wavelet
function (¢) is generally complex function, we con-
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Fig. 1  Paraunitary filter bank (noncausal).

Fig. 2 Multiple stage filter bank.

sider only the real function (¢) in this paper. In the
following, ¢(t) is restricted to be real.

It is well-known [1]-[6] that orthonormal wavelet
bases can be generated by a paraunitary filter bank
{H(z),G(z)} shown in Fig. 1. In Fig. 1, H(z) is a low-
pass filter, and G(z) is highpass. When the filter bank
of Fig. 1 is iterated on the lowpass branch at each step
of decomposition, as shown in Fig.2, the limit function
of the impulse responses produce a scaling function ¢(t)
and wavelet function (t). Assume that ¢(w),)(w) are
the Fourier transforms of ¢(t) and ¥(t), respectively,
the scaling and wavelet function are related with the fil-
ter bank {H(z), G(z)} in frequency domain as follows

[41-[6];
i) = HE@Hp (2) = [[ HE@™) N
k=1 .
bw) = CEHé (3)

From the orthonormality of wavelets, the filter bank has
to satisfy the following constraints [4]—[6];

H(z)H(z"Y)+ H(—2)H(-2z"1) =1
G(z)G(z™Y) +G(=2)G(-z"Y) =1 . (3)
H(z)G(z7')+ H(-2)G(-z"1) =0

Here, we define the product filter as
P(z) = H(z)H(z™%). (4)

It is known from Eq. (3) that P(z) is a half-band filter.
Hence, we consider design of the real half-band filter
P(z) expressed in the form [13]

N
Za2n+1 [z2n+1 + z_(an)J
+2=2 ,

P(z) = -
bo + Z bom [2°™ + 2777
m=1

bO|

where N, M are integers, the filter coefficients a; and
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b; are real, and by = 1. Note that since N and M
can be arbitrarily selected, the transfer function is more
general than one composed of allpass filters in [7] and
[8]. It can be seen that P(z) has symmetric filter co-
efficients. Hence, its zeros occur on the unit circle or
in mirror-image pairs, while the poles occur in mirror-
image pairs. If all zeros on the unit circle are double
zeros, we can decompose zeros and poles of P(z) to
get a stable H(z). Assume that the numerator and de-
nominator of P(z) are N(z)N(z7!) and D(2?)D(z72)
respectively, and D(z?) has all poles of P(z) inside the
unit circle, then the stable H(z) is

N
H(z) = %7 (6)
we can construct
-1
G(z) = iz—@JH)M (7)

D(z?) ’

where J = max{N, M}. Tt is clear from Egs.(6) and
(7) that the constraints of Eq. (3) are satisfied, then only
one filter, i.e., lowpass filter H(z), has to be designed.
Therefore, the design problem will become design of
P(z) whose zeros on the unit circle must be double
zeros. Note that H(z71) and G(z~!) in Fig. | are anti-
stable since H(z) and G(z) are stable. When the inverse
wavelet transform is required in some applications, we
must consider implementation of antistable filters. See
[7],[8] in detail.

Although the filter bank is never iterated to infinity
in practice, it is required that the limit function exists
and is regular, i.e., continuous, possibly with several
continuous derivatives [4]-[6]. The simplest regular-
ity condition for filter design is a flatness constraint on
the magnitude response at w = 7. K'th-order flatness is

obtained if H(z) contains K zeros located at z = —1.
Then, we have
d*H (el*
-—i%l =0 (k=0,1,....K—1), (8
dw e

and

/ thp(t)dt=0 (k=0,1,...,K —1), )
which means that the generated wavelet will have K
consecutive vanishing moments. K vanishing moments
imply that both the wavelet and the filter spectrum have
more smoothness. This property is potentially useful
in some practical applications, e.g., for compression of
smooth functions by wavelet transforms and so on [2]-
[6]. Of course, frequency selectivity is also thought of
as a useful property for many applications. However,
regularity and frequency selectivity somewhat contradict
each other. For this reason, we consider design of an
IIR filter that has the best possible frequency selectivity
for a specified number of vanishing moments.
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3. Design of IIR Filter Banks

In this section, we describe design of IIR paraunitary
filter banks with an additional flatness constraint based
on eigenvalue problem [12],[13].

3.1 Property

Before designing the filter bank, we investigate the prop-
erty of the product filter P(z). P(z) of Eq.(5) can be
rewritten as

L

ap + Z an [z" + z_"]

P(z) = =1 : (10)
bo + Z b2m [22m + Z_Zm]
m=1

where L = max{2M,2N + 1},

1
aznzibzn (n:O,l,...,M), (11)

and when N > M,

a3, =0 (n=M+1,M+2,...,N), (12)
when N < M -1,

a1 =0 (n=N+1,N+2,...,M-1). (13)

Note that when N = M or N = M — 1, there is
no coefficient of a,, = 0 in Eq.(10). It is seen from
Eq.(10) that P(z) has total 2L zeros and 4M poles,
where 2I;(I; = L — N — M — 1) zeros are used for satis-
fying the condition of Eq. (12) or (13), and all poles are
used for satisfying the condition of Eq. (11). Therefore,
there are only 2I5(I = M + N + 1) independent zeros
to be optimized.

We can obtain the magnitude response of P(z)
from Eq.(5) by

N
2 Z agn+1c08(2n + w
Wy 1 n=0

P(e%) = 3 + i . (14)

bo + 2 Z bam cos(2m)w
m=1
and from Eq. (3),
P(e?) + P(e?™=)) = 1, (15)

which means that the magnitude response of P(z) is an-
tisymmetric to (§, 3), then the ripple in passband [0, wp]
is equal to one in stopband [w,, 7], where wp, +w, = 7.
Therefore, we only require to approximate the stopband

response by locating 2/, independent zeros.
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3.2 Maximally Flat Filters

To obtain the maximum number of vanishing moments,
we have to design a maximally flat filter. Hence, all 21,
independent zeros are required to locate at z = —1, that
is, K = I,. Then, the numerator polynomial of P(z)
will be

NENET) =(1+2)201+272Q(x),  (16)

where

I
Q) =g+ Y aulz" +27". a7

n=1

Compared with Eq. (10), we have

I
an = Z Cn—iGi, (18)

i=—N,

where N; = min{I;, I, — n}, and
205!

Note that ¢; = q_; and ¢; = c_;. When N > M, from

Eq.(12), we get

C; =

(19)

I
Z Con_iqi =0 (n=M+1,...,N), (20)
i=— Ny
and when N < M — 1, from Eq.(13),
L
> cmp1-i6i=0 (n=N+1,...,M~-1). (21)
i=— N,

Due to by = 1, we have ag = 1/2 from Eq. (11), that is,
I

1
o= agi=y. (22)

i=—1I

Then, we can obtain a set of filter coefficients g; by
solving the linear equations of Egs. (22) and (20) when
N > M, or Eq.(22) when N =M or N =M -1, or
Egs.(22) and (21) when N < M — 1. The filter coef-
ficients a; and b; can be computed by using Eqgs. (18)
and (11). Hence, design of the maximally flat filter is
finished. From the obtained filter coefficients, we con-
struct H(z) and G(z) by decomposing zeros and poles
of P(z) as shown in Egs.(6) and (7), and then generate
a scaling function ¢(t) and wavelet function ¥(t). See
[4],[8] in detail.

3.3 Filters with Given Vanishing Moments

It is known that the maximally flat filters, generating
regular wavelets with the maximum number of vanish-
ing moments, are poorly selective. Here, we consider de-
sign of an IIR filter that has the best possible frequency
selectivity under K consecutive vanishing moments are
given. Since H(z) has K zeros located at z = —1, then
the numerator polynomial of P(z) can be expressed as
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N(z)N(") =1+ 2% (1 +271)%Q(2), (23)

where
L-K
Q) =g+ > aul" +27"]. (24)
n=1

Similarly to Eq. (18), we have

N3

ap = Z Cn—iqi, (25)

t=—Nso

where N, = min{L - K, K —n}, N3 = min{L - K, K +
n}, and

2K!
== 26
“T K —)(K +9)! (26)
When N > M, from Eq. (12),
N3
> cm-iti=0 (n=M+1,...,N), Q27)
i1=—Ns
and when N < M — 1, from Eq.(13),
N3
Z Cont1-i0i =0 (n=N+1,...,M—1). (28)
i=— N>

It is known that P(z) has total 21, independent zeros,
then K must satisfy K < I,. Therefore, the number of
the remaining independent zeros is 2I3(I3 = I, — K),
and they are required to locate on the unit circle in or-
der to obtain the best frequency selectivity. The zreos
of P(z) on the unit circle, except at z = %1, occur in
complex conjugate pairs, and are required to be double
zeros, therefore, I3 must be even. Since the magnitude
response of P(z) is antisymmetric, we need to optimize
the magnitude response in stopband only. To obtain
an equiripple stopband response, we apply Remez ex-
change algorithm in stopband directly, and formulate
the condition for P(e’*) in the form of a generalized
eigenvalue problem [12],[13]. First, we select I3 + 1
extremal frequencies w; in stopband as follows;

ws =wp <wy < <wpy, <7 (29)

Considering that all zeros of P(z) on the unit circle
must be double zeros, we formulate P(e’) as

- 5§ (1=0,2,...,15)

Jwiy — 3 &y )
Ple )"{0 (i=1,3,....I3—1)" (30)
where 6 is a magnitude error. Substituting Egs. (10) and
(23) into Eq.(30), we can rewrite Egs. (30) and (27) or
(28) or none in the matrix form as

SQ = §TB, 31)
where Q@ = [g0,91,..-,9u-r)]", B = [bo,bo,...,

baar]T, and the elements of S are
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1 (G =0)
Si _{2cos(jwi) j=12,...,L-K)’ (32)
wheni=0,1,...,I3, and
S = ) Critls (J=0)
2] C2itIy—j + C2it I +j (.7 =1,..., L- K)
(33)

wheni = I3+1,I3+2,...,L— K, where I, = 2(M - I3)
when N > M,and I, =2(N—-1I3)+1 when N < M —1.
Note that ¢; = 0 when ¢ > K. The elements of T are

1 .
@eos 5k U =0)
Ti; = . )
2 cos(2jw;) (=12 M)
(2008%1)2K .7_ Pt IR ]
when i =0,2,...,I3, and
T;; =0 (else). (35)
From Egs. (11) and (25), we have
B =VQ, (36)
where the elements of V' are
202i (] = 0)
Vi; = : 37
’ {2(C2i—j+C2i+j) (j=1,....L - K) @7

when i = 0,1,..., M.
Eq.(31), we can get

Substituting Eq. (36) into

SQ =6TVQ, (38)

which corresponds to a generalized eigenvalue problem,
i.e., 6 is an eigenvalue and Q is a corresponding eigen-
vector. Therefore, to minimize the magnitude error 6,
we compute the absolute minimum eigenvalue by solv-
ing the eigenvalue problem of Eq.(38). Then the corre-
sponding eigenvector gives a set of filter coefficients. To
force the magnitude response to be equiripple, we apply
an iteration procedure to obtain the optimal solution.
The design algorithm is shown as follows.

3.4 Design Algorithm

Procedure {Design Algorithm of Wavelet Filters}
Begin

1. Read N, M, K and w;,.

2. Select initial extremal frequencies ,(i = 0,1,
..., I3) equally spaced in stopband.

Repeat

3. Setw; =Q; fori=0,1,...,I5.

4. Compute S, T and V by using Egs. (32)—(35) and
(37), then find the absolute minimum eigenvalue
of Eq.(38) to obtain the filter coefficients g;, and
compute a;, b; by Eqs.(25) and (11).

5. Compute the magnitude response of P(z), and
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search the peak frequencies ;(i = 0,1,...,I3) in
stopband.

Until Satisfy the following condition for the pre-
scribed small constant e:

{|Qi—wi| Le (fOI'i:O,l,...,Ig)}

6. Construct H(z) and G(z) by decomposing the
poles and zeros of P(z), then generate the scaling
function ¢(t) and wavelet function ¥ (t) (see [4],[8]
in detail).

End.

4. Design Examples

In this section, we present some design examples to
demonstrate the validity of the proposed procedure.

Example 1: We consider design of a maximally flat
IIR filter with N = M = 4. The magnitude response

MAGNITUDE RESPONSE

1 1 ] 1
0 0.1 02 03 04 05
NORMALIZED FREQUENCY

Fig. 3 Magnitude responses of Example 1.

1.2 v T T T T
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-0.4}

Scaling Function & (t)

"08: ] 1 " 1 .
0 5 10 15 20

Fig. 4 Scaling function of Example I.

Wavelet Function U ()

Fig. 5 Wavelet function of Example 1.
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of the designed filter H(z), having minimum phase re-
sponse, is shown in Fig. 3 in solid line, and the gener-
ated scaling and wavelet function are shown in Fig.4
and Fig.5, respectively. In Fig.3, the magnitude re-
sponses of two filters with N =3 and M =50or N =5
and M = 3 are shown also. It is seen in Fig. 3 that the
magnitude responses of three filters are almost same.
This is because three filters have the same flatness at
w=0andw=m.

Example 2: We consider design of an IIR parauni-
tary filter bank with N = 4, M = 5, K = 8 and
ws = 0.6m. We have designed the product filter P(z)
by using the proposed procedure, and constructed H(z)
that has minimum phase response and G(z). The mag-
nitude response of H(z) is shown in Fig. 6 in solid line,
and the generated scaling function and wavelet function
are shown in Fig.7 and Fig.8, respectively. In Fig.6,
the magnitude responses of two filters with K = 6 or

MAGNITUDE RESPONSE(dB)
A
=)

1 1
0 0.1 02 03 04 05
NORMALIZED FREQUENCY

Fig. 6 Magnitude responses of Example 2.
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Scaling Function ¢ (t)

Fig. 7 Scaling function of Example 2.

Wavelet Function W (t)

Fig. 8 Wavelet function of Example 2.
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K = 10 are shown also. It is clear that the magnitude
error decreases with a decreasing K.

5. Conclusions

In this paper, we have proposed a new method for con-
structing recursive orthonormal wavelet bases with van-
ishing moments. We have derived some constraints to
IIR paraunitary filter banks from the orthonormality
and regularity of wavelets, and investigated relations
between the constrained filter coefficients and its zeros
and poles. Therefore, we can apply Remez exchange
algorithm in stopband directly, and formulate the de-
sign problem in the form of an eigenvalue problem. By
solving the eigenvalue problem to compute the abso-
lute minimum eigenvalue, we can get a set of filter co-
efficients as the corresponding eigenvector. Hence, the
" optimal filter coefficients with an equiripple response
can be easily obtained after applying an iteration pro-
cedure. The proposed procedure is computationally effi-
cient, and the number of vanishing moments of wavelets
can be arbitrarily specified.
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