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Design of Two Channel Stable IIR Perfect
Reconstruction Filter Banks

Xi ZHANG' and Toshinori YOSHIKAWA', Members

SUMMARY In this paper, a novel method is proposed for de-
signing two channel biorthogonal filter banks with general IIR
filters, which satisfy both the perfect reconstruction and causal
stable conditions. Since the proposed filter banks are structurally
perfect reconstruction implementation, the perfect reconstruction
property is still preserved even when all filter coefficients are
quantized. The proposed design method is based on the for-
mulation of a generalized eigenvalue problem by using Remez
multiple exchange algorithm. Then, the filter coefficients can be
computed by solving the eigenvalue problem, and the optimal
solution is easily obtained through a few iterations. One de-
sign example is presented to demonstrate the effectiveness of the
proposed method.
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1. Introduction

Two channel perfect reconstruction (PR) filter banks
have been used in different applications of signal pro-
cessing[1],[2]. The theory and design of FIR PR filter
banks have been well established in recent years [ 1 ]-[4].
In this paper, we will consider design of two channel
biorthogonal PR filter banks using IIR filters that sat-
isfy the causal stable condition. Design of two channel
causal ITR PR filter banks have been discussed in [5],[6]
and [9]. In [5] and [9], the proposed PR filter banks are
based on general IIR filters. However, the PR property
is not preserved when filter coefficients are quantized
since the structurally PR implementation is not consid-
ered. Furthermore, the proposed design methods are
time-consuming and the resulting frequency responses
are poor. In [6], an efficient structurally PR implemen-
tation has been proposed, where for IIR case, allpass
filters are used. However, there is a bump of approx-
imately 4 dB at w = /2, and the magnitude errors in
stopband of lowpass and highpass filters cannot be con-
trolled separately, because the same allpass filter is used
twice in both the analysis and synthesis filters.

In this paper, we propose a new design method
for two channel biorthogonal IIR PR filter banks that
satisfy the causal stable condition. We adopt the struc-
turally perfect reconstruction implementation proposed
in [6], and use general IIR filters rather than allpass
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filters of [6]. Use of general IIR filters will provide
more freedom in the design. Then, we can expect to
suppress the bump around w = 7/2 caused when the
allpass filter is uesd, and control arbitrarily the magni-
tude errors of lowpass and highpass filters. To obtain
the optimal solution in the Chebyshev sense, we apply
Remez multiple exchange algorithm and formulate the
design problem in the form of a generalized eigenvalue
problem [7],[8]. Therefore, the filter coefficients can be
computed by solving the eigenvalue problem to get the
positive minimum eigenvalue, and the optimal solution
is easily obtained through a few iterations. Finally, we
present one design example to demonstrate the effective-
ness of the proposed method.

2. Biorthogonal IIR PR Filter Banks
In two channel filter banks shown in Fig. 1, assume that
Hy(z), Hi(z) are analysis filters, and Go(z), G1(z) are

synthesis filters. It is well-known that the relationship
of input X (=) and output Y(z) of the filter banks is

V(2) = o {Ho(2)Go(2) + ()G ()} X ()

5 {Ho(~2)Go(=) + Hi (~2)Ga (2)}X ()

(D
Hence, the perfect reconstruction condition is
Ho(2)Go(2) + H1(2)G1(z) = 272571

{ Ho(=2)Go(z) + Hi(—2)G1(z) =0 @

where K is integer. To eliminate completely the alias-
ing errors, the synthesis filters Go(z) and G1(z) must be
chosen as

{ Go(z) = Hi(—2)
G1(z) = —Hp(—2)

3

X(z) Y(2)

1) O o)

Fig. 1 Two channel filter bank.
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Then, the perfect reconstruction condition of Eq. (2) be-
comes

Ho(2)Hi(—2) — Ho(—2)H1(2) = z72K71 4)

In [6], the analysis filters Hy(z) and Hi(z) are com-
posed by

Ho(z) = {2V "1+ AG)

Hi(2) = 272M — B(2*)Hy(z) (5)

— 5 2M _ B(Zzz) {Z—ZN—I +A(ZZ)},
where N and M are integers. Therefore, the perfect
reconstruction condition of Eq.(4) is satisfied, where
K = N + M. The structurally perfect reconstruction
implementation proposed in [6] is shown in Fig.2. In
the implementation shown in Fig. 2, it can be seen that
the perfect reconstruction property is still preserved even
when all filter coefficients are quantized. In [6], two
cases are considered by using linear phase FIR filters
and stable IIR filters. For IIR case, since A(z) and
B(z) employ the same allpass filter, there exists a bump
of approximately 4dB at w = 7 /2, and the magnitude
errors in stopband of lowpass and highpass filters can-
not be controlled separately, no matter how the allpass
filter is designed. In this paper, we use general IIR filters
rather than allpass filters, i.e.,

Alz) = T\ (6)

=0

B(z) = T——, ™

Xo(2)

&

Fig. 2 Structurally perfect reconstruction implementation.
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a;, b;, c;, d; are real, and by = dp = 1. Using general IIR
filters will provide more freedom in the design, hence,
we can expect to suppress the bump around w = /2
and control arbitrarily the magnitude errors of lowpass
and highpass filters.

3. Design of IIR PR Filter Banks

In this section, we describe design of IIR PR filter banks
based on eigenvalue problem by using Remez muitiple
exchange algorithm [7],[8].

3.1 Desired Frequency Responses

From Eq. (5), we have

g T o )

2 2—2N-1
o, U ®
=5 {1+ 4G,
where
A(2?) = 22NH1A(ZY) . 9
Therefore, the desired frequency response of fl(zz) is
Ag(e??) =1 0L w=w,)
. , o (10)
Ag(ed?) = —1 (ws Sw < M)

where w,,w, are the passband and stopband edge fre-
quencies respectively, and w, +ws = 7. From Eq. (9), it
can be obtained that

Ay = —A%(e7), (1)
where z* denotes the complex conjugate of z, thus the
desired frequency response of A(z) becomes
(0w 2wp).  (12)

Since Hg(e’*) = 0 in the stopband [ws,n], it
can be seen from Eq.(5) that Hy(z) = 272M e,
the magnitude of H;(z) is 1 and the phase is linear
phase —2Mw in the band [ws,n]. In the band [0,w,),
Ho(z) = 27 2N1, ideally, then,

Hy(2) = 272M — B(2?)z2N-1

Ag(e??) = e~ i (N+3)w

(13)
=z72M1 — B(z?)},

where
B(z?) = 2ZM-N)=1B(;?) . (14)
To force the magnitude of H1(z) to be equal to 0 in the
band [0,wp), the desired frequency response of B(z?) is
Ba(e?) =1 (0 L w < wy), (15)
thus the desired frequency response of B(z) becomes
(0 < w < 2wp).(16)

Therefore, the design problem of the filter banks will
become the complex Chebyshev approximation of A(z)
and B(z).

By(e?®) = e~ I(M=N—-3$)w
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3.2 Design of Hy(z)

Here, we consider design of Hy(z), i.e., A(z). First, we
define an error function between the frequency response
and the desired frequency response of A(z) as

- A(E9Y) — Ag(e7*)
T eIVt

E,(w) =A@ -1, (17)

and then describe design method of A(z).
3.2.1 Formulation

To obtain the optimal solution in the Chebyshev sense,
we apply Remez multiple exchange algorithm. First,
we select (J 4+ 1) extremal frequencies w; in the band
[0, 2wy as

2wp =wp >wy > >wy 20, (18)

where J = | (L1 + Lo +1)/2], and || denotes the inte-
ger part of z. Note that we must choose wy > 0 when
(Ly + L) is even, and wy = 0 when (L; + Lg) is odd.
Then, we can formulate F,(w) as follows;

Eu(w;) = fl(ej“”) — 1 = §elfws) (19)

where § (> 0) is magnitude error to be minimized, and
(w,) is phase response atw; and can be computed in the
previous iteration. Substituting E,(w) of Eq.(17) into
Eq. (19), we divide Eq. (19) into the real and imaginary
parts as

Ly 1 Ly
meos (N —m+t - Jw =3 b ;
mz::Oa cos( m—|—2>w mz::O m €Os(muw;)
Ly
=46 Z by, cos(0(w;) — mw;)
m=0
(7;:0117"'7']))
(20)
L1 1 L2
U sin | N —m + = | w; + by, sin(mw;
2 min (e g) s 3 s

Lo
=4 Z by, sin(0{w;) — mw;)
m=0
(1=0,1,---,J1),
(21)
where J; = J when (Ly + L) is even, and J; = J — 1
when (L; + Ls) is odd, since Eq.(19) has not imagi-

nary part at wy = 0. Equations (20) and (21) can be
rewritten in the matrix form as

PA =§QA , (22)
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where A = [a’O’ A1y 7a’L17b01 bl) T 7bL2]T7

[ cos(N + %)wo e =1 — cos Lawg |

p cos(N + %)wJ -1 —cos Lowy

B sin(N + %)wo 0 sin Lowq

| sin(V + %)(UJI - 0 sin Lowy, |
(23)
0 --- cos&(wp) cos((wo) — Lawp) T

Q 0 - cosO(wy) cos(f(wy) — Lawy)

lo .- sin 6(wp) sin(f(wo) — Lawo)
L0 -+ sinf(wy,) sin(f(wy,) — Lowy, ) |

(24)

It should be noted that Eq. (22) corresponds to a gener-
alized eigenvalue problem, i.e., § is an eigenvalue and A
is a corresponding eigenvector. Therefore, to minimize
the magnitude error §, we must compute the positive
minimum eigenvalue by solving the above eigenvalue
problem[7],[8]. Then, the corresponding eigenvector
gives a set of filter coefficients. By appropriately se-
lecting the initial extremal frequencies w; and its phase
0(w;), we can apply an iteration procedure to attain the
optimal solution in the Chebyshev sense. The selection
of the initial extremal frequencies w; and its phase 8(w;)
will directly influence convergence of the iteration pro-
cedure. In the following, we will discuss how to select
the initial extremal frequencies w; and its phase 6(w;).

3.2.2 Selection of Initial Value

In the proposed iteration procedure, arbitrarily select-
ing an initial extremal frequencies w; and its phase 6(w;)
cannot guarantee to converge to the optimal solution.
Hence, it is very important how to select the initial
value. We assume that there exist (J; + 1) frequency
points @; in the band [0, 2w,] as

2wp >y >y > >y 20, (25)
so that the error function E,(w) satisfies
Bo(@) = A(&®) -1 =0, (26)

where @y, = 0 when (L1 + L) is even, and @y, > 0
when (L1 + Lg) is odd. A possible choice of @; is to
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pick these frequency points equally spaced in the band
[0, 2w,,]. Other distributions may also be prefered to de-
crease number of iterations. Since by = 1, Eq. (26) can
be rewritten into the real and imaginary parts as

L1 1 Ly
ameos | N—m—~+ = | w; — by, cos(mw;) =1
3 emces (W= ) 1= 3 ety

(7;:0717"')J1)) (27)

Ly 1 Ly
z Ay, SIN <N—m + 5) w; + me sin(ma;)=0

m=0 m=1

(i=0,1a""&J_1)7 (28)

which is a set of linear equations. Hence, we can obtain
an initial solution of filter coefficients by solving the lin-
ear equations of Eqs. (27) and (28). Then, we compute
the error function E,(w) by using the obtained filter
coefficients, and search for the peak points of |E,(w)]
in the band [0, 2w,] to get (J + 1) initial extremal fre-
quencies w; and its phase 6(w;). The design algorithm
is shown as follows.

3.2.3 Design Algorithm

Procedure {Design Algorithm of Stable IIR PR Filter
Banks}

Begin
1. Read Ly, Ly, N and wy.

2. Select (J; + 1) frequency points w; equally spaced
in the band [0, 2w,).

3. Solve a set of linear equations of Egs. (27) and (28)
to obtain an initial solution of filter coefficients a;
and b;.

4. Compute error function FE,(w) by using the ini-
tial filter coefficients, then search peak frequencies
as initial extremal frequencies §2; and compute its
phase 6(€2;).

Repeat
5. Setwizﬂi fOI"?:ZO,l,"‘,J.

6. Compute P and Q by using Egs. (23) and (24),
then find the positive minimum eigenvalue of
Eq.(22) to obtain a set of filter coefficients a; and
b;.

7. Compute error function E,(w), then search peak
frequencies €2; and compute its phase 6(€;).

Until Satisfy the following condition for a prescribed
small constant e:
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{fQi—wilge (fori:()’l,...’J)}
8. Check stability of A(z) by finding the locations of
poles.
End .

3.2.4 Stable Condition

In the above design algorithm, the obtained filter A(z)
may not be guaranteed to be stable. The stability of
A(z) must be checked in step.8 by computing the loca-
tions of the poles. The stability of A(z) are generally de-
pendent on the specifications, i.e., Ly, Ly and N. When
L; and L, are given, the group delay must be chosen
enough large to guarantee the obtained filter to be sta-
ble, i.., N 2 Npin, Where Ny;p is the minimum group
delay for the stable filters. In our experience, Ny, is
directly proportional to Iy and L, in general.

3.3 Design of Hy(z)

Here, we consider design of H;(z), i.e., B(z). We can
design B(z) by using the design method of A(z) pro-
posed in 3.2. However, it can be seen from Eq. (5) that
the frequency response of H;(z) maybe not optimal even
though the frequency response of B(z) is optimal in the
Chebyshev sense. From Eq. (5), we have

o =0 - D)
= 272M 1~ B(z*)Hy(2)}, (29)
where
i) = 29~ Lt Ay, (30)

To force Hy(z) to have an equiripple response in the
stopband [0,w,]|, we have to optimalize the frequency
response of B(z?)Hy(z) in the Chebyshev sense. We
define an error function of B(z) as

Bufw) = Fole’ ) B() — 1. G
Then, we can formulate F,(w) as shown in 3.2, ie.,
By(wi) = Ho(e?F)B(e7*) — 1= 6, (32)

where Ho(e/%) can be considered as a weighting func-
tion. Similarly, for selection of initial value, Eq. (26)
must be rewritten also into

Ey(@:) = Ho(e!5 ) B(e"™) ~1=0 . (33)

Therefore, the design algorithm is the same as that of
A(z). In [6], there exists a bump of approximately 4 dB
at w = /2, since A(z) and B(z) are the same allpass
filter. In this paper, we use general IIR filters A(z) and
B(z), and appropriately choose the group delay N and
M to suppress the bump around w = 7/2. See design
example in detail.
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4. Design Example

In this section, we present one design example to demon-
strate the effectiveness of the proposed method.

Example: We consider design of an IIR PR filter bank
with N = 7,M = 14,L1 = L3 = 8,L2 = Ly = 2,
and w, = 0.47. First, A(z) is designed by using the
method proposed in 3.2. The complex error of Fy(w)
in the band [0,2w,] is shown in Fig.3, and it is clear
that it is optimal in the Chebyshev sense. The mag-
nitude and phase response of A(z) are shown in solid
line in Figs.5 and 6, respectively. Then B(z) is de-
signed by using the method proposed in 3.3. The com-
plex error of Ey(w) is shown in Fig.4 and is optimal
also. The magnitude and phase response of B(z) are
shown in dotted line in Figs.5 and 6 also. The result-
ing magnitude responses of Hy(z) and H;(z) are shown
in Fig.7. It can be seen that both Hy(z) and Hi(z)
have equiripple magnitude responses in the stopband,
and Hi(z) has not a bump at w = /2. It is because
A(z) and B(z) are general IIR filters and the magnitude
responses are |[A(e/¥)| < 1,|B(e’¥)| < 1 in the transi-
tion band, as shown in Fig.5. It is seen in Fig. 6 that
the phase responses of A(z) and B(z) are approximately
linear in the band [0, 2w,], hence both Ho(z) and H;(z)
have approximately linear phase responses in the pass-

Fig. 3 Complex error trace of Eq(w).

Fig. 4 Complex error trace of Ey(w).
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band. The phase errors of Hy(z) and H;(z) are shown
in Fig.8, and it is seen that the phase errors are very
small. To obtain a stable A(z), N must be chosen as
N =5, 1e., Npin =5 When N = 7, M must be chosen
as M = 13, ie., M,,;, = 13 to obtain a stable B(z).
Therefore, the obtained A(z) and B(z) are guaranteed
to be stable. In Fig.7, the magnitude response of Hy(z)

MAGNITUDE RESPONSE

L 1 L ] " 1 1 1 2

0 0.1 02 03 04 05
NORMALIZED FREQUENCY

Fig. 5 Magnitude responses of A(z) and B(z).
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Fig. 6 Phase responses of A(z) and B(z).
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Fig. 7 Magnitude responses of Ho(z) and Hy(z).
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Fig. 8 Phase errors of Ho(z) and Hi(z) in passband.
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with M = 15 is shown also. It is seen that Hi(z) has
a bump around w = 7/2 and larger magnitude error
in the stopband. Therefore, we conclude that to choose
appropriately N and M can suppress the bump around
w = /2 and control the magnitude error in the stop-
band.

5. Conclusion

In this paper, we have proposed a new method for de-
signing two channel biorthogonal IIR filter banks that
satisfy both the perfect reconstruction and causal stable
conditions. We have adopted the structurally perfect re-
construction implementation proposed in [6], and used
general IIR filters to suppress the bump around w = /2
caused when allpass filters are used. By using Remez
multiple exchange algorithm, we have formulated the
design problem of IIR PR filter banks in the form of
a generalized eigenvalue problem. Therefore, the filter
coefficients can be computed by solving the eigenvalue
problem to get the positive minimum eigenvalue, and
the optimal solution in the Chebyshev sense is easily
obtained through a few iterations. Finally, we have de-
signed one example to demonstrate the effectiveness of
the proposed method.
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