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Abstract: The main focus of this paper is the acoustic feedback path neutralisation during online operation of the single-channel
active noise control (ANC) systems. Invasive techniques, in which additive auxiliary noise is injected for online feedback path
modelling (FBPM), degrade the noise-reduction performance of ANC systems. In the existing methods for online FBPM, additive
auxiliary noise with fixed variance is injected during all operating conditions of ANC systems. In this paper, a scheduling strategy
is proposed to have time-varying gain for additive auxiliary noise. The time-varying gain is computed on the basis of (i) the
convergence status of the FBPM filter, and (ii) the power of the interference term in the error signal of the FBPM filter.
Simulation results show that, compared to the existing methods, the proposed method can better achieve the conflicting
requirements of fast convergence of the FBPM filter, and reduced steady-state power of the residual error at the error
microphone. For sake of completeness, appendix presents typical simulation results when both the secondary path and
feedback path are simultaneously identified during online operation of ANC systems.
1 Introduction

A block diagram of single-channel feedforward active noise
control (ANC) systems with fixed feedback path
neutralisation (FBPN) for duct applications is shown in
Fig. 1 [1]. Here r(n) is the primary noise from the noise
source, yf(n) is the acoustic feedback coupling signal, c(n)
is the corrupted reference signal picked-up by the reference
microphone, d(n) is the primary noise at the error
microphone, ys(n) is the anti-noise signal to cancel d(n), e
(n) is the residual error signal picked-up by the error
microphone, P(z) is the primary path transfer function from
the reference microphone to the error microphone, F(z) is
the feedback path transfer function from the loudspeaker to
the reference microphone, F̂(z) is the FBPN filter, and S(z)
is the secondary path transfer function from output of ANC
filter W(z) to the error microphone. Due to the robustness
and ease of implementation of filtered-X-least-mean-square
(FXLMS) algorithm, it is widely used for adaptation of
ANC filter W(z). For stable operation of ANC system, the
reference signal is required to be filtered through the model
of secondary path S(z), Ŝ(z), and hence the name FXLMS
algorithm [1]. The output signal of W(z), y(n), is propagated
by the cancelling loudspeaker. The signal y(n) goes
downstream through S(z) to generate the cancelling signal
ys(n) which combines with d(n) to generate the residual
error signal e(n) being picked-up by the error microphone.
Unfortunately, the output signal y(n) propagates upstream
via feedback path F(z) and corrupts the signal r(n). This is
called acoustic feedback, and the objective of F̂(z) is to
model the characteristics of F(z) and hence provide the FBPN.
Considering Fig. 1 and assuming that the filter F̂(z) is not

present, the residual error in z-domain can be written as

E(z) = P(z)R(z)+ S(z)Y (z)

= P(z)R(z)+ S(z)
W (z)R(z)

1−W (z)F(z)
(1)

where R(z) denotes the z-transform of the primary noise signal
at the reference microphone, r(n). It is clear from (1) that
ANC system may become unstable if W(z)F(z) = 1 at some
frequencies. There are various types of strategies that have
been reported in the literature to solve the problem of the
acoustic feedback in the ANC systems. These include (i)
directional (array of) microphones and speakers [2, 3], (ii)
non-acoustic sensors such as tachometer to acquire the
reference signal [4, 5], (iii) adaptive feedback ANC
employing only the error microphone [6, 7], (iv) adaptive
IIR filter based acoustic feedback compensation [8, 9], (v)
fixed FBPN filter (obtained through off-line modelling) [1,
10], and (vi) adaptive FBPN using an FIR filter [11–17].
The structure-based approaches mentioned in (i)–(iii) are
either expensive or have limited applicabilities. Among the
signal processing-based approaches (iv)–(vi), the IIR
filter-based methods have an inherent problem of stability.
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Fig. 1 Block diagram of single-channel feedforward ANC systems with fixed feedback path neutralisation
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Moreover, the IIR filter may converge to a local minimum.
The FBPN based on fixed filter F̂(z) (as shown in Fig. 1)
offers a simplest solution, where F̂(z) may be obtained
offline. In actual practice the acoustic path F(z) may be
time-varying, therefore, the main focus of this paper is to
investigate the adaptive FBPN using FIR filter. A brief
overview of existing FIR filter-based methods is given below.
In [11] and [12], Kuo investigated the FIR filter-based

methods for online feedback path modelling and
neutralisation (FBPMN). The problems with Kuo’s method
are that: (1) it works only for predictable noise sources, and
(ii) a proper selection of decorrelation delay is needed.
Later Akhtar et al. proposed a new structure for online
FBPMN [13–15]. The advantage of Akhtar’s method is that
in comparison with Kuo’s method, improved performance
is realised both for narrowband and broad band input
signals. Furthermore, no decorrelation delay is needed and
computational cost is lower than Kuo’s method. In [16],
Akhtar’s method is slightly modified, and in [16] and [17] a
variable step size (VSS) is used for the FBPMN filter to
improve the convergence of F̂(z).
In Akhtar’s method, the step-size variation is such that it is

minimum at the start-up of ANC system and increases to a
maximum value as the ANC system converges. For
LMS-based adaptive filter with input v(n), the excess
mean-square-error (MSE) is given by [1]

jexcess ≃ 0.5mLPvjmin (2)

where μ is the step-size parameter, L is the tap-weight length,
Pv is the power of input signal, and ξmin is the minimum MSE
corresponding to Weiner solution of an adaptive filter. It is
easy to conclude from (2) that the large value of step-size
in the steady-state results in large excess MSE, therefore in
Akhtar’s method the proper selection of maximum value of
step-size parameter for the FBPMN filter is very important.
In the proposed method fixed step-size is used for the
FBPMN filter and its convergence is controlled by varying
the input signal power. In [11–17], additive auxiliary noise
with fixed variance is used in all operating conditions. The
additive auxiliary noise contributes to the residual error, and
therefore degrades the noise-reduction performance of ANC
system. The problems with the existing methods for online
FBPMN sets the motivation for the proposed method.
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In the proposed method, a fixed step-size is used for the
FBPMN filter and convergence is controlled by varying the
input signal power. Essentially, an auxiliary-noise-power
(ANP) scheduling strategy is employed that can better
achieve the conflicting requirements of fast convergence of
the FBPMN filter and improved noise-reduction performance
at the steady-state.
The rest of the paper is organised as follows. Section 2

explains the proposed method and details the computational
complexity comparison, Section 3 describes the simulation
results, and Section 4 gives the concluding remarks. Finally,
the Appendix presents a few typical results for simultaneous
online FBPM and secondary path modelling (SPM).
2 Proposed method

A block diagram of the proposed method is shown in Fig. 2,
where online FBPMN is achieved by additive auxiliary noise
vg(n) being modelled as white Gaussian noise (WGN). The
same signal vg(n) can also be employed for online SPM.
However, in this paper we mainly concentrate on online
FBPMN. Assuming that W(z) is an FIR filter, the output y
(n) is given as

y(n) = wT (n)xw(n) (3)

where w(n) = [w0(n), w1(n), . . . , wLw−1(n)]T is the
tap-weight vector at iteration n, Lw is the tap-weight length,
and xw(n) = [x(n), x(n− 1), …, x(n− Lw + 1)]T is the
reference signal vector of W(z). The weight update equation
for ANC filter W(z) is given as

w(n+ 1) = w(n)− mwe(n)x̂(n) (4)

where μw is the step-size parameter, and

x̂(n) = x̂(n), x̂(n− 1), . . . x̂ n− Lw + 1
( )[ ]T

is the filtered
reference signal vector. The reference signal x(n) filtered
through Ŝ(z) is computed as

x̂(n) = ŝT (n)xs(n) (5)

where ŝ(n) = [ŝ0(n), ŝ1(n), . . . , ŝLs−1(n)]T is the tap-weight
IET Signal Process., 2013, Vol. 7, Iss. 6, pp. 505–514
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Fig. 2 Proposed method for online feedback path modelling and neutralisation

www.ietdl.org
vector at iteration n, xs(n) = [x(n), x(n− 1),…, x(n− Ls + 1)]T,
and Ls is the tap-weight length of Ŝ(z). The residual error
signal e(n) picked-up by the error microphone is given by

e(n) = d(n)+ ys(n)+ vs(n) (6)

where d(n) = p(n)*r(n), p(n) is the impulse response of P(z), *
represents the convolution operation; ys(n) = s(n)*y(n), s(n) is
the impulse response of S(z); and vs(n) = s(n)*v(n) denotes the
contribution of the additive auxiliary noise at the error
microphone, where v(n) is the additive auxiliary WGN. The
additive auxiliary noise v(n) is injected into the ANC
system for online FBPM (can be used for SPM as well).
This internally generated signal is added with the ANC
filter output y(n). The sum ytotal(n) = y(n) + v(n) is used to
derive the secondary source (loudspeaker). The signal
generated by the loudspeaker will not only travel
downstream to cancel d(n), but will also propagate
upstream through F(z), and a corrupted reference signal c(n)
is picked-up by the reference microphone given as

c(n) = r(n)+ yf (n)+ vf (n) (7)

where yf(n) = f (n)*y(n), f (n) is the impulse response of F(z);
and vf(n) = f (n)*v(n) denotes the contribution of the additive
auxiliary noise at the reference microphone. The output of
the FBPMN filter F̂(z) is subtracted from c(n) to compute
the reference signal x(n) as

x(n) = c(n)− ŷf (n)− v̂f (n) = (r(n)+ yf (n)

−ŷf (n))+ vf (n)− v̂f (n) (8)

where the signal ŷf (n)+ v̂f (n) (estimate of acoustic feedback
signal yf(n) + vf(n)) is the output of F̂(z), and is computed as

ŷf (n)+ v̂f (n) = f̂ T (n)uf (n) = f̂ T (n) yf (n)+ vf (n)
[ ]

(9)

where f̂ (n) = f̂0(n), f̂1(n), . . . , f̂Lf−1(n)
[ ]T

is the tap-weight
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vector at iteration n, Lf is the tap-weight length, uf(n) =

[u(n), u(n− 1), …, u(n− Lf + 1)]T is the input signal vector,
and yf(n) = [y(n− 1), y(n− 2), …, y(n− Lf)]

T and vf(n) =
[v(n), v(n− 1), …, v(n− Lf + 1)]T, respectively, are the input
signal vectors of F̂(z) corresponding to ANC filter output y
(n) and additive auxiliary noise v(n). The signal x(n) acts as
the desired response for adaptive noise cancellation
(ADNC) filter H(z), and the filter H(z) is adapted using
LMS algorithm as

h(n+ 1) = h(n)+ mhef (n)yh(n) (10)

where h(n) = h0(n), h1(n), . . . , hLh−1(n)
[ ]T

is the tap-weight

vector at iteration n, Lh is the tap-weight length, μh is the
step-size parameter, yh(n) = [y(n− 1), y(n− 2), …, y(n−
Lh)]

T is the input signal vector, and ef(n) is the error signal
of H(z), being computed as

ef (n) = r(n)+ yf (n)− ŷf (n)− k(n)
[ ]+ vf (n)− v̂f (n)

[ ]
(11)

where k(n) is the output of H(z), being computed as

k(n) = hT (n)yh(n) (12)

The same signal ef(n) also acts as the error signal for FBPMN
filter F̂(z); however, the term r(n)+ yf (n)− ŷf (n) in x(n) acts
as an interference for adaptation of F̂(z). The function of the
supporting filter H(z) is to remove the interference term
r(n)+ yf (n)− ŷf (n) from x(n). Assuming that H(z) converges
⇒ k(n) � r(n) + yf (n)− ŷf (n) ⇒ ef (n) = vf (n)− v̂f (n).
Using ef(n), the FBPMN filter F̂(z) is adapted as

f̂ (n+ 1) = f̂ (n)+ mf ef (n)vf (n) (13)

where μf is the step-size parameter, and vf (n) = [v(n), v(n− 1),…
v(n− Lf + 1)]

T is the input signal vector of F̂(z). As stated earlier,
the variance of the additive auxiliary noise is made variable by
507
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employing a time-varying gain G(n)

v(n) = G(n)vg(n) (14)

where vg(n) is a zero-mean unit variance WGN.

2.1 Computation of time-varying gain G(n)

Additive auxiliary noise v(n) injected in ANC systems for
online FBPMN (can be used for SPM as well) contributes
to the residual error, which should be minimised. In order
to improve the noise-reduction performance, the variance of
additive auxiliary noise v(n) is made variable. When ANC
system is far from the steady-state, additive auxiliary noise
v(n) with large variance is injected to have fast convergence
of the FBPMN filter. At this stage the large contribution of
additive auxiliary noise is masked by the large value of
primary residual noise at the error microphone, d(n) + ys(n).
After the convergence of ANC system the term d(n) + ys(n)
becomes small, and is not able to mask the additive
auxiliary noise at the error microphone. The gain
scheduling strategy is such that, with the convergence of
ANC system, it will reduce the contribution of additive
auxiliary noise to the residual error.
As the error signal of the FBPMN filter, ef(n), is

time-varying (has decreasing trend) in nature, therefore the
gain G(n) in the proposed method is computed by making

P ŷf+v̂f( )(n)− Pŷf
(n)

{ }
to be equal to the power of ef(n–1),

and is given mathematically as

P ŷf+v̂f( )(n)− Pŷf
(n) = Pef

(n− 1) (15)

From Fig. 2, the term P ŷf+v̂f( )(n) in (15) can be written as

P ŷf+v̂f( )(n) = ||f̂ (n)||2 E (y(n− 1))2
[ ]+ G2(n)E (vg(n))

2
[ ][ ]

(16)

where E[·] denotes the mathematical expectation, ||·|| denotes
the euclidean norm, E[(y(n− 1))2]≃ Py(n− 1), and vg(n) is a
zero-mean, unit variance WGN. Similarly the term Pŷf

(n) in
(15) can be written as

Pŷf
(n) = ||f̂ (n)||2Py(n− 1) (17)

Substituting the value of P ŷf+v̂f( )(n) and Pŷf
(n), respectively,

from (16) and (17) in (15), and solving for the time-varying
gain G(n) we get

G(n) =












Pef

(n− 1)

||f̂ (n)||2

√
(18)

where the power of the error signal Pef
(n) can be estimated

online using a low pass estimator as

Pef
(n) = lPef

(n− 1)+ (1− l)e2f (n) (19)

where 0.9 < λ < 1 is a forgetting factor. In the proposed
method fixed step-size is used for the FBPMN filter, and
the convergence is controlled by varying its input signal
power i.e Pv(n). The gain computed by (18) very quickly
drops to a low value, thus resulting in a very small input
signal power of the FBPMN filter. This will result in
freezing of the convergence of the FBPMN filter even if
F̂(z) is far from F(z). In order to avoid this problem the
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gain is filtered and is given by

G(n) = aG(n− 1)+ g ·












Pef

(n− 1)

||f̂ (n)||2

√
(20)

where α and γ controls the decay rate and the steady-state
value of the time-varying gain G(n). The parameter α is like
a forgetting factor and varies between 0.99 < α < 1 while γ
> 0 is typically selected as a very small value.
The proposed ANP scheduling strategy for online FBPMN

has the following advantages.

† In (11), the term r(n)+ yf (n)− ŷf (n)− k(n) acts as an
interference for the FBPMN filter. The value of gain G(n)
in the proposed method has no upper bound, and it can
increase in accordance with the power of interference term
P r(n)+yf (n)−ŷf (n)−k(n)[ ]. This will eliminate the requirement
of minimum value of step-size (in Akhtar’s method)
for the FBPMN filter due to large interference term
P r(n)+yf (n)−ŷf (n)−k(n)[ ].† The large variance of additive auxiliary noise, at the
start-up of ANC system or if there is some perturbation in
the acoustic paths after ANC system converges, results in
fast convergence of the FBPMN filter and reduced
interference in the input signal of ANC filter W(z). This
improves the convergence of ANC filter, and hence results
in fast convergence of primary residual noise power, E[(d
(n) + ys(n))

2].
† The low variance of additive auxiliary noise v(n) at the
steady-state improves the noise-reduction performance of
ANC systems.

2.2 Computational complexity analysis

The detailed computational complexity analysis, in terms
of number of additions/subtractions and multiplications
required per iteration, for Kuo’s [12], Akhtar’s [17] and the
proposed methods is given in Table 1. In addition to the
computations shown in Table 1, Akhtar’s method requires
one division per iteration in computing VSS [17], and the
proposed method requires one division and one square root
operation per iteration in computing time-varying gain G(n)
(20). In Kuo’s method fixed step-size parameters are used
for adaptive filters, and separate filters are used for FBPM
and FBPN. The Kuo’s method has high computational
complexity compared to Akhtar’s method. In Akhtar’s
method the action of FBPM and FBPN filter is combined
into a single FBPMN filter. Although, in Akhtar’s method
computing the VSS for the FBPMN filter involves some
computations, however, the overall computational
complexity of Akhtar’s method is lower than Kuo’s
method. In the proposed method gain scheduling strategy is
used, therefore the computational cost of the proposed
method is higher than Akhtar’s method but it is almost the
same as that of Kuo’s method. For clarity of presentation,
the numerical values of the number of computations needed
are given in Table 1 for two different scenarios of filter
tap-weight lengths.
3 Simulation results and discussion

In this section, simulation results are presented to compare the
performance of the proposed method with Kuo’s [12], and
IET Signal Process., 2013, Vol. 7, Iss. 6, pp. 505–514
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Table 1 Detailed computational complexity analysis for online FBPMN of various methods discussed in the paper

Mathematical expressions

S. no To compute × + 4

√

1. ŷf(n) = f̂ T (n)xy(n) Lf Lf–1
2. c′(n) = c(n)− ŷf(n) – 1

3. yh(n) = hT(n)xh(n) Lh Lh–1
4. eh(n) = c′(n)− yh(n) – 1

5. x(n) = c′(n)− eh(n) – 1

6. v̂f(n) = f̂ T (n)v(n) Lf Lf–1
7. ef(n) = eh(n)− v̂f(n) – 1

8. x̂s(n) = ŝT (n)x (n) Ls Ls–1
9. y(n) =wT(n)x(n) Lw Lw–1
10. xin(n) = y(n) + v(n) – 1

11. h(n + 1) = h(n) + μheh(n)xh(n) Lh + 1 Lh

12. f̂ (n + 1) = f̂ (n)+ mfef(n)v(n) Lf + 1 Lf

13. w (n + 1) = w (n)− mwe(n)x̂s(n) Lw + 1 Lw

Total computations in Kuo’s methoda 3Lf + 2Lh + 2Lw + Ls + 3 3Lf + 2Lh + 2Lw + Ls

14. xf(n) = y(n− 1) + v(n) – 1

15. ŷf(n)+ v̂f(n) = f̂ T (n)x f(n) Lf Lf–1
16. x(n) = c(n)− ŷf(n)+ v̂f(n)

( )
– 1

17. ef(n) = x(n)− yh(n) – 1

18. Pef
(n) using (19) 3 1

19. Px(n) using (19) 3 1

20. r(n) = Pef
(n)

Px (n)
– – 1

21. ms(n) = r(n)msmin
+ (1− r(n))msmax

2 2

22. h(n + 1) = h(n) + μhef(n)xh(n) Lh + 1 Lh

23. f̂ (n + 1) = f̂ (n)+ mf(n)ef(n)v(n) Lf + 1 Lf

Total computations in Akhtar’s methodb 2Lf + 2Lh + 2Lw + Ls + 11 2Lf + 2Lh + 2Lw + Ls + 4 1

24. v(n) =G(n)vg(n) 1 –
25. ||f̂ (n)||2 Lf Lf–1

26. G(n) using (20) 2 1 1 1

Total computations in the proposed methodc 3Lf + 2Lh + 2Lw + Ls + 9 3Lf + 2Lh + 2Lw + Ls + 1 1 1

Numerical examples

Example 1 (Lf = Lw = 32, Lh = Ls = 16) :

Kuo’s method 211 208 – –
Akhtar’s method 187 180 1 –
Proposed method 217 209 1 1

Example 2 (Lf = Lw = Lh = Ls = 1024) :

Kuo’s method 8195 8192 – –
Akhtar’s method 7179 7172 1 –
Proposed method 8201 8193 1 1

www.ietdl.org
Akhtar’s [17] methods. The performance comparison is
carried out on the basis of following performance measures.

† Relative modelling error of the feedback path being
defined as

DF(n)(dB) = 10 log10
||f (n)− f̂ (n)||2

||f (n)||2 (21)

† MSE in the reference signal ΔX(n) being defined as

DX (n)(dB) = 10 log10 E (x(n)− r(n))2
[ ]( )

(22)
IET Signal Process., 2013, Vol. 7, Iss. 6, pp. 505–514
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† Mean-noise-reduction (MNR) at the error microphone

MNR(n)(dB) = 10 log10 E
e2(n)
[ ]
E d2(n)
[ ] (23)

† MSE at the error microphone without additive auxiliary
noise

MSEideal(n)(dB) = 10 log10(E[(d(n) + ys(n))2]) (24)

Using data from [1], the acoustic paths P(z), S(z) and F(z)
are modelled as FIR filters of tap-weight lengths 48, 16 and
509
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Fig. 3 Magnitude response of

a Primary path P(z)
b Secondary path S(z)
c Feedback path F(z)
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32, respectively. The magnitude response of the acoustic
paths P(z), S(z) and F(z) are shown in Fig. 3 (solid line).
The adaptive filters W(z), F̂(z) and H(z) are selected as FIR
filters of tap-weight length 32, 32 and 16, respectively. In
all methods, −5 dB offline modelling is used for F̂(z).
The ANC filter W(z) and H(z) are initialised by null vectors.
The modelling excitation signal is a zero-mean WGN with
variance 0.05 for Kuo’s and Akhtar’s methods, and
variance 1 for the proposed method. The sampling
frequency of 2 kHz is used. All the simulation results are
averaged over 20 independent realizations.

3.1 Case 1: multi-tonal input

The primary noise signal at the reference microphone, r(n) is
a multi-tonal input with frequencies 100, 150, 300, 400 and
450 Hz. The variance of the input signal r(n) is 2 and a
zero-mean WGN with variance 0.002 is added to r(n) to
account for measurement noise. The step-size parameters
are experimentally adjusted for fast and stable convergence
for various methods. The step-size parameter for W(z)
and H(z) is μw = 3 × 10−5 and μh = 5 × 10−4, respectively,
for all methods. The step-size parameter for F̂(z) is selected
as Kuo’s method, μf = 5 × 10−3, proposed method, μf = 1 ×
10−3 and Akhtar’s method, mfmin

= 3× 10−4, mfmax
=

5× 10−3, respectively. The rest of the parameters are
adjusted as Δ = 32, α = 0.9992 and γ = 2 × 10−3.
The simulation results for Case 1 are shown in Figs. 4 and

5. In all plots of Figs. 4 and 5, the jump at n = 30 000 shows
a perturbation in the acoustic paths. The magnitude response
of the perturbed acoustic paths are shown in Fig. 3 (dashed
line).
Fig. 4 Simulation results in Case 1 for multi-tonal input

a Time-varying gain, G(n)
b Relative modelling error, ΔF(n) (dB)
c MSE in the reference signal, ΔX(n) (dB)
W, Without FBPN; K, Kuo’s method; A, Akhtar’s method; P, Proposed method

510
& The Institution of Engineering and Technology 2013
† Fig. 4a shows the plot of time-varying gain G(n) in the
proposed method. When ANC system is far from the
steady-state or when there is a perturbation in the acoustic
paths, the value of the gain G(n) is large. The large value
of the gain results in fast convergence of the FBPMN filter,
and therefore quickly reduces the interference for the input
signal of W(z). After the convergence of ANC system the
value of the gain G(n) is small. This will reduce the
contribution of additive auxiliary noise to the residual error,
thus improves the noise-reduction performance.
† The curves for relative modelling error ΔF(n) as defined in
(21), are shown in Fig. 4b. As stated earlier fast convergence
of the FBPMN filter is desirable to quickly neutralise the
acoustic feedback path effect, and hence to reduce the
interference in the input signal of W(z). It is clear from
Fig. 4b that the proposed method gives fast convergence of
the FBPMN filter. The fast convergence is due to large
variance of additive auxiliary noise at the start-up of ANC
system. Since in Kuo’s and Akhtar’s methods, no gain
scheduling is used therefore additive auxiliary noise with
small variance is injected, otherwise it will degrade the
noise-reduction performance of ANC system.
† The curves for ΔX(n) are shown in Fig. 4c. It is clear from
Fig. 4c that ANC system without FBPN filter results in a large
interference in the input signal ofW(z), and becomes unstable
after the acoustic paths perturbation at n = 30000. In the
proposed method fast convergence of the FBPM filter
efficiently neutralise the acoustic feedback path coupling
effect, thus results in reduced interference in the input
signal of W(z) compared to Kuo’s and Akhtar’s methods.
† The curves for MNR performance are shown in Fig. 5a. It
is clear that for ANC system without FBPN filter, large
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Fig. 5 Simulation results in Case 1 for multi-tonal input

a MNR at the error microphone, MNR(n)
b MSE at the error microphone without additive auxiliary noise, MSEideal(n)
c Step-size parameter, μf(n)
W, Without FBPN; K, Kuo’s method; A, Akhtar’s method; P, Proposed method
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interference in the input signal of W(z) affects the overall
convergence of ANC system, and therefore results in large
E[e2(n)]. The proposed method results in improved
noise-reduction performance at the steady-state compared to
Kuo’s and Akhtar’s methods. The improved noise-reduction
performance is due to small contribution of E[(d(n) +
ys(n))

2] (see Fig. 5b) and E[v2s (n)] (due to gain scheduling)
in E[e2(n)].
† Fig. 5b shows the curves for MSEideal(n) at the error
microphone without additive auxiliary noise contribution,
E[(d(n) + ys(n))

2]. In case of ANC systems without FBPN
filter, no additive auxiliary noise is injected, therefore
E[e2(n)] = E[(d(n) + ys(n))

2]. The absence of FBPN filter
results in large interference in the input signal of W(z),
therefore W(z) is not able to generate the desired anti-noise
signal ys(n) at the error microphone. As stated earlier, in the
proposed method the fast convergence of the FBPMN filter
results in reduced interference in the input signal of W(z),
therefore E[d(n) + ys(n)

2] converges quickly towards
minimum value.
† The value of step-size for FBPMN filter in the proposed
method is different from that of Kuo’s and Akhtar’s
methods. This is to compensate for different input variance
of additive auxiliary noise v(n) in these methods. Fig. 5c
shows the step-size variation for the FBPMN filter F̂(z). In
Kuo’s and the proposed method fixed step-size is used,
while in Akhtar’s method VSS is used. In the proposed
method the value of step-size for the FBPMN filter is
smaller than Kuo’s method, but still the proposed method
gives fast convergence of the FBPMN filter. This is due to
large variance of additive auxiliary noise in the proposed
method compared to Kuo’s method. As stated earlier, in
Fig. 6 Simulation results in Case 2 for broad-band input

a Time-varying gain, G(n)
b Relative modelling error, ΔF(n) (dB)
c MSE in the reference signal, ΔX(n) (dB)
W, Without FBPN; K, Kuo’s method; A, Akhtar’s method; P, Proposed method
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Akhtar’s method initially a small value of step-size is used
due to large value of interference term in the error signal of
the FBPMN filter. In the later stage, the step-size increases
accordingly as the interference decreases.

3.2 Case 2: broad-band input

The reference signal is obtained by filtering WGN signal,
with variance 2, through a bandpass filter of order 128 with
a passband of [100 500] Hz. The step-size parameters are
experimentally adjusted for fast and stable convergence for
various methods. The step-size parameter for W(z) and H(z)
is μw = 1 × 10−4 and μh = 5 × 10−4, respectively, for all
methods. The step-size for F̂(z) is μf = 5 × 10−3 in Kuo’s
and the proposed method. In Akhtar’s method the minimum
and maximum value of the step-size parameter for the
FBPMN filter is mfmin

= 4× 10−3 and mfmax
= 8× 10−3,

respectively. The rest of the parameters are adjusted as Δ =
32, α = 0.999 and γ = 1 × 10−4.
Figs. 6 and 7 shows the simulation results for Case 2. It is

clear form Figs. 6 and 7 that similar behaviour as in Case 1 is
observed for Akhtar’s method and the proposed methods. The
ANC system without FBPN become unstable for all
realizations. For broad-band input, Kuo’s method achieves
almost same modelling accuracy as by Akhtar’s and the
proposed methods. However, for broad-band inputs the
predictor used in Kuo’s structure results in large
interference for the the input signal of W(z). The ANC filter
W(z) is therefore not able to generate the desired anti-noise
signal at the error microphone, thus affecting the overall
convergence behaviour of ANC system.
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Fig. 7 Simulation results in Case 2 for broad-band input

a MNR at the error microphone, MNR(n)
b MSE at the error microphone without additive auxiliary noise, MSEideal(n)
c Step-size parameter, μf(n)
W, Without FBPN; K, Kuo’s method; A, Akhtar’s method; P, Proposed method
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4 Conclusion

In this paper, a gain scheduling strategy is proposed to vary
ANP. The gain varies: (i) in accordance with how far the
FBPM filter is from F(z), and (ii) in accordance with the
power of interference term in the error signal of the FBPM
filter. At the start-up of ANC system the gain is large,
therefore additive auxiliary noise with large variance is
injected. This results in fast convergence of the FBPM
filter, and hence reduced interference in the input signal of
ANC filter. In the steady-state the gain is reduced to a very
small value, thus additive auxiliary noise with small
variance is injected. This results in improved
noise-reduction performance at the steady-state. In order to
track the variations in the secondary path, the idea of gain
scheduling for FBPM and SPM is combined to have a
time-varying gain for simultaneous online FBPM and SPM.
The simulation results verify the effectiveness of the
proposed method.
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6 Appendix 1

6.1 Simultaneous online modelling of feedback
and secondary paths

In actual practice the secondary path is time-varying,
therefore both the FBPM and SPM filters must be
simultaneously updated during online operation of the ANC
systems. The objective of this appendix is to consider the
ANP scheduling strategy for simultaneous online FBPM
IET Signal Process., 2013, Vol. 7, Iss. 6, pp. 505–514
doi: 10.1049/iet-spr.2012.0204



Fig. 8 Block diagram for online secondary path modelling with
additive auxiliary noise power scheduling
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and SPM. The block diagram shown in Fig. 8 is integrated
with the block diagram of Fig. 2 for simultaneous online
FBPM and SPM. From Fig. 8 the error signal es(n) of SPM
filter is computed as

es(n) = e(n)− v̂s(n) (25)

where

v̂s(n) = ŝT (n)vs(n) (26)

where vs(n) = [v(n), v(n− 1), …, v(n− Ls + 1)]T is the input
signal vector of Ŝ(z). The weight update equation for SPM
filter is given by

ŝ(n+ 1) = ŝ(n)+ mses(n)vs(n) (27)

where μs is the step-size parameter for SPM filter. The error
signal of SPM filter es(n) is also used as an error signal of
ANC filter, and thus the weight update equation for ANC
filter W(z) is modified as

w(n+ 1) = w(n)− mwes(n)x̂(n) (28)

Recently we have proposed a gain scheduling strategy for
online SPM [18]. The expression for the time-varying gain
G(n) is obtained by making the power Pvs

(n) to be equal
to the power Pes

(n− 1). In the case of ANC systems
the signal vs(n) is not accessible, therefore the following
condition

Pv̂s
(n) = Pes

(n− 1) (29)
Fig. 9 Simulation results for online FBPM (dotted line) and simultaneo

a Time-varying gain, G(n)
b Relative modelling error, ΔF(n) (dB)
c MSE in the reference signal, ΔX(n) (dB)
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is forced, where Pv̂s
(n) is given by

Pv̂s
(n) = G2(n)||ŝ(n)||2E v2g(n)

[ ]
= G2(n)||ŝ(n)||2 (30)

Solving (29) and (30) for gain G(n), gives

G(n) =












Pes

(n− 1)

||ŝ(n)||2

√
(31)

where Pes
(n− 1) is the power of the error signal of SPM filter

(can be estimated using low pass estimator of type (19)). By
combining (18) and (31), the overall time-varying gain G(n)
for simultaneous online FBPM and SPM is given as

G(n) = aG(n− 1)+ g · max













Pef

(n− 1)

||f̂ (n)||2

√
,













Pes

(n− 1)

||ŝ(n)||2

√{ }

(32)

where max{·} is the maximum operator that will select the
argument with maximum value. It is worth mentioning that
the FBPM and SPM has no direct relationship, and hence,
the max operator is employed to ensure the convergence of
both the FBPM and the SPM filters.

6.2 Simulation results

Up to the best knowledge of authors, the other researchers have
considered online FBPM [11–17] and SPM [18–25] as
separate problems, and there is no work considering
simultaneous adaptation of F̂(z) and Ŝ(z). Here we present a
few typical results for the proposed method for simultaneous
online FBPM and SMP, and a detailed treatment is beyond
the scope of the present work. We repeat the experiment for
a multi tonal noise source as considered in Case 1. The
length of SPM filter and the step-size parameter, respectively,
are selected as Ls = 16 and μs = 1 × 10−3, and the rest of the
simulation conditions and parameters are the same as in
Case 1. As done for FBPM filter F̂(z), offline modelling
with modelling accuracy of −5 dB is used to initialise the
SPM filter Ŝ(z). Besides the performance measures as
described in Section 3, the relative modelling error of the
secondary path S(z) is computed as

DS(n)(dB) = 10 log10
||s(n)− ŝ(n)||2

||s(n)||2 (33)

The simulation results in Figs. 9 and 10 show the performance
us online FBPM and SPM (solid line)
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Fig. 10 Simulation results for online FBPM (dotted line) and simultaneous online FBPM and SPM (solid line)

a MNR at the error microphone, MNR(n)
b MSE at the error microphone without additive auxiliary noise, MSEideal(n)
c Relative modelling error, ΔS(n) (dB)
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of the proposed method for online FBPM, and for
simultaneous online FBPM and SPM, where we observe
almost similar performance as in Case 1. Fig. 9a shows
the plot (solid line) of the time-varying G(n) computed
using (32) for simultaneous online FBPM and SPM. The
value of the G(n) is large at the start-up of ANC system, or
when there is a perturbation in the acoustic paths.
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This results in fast convergence of the FBPM filter and
the SPM filter. In the steady-state, the gain G(n) is reduced
to a small value, and hence improves the noise-reduction
performance. Fig. 10c shows the plot of relative modelling
error for secondary path. In the proposed method the online
SPM can results in ΔS(n) as low as –40 dB before and after
the acoustic paths perturbation at n = 30000.
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