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1 Introduction

Fractional delay (FD) filters are an important class of
digital filters, and are useful in various signal processing
applications [1]. In this paper, the closed-form solution is
proposed for the maximally flat (maxflat) FD IIR filters,
which is directly derived by solving a linear system of Van-
dermonde equations.

2 Fractional Delay Filters

Let H(z) be the transfer function of IIR filters;
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where N and M are degree of numerator and denominator,
an, bm are real filter coefficients, and b0 = 1.

The desired frequency response of FD filters is given by

Hd(ejω) = e−j(K+p)ω, (2)

where K is an integer delay, and p is a fractional delay in
the range [−0.5, 0.5]. Therefore, the design problem of FD
filters is the approximation of H(ejω) to Hd(ejω) in the
specified criterion, e.g., in the minimax or maxflat sense.

3 Maxflat FD IIR Filters

To obtain a maxflat FD filter at ω = 0, the frequency
response of H(z) must satisfy
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for r = 0, 1, · · · , N + M . It is known that Eq.(3) is equiva-
lent to

∂r{H(ejω)ej(K+p)ω}
∂ωr

˛

˛

˛

˛

ω=0

=
∂r{Hd(ejω)ej(K+p)ω}

∂ωr

˛

˛

˛

˛

ω=0

=

(

1 (r = 0)

0 (r = 1, 2, · · · , N + M)
. (4)

It is obtained from Eq.(1) that
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Therefore, by taking rth derivatives of Eq.(5) at ω = 0, it
can be seen that the condition in (4) is equivalent to
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(r = 0, 1, · · · , N + M), (6)

which derives a system of linear equations as follows;
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for r = 0, 1, · · · , N + M . It should be noted that the co-
efficient matrix in Eq.(7) is the Vandermonde matrix with
distinct elements in the case of p ̸= 0. Therefore, there is al-
ways a unique solution since b0 = 1. By using the Cramer’s
rule, we can obtain the presentation of the filter coefficient
as a quotient of two Vandermonde’s determinants. There-
fore, a closed-form solution is obtained as
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Once N , M , K and p are given, a set of filter coefficients an

and bm can be easily calculated by using Eq.(8). If we set
M = 0 in Eq.(8), then the maxflat FD FIR filters proposed
in [3] and [4] are obtained. Also if N = M , we have an =
bN−n, thus the resulting filters become the maxflat allpass
filters proposed in [2]. Therefore, it is clear that the existing
maxflat FD FIR and allpass filters are two special cases of
the proposed maxflat FD IIR filters.

4 Conclusion

In this paper, we have proposed a new closed-form solu-
tion for the maxflat FD IIR filters. The filter coefficients
have been directly derived by solving a linear system of
Vandermonde equations. This new class of maxflat FD IIR
filters include the existing maxflat FD FIR and allpass fil-
ters as special cases.
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