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1 Introduction

Mth-band filters are an important class of digital filters
and have found numerous applications in multirate signal
processing systems, filter banks and wavelets [1]. This pa-
per considers the design problem of maxflat R-regular IIR
Mth-band filters, and gives the closed-form expression for
its filter coefficients. The filter coefficients are directly de-
rived by solving a linear system of Vandermonde equations,
which are obtained from the regularity condition of the
maxflat R-regular Mth-band filters via the blockwise wave-
form moments.

2 IIR Mth-Band Filters

Let hn (0 ≤ n < ∞) be an impulse response of IIR
digital filter H(z). If H(z) is a Mth-band filter, its impulse
response is required to be exactly zero-crossing except for
one point K, i.e.,

hK+mM =

8
<
:

1

M
(m = 0)

0 (m = ±1,±2, · · · )
, (1)

where K and M are integers, and K corresponds to the
desired group delay in the passband.

Mth-band filter is required to be lowpass, and the desired
frequency response is given by

Hd(ejω) =

(
e−jKω (ω ∈ passband)

0 (ω ∈ stopband)
. (2)

Let a noncausal shifted version of H(z) be Ĥ(z) = zKH(z),
i.e., ĥn = hn+K . The desired frequency response of Ĥ(z)
becomes

Ĥd(ejω) =

(
1 (ω ∈ passband)

0 (ω ∈ stopband)
. (3)

By using the polyphase representation, we have

H(z) =

M−1X
i=0

z−iHi(z
M ), (4)

where

Hi(z) =

Ni
1X

n=0

ai
nz−n/

Ni
2X

n=0

bi
nz−n, (5)

where N i
1, N

i
2 are the degree of the numerator and denom-

inator, respectively, ai
n, bi

n are real filter coefficients, and
bi
0 = 1. Assume that K = L1M + L2, where L1, L2 are in-

tegers, and 0 ≤ L2 ≤ M − 1, it can be seen from the time-
domain condition in (1) that HL2(z) = z−L1/M . There-
fore, we have

Ĥ(z) = zKH(z) =
1

M
+

M−1X
i=0
6=L2

zK−iHi(z
M ). (6)

It can be seen from (6) that the frequency response of Ĥ(z)
always satisfies

M−1X

k=0

Ĥ(ej(ω+ 2kπ
M

)) ≡ 1, (7)

which means that the sum of the responses at the frequency
points ωk = ω + 2kπ/M for k = 0, 1, · · · , M − 1 keep con-
stant, regardless of what the filter coefficients are. From
(7), we get

Ĥ(ejω0) = 1−
M−1X

k=1

Ĥ(ejωk ). (8)

It is clear that the frequency response at ω0 is dependent
on the frequency responses at ωk (k = 1, 2, · · · , M − 1). If
its stopband response is 0, then the frequency response of
Ĥ(z) will become 1 in the passband, i.e., the magnitude
response of H(z) is 1, and the group delay is K in the
passband. Therefore, the design problem of IIR Mth-band
filters with an arbitrarily specified K can be reduced to the
minimization of the stopband error of Ĥ(z).

3 Maxflat R-regular IIR Mth-band Filters

In [5], the blockwise waveform moment around K for hn

is defined by

mr(i) =

∞X
m=0

(mM + i−K)rhmM+i, (9)

where 0 ≤ i ≤ M−1. It follows from the definition of mr(i)
that

∂rĤ(ejω)

∂ωr

˛̨
˛̨
ω= 2kπ

M

= (−j)r
M−1X
i=0

mr(i)e
−j

2(i−K)kπ
M , (10)

i.e., the blockwise waveform moments describe the deriva-
tive behaviors of the frequency response Ĥ(ejω) at the fre-
quency points ωk = 2kπ/M (0 ≤ k ≤ M − 1). It is seen
in (10) that the rth derivatives of the frequency response
Ĥ(ejω) at ωk = 2kπ/M are the M -point DFT (Discrete
Fourier Transform) of the blockwise waveform moments
mr(i). Thus, by the inverse transform, we have

mr(i) =
jr

M

M−1X

k=0

∂rĤ(ejω)

∂ωr

˛̨
˛̨
ω= 2kπ

M

ej
2(i−K)kπ

M . (11)

It is clear that the blockwise waveform moments mr(i)
bridge between the time and frequency domains by (9) and
(11). Given the rth derivatives of the frequency response
Ĥ(ejω) at the frequency points ωk = 2kπ/M , the rth block-
wise waveform moments mr(i) can be calculated via the
IDFT in (11).



It is known in [1] that an Mth-band filter is said to be
R-regular if it has

H(z) = (1 + z−1 + · · ·+ z−(M−1))RQ(z), (12)

where Q(z) is an IIR filter. It is equivalent to

∂rH(ejω)

∂ωr

˛̨
˛̨
ω= 2kπ

M

=
∂rĤ(ejω)

∂ωr

˛̨
˛̨
ω= 2kπ

M

= 0, (13)

for k = 1, 2, · · · , M−1 and r = 0, 1, · · · , R−1. It is obtained
from (8) and (13) that

8
><
>:

Ĥ(ejω)
˛̨
ω=0

= 1 (r = 0)

∂rĤ(ejω)

∂ωr

˛̨
˛̨
ω=0

= 0 (r = 1, 2, · · · , R− 1)
, (14)

which means that the magnitude response |Ĥ(ejω)| and
group delay τ̂(ω) satisfy at ω = 0

8
><
>:

|Ĥ(ejω)|
˛̨
ω=0

= 1 (r = 0)

∂r|Ĥ(ejω)|
∂ωr

˛̨
˛̨
ω=0

= 0 (r = 1, 2, · · · , R− 1)
, (15)

and

∂r τ̂(ω)

∂ωr

˛̨
˛̨
ω=0

= 0 (r = 0, 1, · · · , R− 2). (16)

From the relationship between H(z) and Ĥ(z) in (6), it
is clear that H(z) has flat magnitude and group delay re-
sponses at ω = 0 simultaneously.

By using (11), the blockwise waveform moments are ob-
tained from the regularity condition in (13) and (14) as

mr(i) =

8
<
:

1

M
(r = 0)

0 (r = 1, 2, · · · , R− 1)
. (17)

It can be obtained from (5) that

zK−iHi(z
M ) =

Ni
1X

n=0

ai
nzK−nM−i

Ni
2X

n=0

bi
nz−nM

=

∞X
m=0

hmM+iz
K−mM−i.

(18)

Next, we define the waveform moments for the numerator
and denominator in (18) by

8
>>>>>><
>>>>>>:

mN
r (i) =

Ni
1X

n=0

(nM + i−K)rai
n

mD
r (i) =

Ni
2X

n=0

(nM)rbi
n

. (19)

Therefore, it can be seen by taking rth derivatives of (18)
and substituting z = 1 that the condition in (17) becomes

MmN
r (i) = mD

r (i) (r = 0, 1, · · · , R− 1). (20)

From the definition of mN
r (i), mD

r (i) in (19) and bi
0 = 1, we

obtain

M

Ni
1X

n=0

(nM + i−K)rai
n −

Ni
2X

n=1

(nM)rbi
n = δ(r), (21)

where r = 0, 1, · · · , R− 1, and

δ(r) =

(
1 (r = 0)

0 (r 6= 0)
. (22)

It should be noted that the coefficient matrix in (21) is
the Vandermonde matrix with distinct elements. There is
always a unique solution if R = N i

1 + N i
2 + 1. By using

the Cramer’s rule, we can obtain the presentation of the
filter coefficient as a quotient of two Vandermonde’s deter-
minants. Therefore, a closed-form solution is obtained as
8
>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ai
n =

(−1)n+1

M

N i
2!

n!(N i
1 − n)!

Ni
1Y

m=0

(m +
i−K

M
)

Ni
2Y

m=0

(m− n +
K − i

M
)

bi
n = (−1)n N i

2!

n!(N i
2 − n)!

Ni
1Y

m=0

m +
i−K

M

m− n +
i−K

M

.

(23)

Once M , K, N i
1 and N i

2 are given, a set of filter coefficients
ai

n and bi
n can be easily calculated by using (23). It is seen

that besides N i
1+N i

2 = R−1 must be satisfied, it is possible
for Hi(z) to have different N i

1 and N i
2 for 0 ≤ i ≤ M − 1.

4 Conclusion

In this paper, we have proposed a new closed-form solu-
tion for the maxflat R-regular IIR Mth-band filters. The
filter coefficients have been directly derived by solving a lin-
ear system of Vandermonde equations, which are obtained
from the regularity condition via the blockwise waveform
moments.
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