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Wavelet-based image coding has been adopted in the international standard JPEG 2000
for its efficiency. It is well-known that the orthogonality and symmetry of wavelets are
two important properties for many applications of signal processing and image pro-
cessing. Both can be simultaneously realized by the wavelet filter banks composed of a
complex allpass filter, thus, it is expected to get a better coding performance than the
conventional biorthogonal wavelets. This paper proposes an effective implementation
of orthonormal symmetric wavelet filter banks composed of a complex allpass filter for
lossy to lossless image compression. First, irreversible real-to-real wavelet transforms are
realized by implementing a complex allpass filter for lossy image coding. Next, reversible
integer-to-integer wavelet transforms are proposed by incorporating the rounding opera-
tion into the filtering processing to obtain an invertible complex allpass filter for lossless
image coding. Finally, the coding performance of the proposed orthonormal symmetric
wavelets is evaluated and compared with the D-9/7 and D-5/3 biorthogonal wavelets.
It is shown from the experimental results that the proposed allpass-based orthonor-
mal symmetric wavelets can achieve a better coding performance than the conventional
D-9/7 and D-5/3 biorthogonal wavelets both in lossy and lossless coding.
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1. Introduction

Wavelet-based image coding has been extensively studied and adopted in the inter-
national standard JPEG 2000.8,18 In the wavelet-based image coding, two-band
perfect reconstruction (PR) filter banks play a very important role. The analysis
and synthesis filters are required to have exactly linear phase responses (correspond-
ing to symmetric wavelet bases), allowing us to use the symmetric extension method
to accurately handle the boundaries of images. The wavelet filter banks should also
be orthonormal to avoid redundancy between the subband images. Therefore, the
orthogonality and symmetry are two important properties of wavelets for many
applications of signal processing and image processing. Unfortunately, it is widely
appreciated that there are no nontrivial orthonormal symmetric wavelets using FIR
filters, except for the Haar wavelet which is not continuous.5 To achieve a better
coding performance, a reasonable regularity is necessary for wavelet bases.1 There-
fore, at least one of the above-mentioned conditions has to be given up to get more
regularity than the Haar wavelet. For example, the D-9/7 and D-5/3 wavelets sup-
ported by JPEG 2000 part 1 are biorthogonal, not orthogonal. Therefore, various
classes of orthogonal wavelet filter banks with approximately linear phase responses
and biorthogonal wavelet filter banks with exactly linear phase responses have been
proposed by using FIR filters in Refs. 9, 2, 10, 15, 16, 17, 19, 20, 6 and 3 and IIR fil-
ters in Refs. 14, 7, 10, 12, 4 and 23. On the other hand, it is known that IIR wavelet
filter banks can produce the orthonormal symmetric wavelet bases.7 A class of IIR
orthonormal symmetric wavelet filter banks has been proposed by using allpass fil-
ters in Refs. 7, 11, 13, 22 and 21. In Ref. 21, the proposed orthonormal symmetric
wavelet filter banks are composed of a single complex allpass filter. In this paper,
we will apply the orthonormal symmetric wavelet filter banks composed of a com-
plex allpass filter to image compression. Since the filter coefficients are real-valued,
irreversible real-to-real wavelet transform can be easily realized, and used only for
lossy image coding. However, a reversible integer-to-integer wavelet transform is
necessary for lossless image coding. As shown in Refs. 16, 17, 6 and 3, the rounding
operation must be incorporated into the processing in order to realize reversible
integer-to-integer wavelet transform.

In this paper, we discuss how to realize the orthonormal symmetric wavelet filter
banks composed of a single complex allpass filter for lossy to lossless image coding.
First, we propose an effective realization of irreversible real-to-real wavelet trans-
forms for lossy image coding by efficiently implementing the complex allpass filter.
Next, by incorporating the rounding operation into the filtering processing, we give
an invertible implementation of the complex allpass filter to realize the reversible
integer-to-integer wavelet transforms for lossless image coding. Finally, we apply the
proposed orthonormal symmetric wavelet filter banks into image compression, and
investigate its coding performance by using JPEG 2000 reference software (part 5)
JJ2000 (Java) version 5.1 provided in Ref. 8. The coding results are compared with
the D-9/7 and D-5/3 biorthogonal wavelets supported by JPEG 2000 part 1. It can
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be seen from the experimental results that the proposed allpass-based orthonormal
symmetric wavelet filters can achieve a better lossy to lossless coding performance
than the conventional D-9/7 and D-5/3 biorthogonal wavelets.

This paper is organized as follows. The orthonormal symmetric wavelet filter
banks composed of a single complex allpass filter are briefly introduced in Sec. 2.
In Sec. 3, an effective implementation of the orthonormal symmetric wavelet fil-
ter banks is given to obtain irreversible real-to-real wavelet transforms for lossy
image coding. In Sec. 4, the reversible integer-to-integer wavelet transforms are
proposed by realizing an invertible complex allpass filter for lossless image coding.
In Sec. 5, the evaluation and comparison of the coding performance between the
proposed allpass-based orthonormal symmetric wavelet filter banks and the conven-
tional D-9/7 and D-5/3 biorthogonal wavelets are shown. Finally, Sec. 6 contains a
conclusion.

2. Orthonormal Symmetric Wavelet Filter Banks

It is well-known in Ref. 5 that wavelet bases can be generated by two-band PR
filter banks H(z) and G(z), where H(z) and G(z) are the transfer functions of
lowpass and highpass filters, respectively, which are defined by the z transform of
filter impulse responses. The orthonormal filter banks H(z) and G(z) must satisfy


H(z)H(z−1) + H(−z)H(−z−1) = 2,

G(z)G(z−1) + G(−z)G(−z−1) = 2,

H(z)G(z−1) + H(−z)G(−z−1) = 0.

(2.1)

Moreover, H(z) and G(z) must have exactly linear phase responses also, if sym-
metric wavelets are needed. In the case of FIR filters, only orthonormal symmetric
wavelet filter is the Haar wavelet. In Ref. 21, a class of IIR orthonormal symmetric
wavelet filter banks have been proposed by using a single complex allpass filter, as
shown in Fig. 1, i.e. 


H(z) =

1√
2
{A(z) + A†(z)},

G(z) =
z−1

√
2j

{A(z) − A†(z)},
(2.2)

Fig. 1. Wavelet filter banks composed of a single complex allpass filter.
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where A(z) is a complex allpass filter of order 2N and defined by

A(z) = ejη a0z
N + ja1z

N−1 + · · · + ja1z
1−N + a0z

−N

a0zN − ja1zN−1 + · · · − ja1z1−N + a0z−N
, (2.3)

where j2 = −1, η = ±π
4 or ± 3π

4 , an are a set of real-valued filter coefficients and
a0 = 1. Moreover, A†(z) has a set of coefficients that are complex conjugate with
ones of A(z). It has been proven in Ref. 21 that H(z) and G(z) in Eq. (2.2) satisfy
the condition of orthonormality in Eq. (2.1) and have exactly linear phase responses.

In the following, we first derive the frequency responses of H(z) and G(z). Let
θ(ω) be the phase response of A(z), we have from Eq. (2.3),

θ(ω) = η + 2ϕ(ω), (2.4)

where if N is even,

ϕ(ω) = tan−1

N/2−1∑
n=0

a2n+1 cos(N − 2n− 1)ω

aN

2
+

N/2−1∑
n=0

a2n cos(N − 2n)ω

(2.5)

and if N is odd,

ϕ(ω) = tan−1

aN

2
+

(N−1)/2∑
n=1

a2n−1 cos(N − 2n + 1)ω

(N−1)/2∑
n=0

a2n cos(N − 2n)ω

. (2.6)

The frequency responses of H(z) and G(z) are then given by{
H(ejω) =

√
2 cos θ(ω),

G(ejω) = e−jω
√

2 sin θ(ω),
(2.7)

which have exactly linear phase responses and satisfy the following power-
complementary relation;

|H(ejω)|2 + |G(ejω)|2 = 2. (2.8)

Therefore, the design problem of H(z) and G(z) becomes the phase approxi-
mation of the complex allpass filter A(z), and has been discussed in Ref. 21. In
Ref. 21, the closed-form solution for this class of orthonormal symmetric wavelet
filter banks having the maximally flat magnitude responses has been given by

an =




(
2N

n

)
(n : even),

−
(

2N

n

)
tan

η

2
(n : odd).

(2.9)

As a design example, the magnitude responses of the maximally flat filters H(z) and
G(z) with N = 1, 2, 3, 4 are shown in Fig. 2, and the scaling and wavelet functions
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Fig. 2. Magnitude responses of the maximally flat filters H(z) and G(z).
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Fig. 3. Scaling and wavelet functions with N = 2, 3.

generated from H(z) and G(z) with N = 2, 3 are given in Fig. 3. Moreover, the
design method of the orthonormal symmetric wavelet filter banks with equiripple
magnitude responses has also been proposed in Ref. 21 by using the Remez exchange
algorithm. See Ref. 21 in detail.

3. Irreversible Wavelet Transforms

In this section, we present an effective realization of irreversible real-to-real wavelet
transforms by using a complex allpass filter. We assume that input signal is real-
valued and of length M , where M is even. Since H(z) and G(z) have exactly linear
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phase responses, the input signal is extended to a periodic signal by employing
symmetric extension at the boundaries. It is seen in Fig. 1 that the real-valued
input signal will be filtered with the complex allpass filter A(z), then the lowpass
and highpass components are obtained as real- and imaginary-parts of the output
signal. Since the filter coefficients are symmetric, i.e. an = a2N−n, A(z) can be
divided into the causal-stable subfilter AS(z) and its inverse AS(z−1) as follows;

√
2A(z) = (1 ± j)AS(z)AS(z−1). (3.1)

Note that η = ±π
4 or ± 3π

4 , then
√

2ejη = 1 ± j. All poles of AS(z) are inside the
unit circle, and its transfer function is given by

AS(z) =

z−N +
N∑

k=1

jkγkzk−N

1 +
N∑

k=1

j−kγkz−k

, (3.2)

where γk are real. AS(z−1) is realized by reversing its input signal, filtering it with
the causal-stable filter AS(z), and then re-reversing the output signal. Therefore,
A(z) can be realized only by using AS(z) twice, as shown in Fig. 4.

For the causal-stable filter AS(z) with input p(n) and output q(n), its input-
output relation is given by

q(n) = p(n − N) +
N∑

k=1

jkγk[ p(n + k − N) − (−1)kq(n − k)]. (3.3)

It is seen in Fig. 1 that only even-indexed real-part and odd-indexed imaginary-
part of output of A(z) are necessary in analysis filters. Thus, we need not to know
all of the output. Let p(n) = pr(n) + jpi(n) and q(n) = qr(n) + jq i(n), where the
indices r and i mean the real and imaginary parts, respectively. From Eq. (3.3),
the even-indexed real-part qr(2n) and odd-indexed imaginary-part qi(2n+1) of the
output can be obtained by

qr(2n) = pr(2n − N) +
�N

2 �∑
k=1

(−1)kγ2k[pr(2n + 2k − N) − qr(2n − 2k)]

+
�N+1

2 �∑
k=1

(−1)kγ2k−1[pi(2n + 2k − N − 1) + qi(2n − 2k + 1)], (3.4)

Fig. 4. Implementation of complex allpass filter A(z).
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qi(2n +1) = pi(2n−N + 1)

+
�N

2 �∑
k=1

(−1)kγ2k[pi(2n +2k−N + 1)− qi(2n−2k +1)]

−
�N+1

2 �∑
k=1

(−1)kγ2k−1[pr(2n + 2k − N) + qr(2n − 2k + 2)], (3.5)

where �x� denotes the largest integer not greater than x. It can be seen in Eqs. (3.4)
and (3.5) that for getting qr(2n) and qi(2n + 1), only the even-indexed real-part
pr(2n) and odd-indexed imaginary-part pi(2n+1) of input signal p(n) are necessary
if N is even, while the odd-indexed real-part pr(2n+1) and even-indexed imaginary-
part pi(2n) if N is odd. For example, when N = 2, we have

qr(2n) = pr(2n − 2) − γ2[pr(2n) − qr(2n − 2)]

− γ1[pi(2n − 1) + qi(2n − 1)], (3.6)

qi(2n + 1) = pi(2n − 1) − γ2[pi(2n + 1) − qi(2n − 1)]

+ γ1[pr(2n) + qr(2n)]. (3.7)

Thus this second-order complex allpass filter AS(z) can be realized as shown in
Fig. 5. This means that the down-sampling operation can be done before imple-
menting AS(z). Therefore, the computational complexity can be reduced by firstly
decimating the input signal and then filtering it. It is also noted in Eqs. (3.4)
and (3.5) that only N real multipliers are needed per output sample.

Since the input signal is periodic as using the symmetric extension, some initial
values are needed for starting the processing in Eqs. (3.4) and (3.5). For exam-
ple, to get qr(0) we need to know qi(−1), qr(−2), qi(−3), . . . , qr(i)(−N) before-
hand. It is known that although IIR filters have infinite impulse responses in
theory, the impulse responses of the stable filters will become very small beyond

z−2 z−2

+

+−

+
−

γ2

z−2 z−2

+

+−

+
− γ2

γ1

+

γ1

+

Fig. 5. Implementation of second-order complex allpass filter AS(z).
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a certain interval in practice. Therefore, truncating the impulse response to be
of finite length will give little influence. We can calculate the initial values
qi(−1), qr(−2), qi(−3), . . . , qr(i)(−N) by using the truncated impulse response.
This is equivalent to truncating the input signal before the given point. We use
the latter to obtain the initial values qi(−1), qr(−2), qi(−3), . . . , qr(i)(−N) in this
paper. The synthesis filters can be also realized in the same way, and then is omit-
ted here.

4. Reversible Wavelet Transform

In this section, we discuss reversible integer-to-integer wavelet transforms for lossless
coding. In most of the cases, AS(z) has floating point filter coefficients. Although
the input images are matrices of integer values, the filtered output no longer con-
sists of integers. For lossless compression, it is necessary to make an invertible
mapping from an integer input to an integer wavelet coefficient. To obtain an inte-
ger output, we incorporate the rounding operation into Eqs. (3.4) and (3.5) as
follows;

qr(2n) = pr(2n − N) +

�N
2 �∑

k=1

(−1)kγ2k[pr(2n + 2k − N)

− qr(2n − 2k)] +
�N+1

2 �∑
k=1

(−1)kγ2k−1[pi(2n + 2k − N − 1)

+ qi(2n − 2k + 1)] + 0.5

, (4.1)

qi(2n + 1) = pi(2n − N + 1) +

�N
2 �∑

k=1

(−1)kγ2k[pi(2n + 2k − N + 1)

− qi(2n − 2k + 1)] −
�N+1

2 �∑
k=1

(−1)kγ2k−1[pr(2n + 2k − N)

+ qr(2n − 2k + 2)] + 0.5

. (4.2)

Therefore, we can obtain the integer output qr(2n) and qi(2n + 1) for n =
0, 1, . . . , M/2−1 from the integer input p(n) by using Eqs. (4.1) and (4.2), starting
from the initial values described in Sec. 3.
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To recover the integer p(n) from the integer q(n), we revise Eqs. (4.1) and (4.2)
and have

pr(2n − N) = qr(2n) −
�N

2 �∑
k=1

(−1)kγ2k[pr(2n + 2k − N) − qr(2n − 2k)]

+
�N+1

2 �∑
k=1

(−1)kγ2k−1[pi(2n + 2k − N − 1)

+ qi(2n − 2k + 1)] + 0.5

, (4.3)

pi(2n − N + 1) = qi(2n + 1) −
�N

2 �∑
k=1

(−1)kγ2k[pi(2n + 2k − N + 1)

− qi(2n − 2k + 1)] −
�N+1

2 �∑
k=1

(−1)kγ2k−1[pr(2n + 2k − N)

+ qr(2n − 2k + 2)] + 0.5

. (4.4)

It is clear that if all of qr(2n), qi(2n + 1) and some of pr(2n − N), pi(2n − N + 1),
e.g., pi(M − 1), pr(M − 2), . . . , pr(M − N) for even N , are known a priori, we can
exactly reconstruct the integer pr(2n − N) and pi(2n − N + 1) for n = M/2 −
1, M/2 − 2, . . . , N/2.

For example, an invertible implementation of complex allpass filter AS(z) with
N = 2 is given in Fig. 6, where the analysis processing is in Fig. 6(a), and synthesis

z−2 z−2

+

+ −

−

z−2 z−2

+

+ −

+
− γ2

γ1

+

γ1

+

R

+
γ2

R

z2 z2

+

+−

z2 z2

+

+−

+
− γ2

γ1

+

γ1

+

R

+
γ2

R

−

(a) (b)

Fig. 6. Invertible implementation of second-order complex allpass filter, (a) analysis and
(b) synthesis.
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in Fig. 6(b). It is seen in Fig. 6 that the rounding operation r© is inserted after the
multipliers, thus reversible integer-to-integer transforms can be realized. Note that
the filtering is done in reverse order for analysis and synthesis.

It is known in lossless coding that qr(2n) and qi(2n + 1) are transmitted to the
decoder without loss. However, it is difficult to perfectly recover the integer pi(M −
1), pr(M − 2), . . . , pr(M −N) from qr(2n) and qi(2n + 1) only. This is because the
rounding error has occurred in Eqs. (4.1) and (4.2) and has been included in q(n).
Thus, the information pi(M − 1), pr(M − 2), . . . , pr(M − N) must be transmitted
to the decoder as a side information. By using the side information transmitted,
we can realize the reversible integer-to-integer wavelet transforms with Eqs. (4.1)–
(4.4). The side information includes N pixels for each column or line of the image.
Since the complex allpass filter of lower-order is used in image coding, N is small
in general. Moreover, we can calculate the prediction values of pi(M − 1), pr(M −
2), . . . , pr(M − N) from qr(2n) and qi(2n + 1) in the same way as calculating the
initial values in Sec. 3, and then transmit the difference between the prediction and
actual values to the decoder, instead of the actual values of pi(M − 1), pr(M −
2), . . . , pr(M − N). The difference of both is relatively small, since it is due to
the rounding error in Eqs. (4.1) and (4.2). In the practical experiment, we found
that this difference has an entropy of about 1–2bpp. Therefore, the amount of
the side information needed to be transmitted is very small. For example, when
N = 2, the side information of only 2–4 bits are needed for AS(z) to filter one
line or column of the image. In the decoder, we calculate the prediction values of
pi(M − 1), pr(M − 2), . . . , pr(M − N) from qr(2n) and qi(2n + 1) in the same way
as in the encoder, and add the difference transmitted to it to get the actual values.
Therefore, the original p(n) can be recovered by using Eqs. (4.3) and (4.4).

5. Image Coding Application

In this section, we investigate the coding performance of the proposed orthonormal
symmetric wavelets composed of a complex allpass filter with the maximally flat
magnitude responses. The maximally flat wavelet filters produce the maximum
numbers of vanishing moments of wavelets,5 which potentially influence the coding
performance.1 The filter order is chosen to N = 1–4. The filter coefficients of the
complex allpass filter with N = 1–4 given in Ref. 21 have been used. JPEG 2000
reference software (part 5) JJ2000 (Java) version 5.1 provided in Ref. 8 has been
used to evaluate the coding performance. Eight images (Barbara, Boat, Goldhill,
Lena, Man, Mandrill, Pepper and Zelda) of size 512× 512, 8 bpp have been used as
test images, and the decomposition level of the wavelet transform is set to 6.

5.1. Irreversible wavelet transform

We examine the lossy coding performance of the irreversible real-to-real wavelet
transform proposed in Sec. 3, and compare the coding performance with the D-
9/7 irreversible real-to-real wavelet transform supported by JPEG 2000 part 1.

1460002-10
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Fig. 7. Lossy coding performance of irreversible wavelet transform for image Barbara.

The distortion is measured by the peak signal to noise ratio (PSNR) between the
original image and lossy image reconstructed at the given bit rate, where bit rate
means the average number of bits per pixel (bpp). The lossy coding results for
images Barbara and Lena are given in Figs. 7 and 8, respectively. It is seen in Fig. 7
that when N > 1, the orthonormal symmetric wavelets composed of a complex
allpass filter have a better lossy coding performance than the D-9/7 wavelet for
image Barbara, while the almost same results are obtained for image Lena, as
shown in Fig. 8. For example, at 0.5 bpp for image Barbara, the proposed wavelet
filter with N = 3 has the PSNR of 33.671dB, while D-9/7 is 32.765dB. When N is
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Fig. 8. Lossy coding performance of irreversible wavelet transform for image Lena.
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further increased, we get little improvement, however, the computational complexity
becomes higher.

5.2. Reversible wavelet transform

We investigate the lossy and lossless coding performance of the reversible integer-to-
integer wavelet transform proposed in Sec. 4, and compare the coding performance
with the D-5/3 reversible integer-to-integer wavelet transform supported by JPEG
2000 part 1.

5.2.1. Lossless coding performance

We have investigated the lossless coding performance for eight test images. The
lossless coding results with the comparison with the D-5/3 wavelet are given in
Table 1. For each image, the best result has been highlighted. It is seen in Table 1
that the orthonormal symmetric wavelets composed of a complex allpass filter with
N = 3 have the best average lossless coding performance. Although there are two
images getting the best results for the D-5/3 wavelet, the proposed orthonormal
symmetric wavelets with N = 2 and N = 3 have obtained the best lossless coding
performance for three images, respectively.

5.2.2. Lossy coding performance

We examine the lossy coding performance of the reversible integer-to-integer wavelet
transform. The side information was not used in lossy coding. The lossy coding
results for images Barbara and Lena are shown in Figs. 9 and 10, respectively.
It is seen in Figs. 9 and 10 that at a lower bit rate, the proposed orthonormal
symmetric wavelets with N > 1 have a better lossy coding performance than the
D-5/3 wavelet, while when N = 1, the results are almost same. However, the
orthonormal symmetric wavelets have a poor lossy coding performance at a higher
bit rate. This is because the rounding error has a relatively larger influence on
the lossy coding performance than the quantization error at a higher bit rate.

Table 1. Lossless coding results: Bit Rate (bpp).

Image D-5/3 N = 1 N = 2 N = 3 N = 4

Barbara 4.695 4.758 4.545 4.503 4.501
Boat 4.438 4.527 4.431 4.434 4.451
Goldhill 4.871 4.942 4.886 4.886 4.894
Lena 4.348 4.440 4.335 4.335 4.346
Man 4.730 4.840 4.740 4.750 4.770
Mandrill 6.149 6.204 6.127 6.121 6.122
Pepper 4.653 4.705 4.649 4.663 4.679
Zelda 4.019 4.090 3.972 3.965 3.975

Average 4.738 4.813 4.711 4.707 4.717
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Fig. 9. Lossy coding performance of reversible wavelet transform for image Barbara.
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Fig. 10. Lossy coding performance of reversible wavelet transform for image Lena.

To improve the lossy coding performance at a higher bit rate, we use real-to-real
inverse transform at the decoder, instead of integer-to-integer inverse transform in
Eqs. (4.3) and (4.4). That is, the rounding operation is removed from Eqs. (4.3)
and (4.4). The difference of lossy coding performance between the real-to-real and
integer-to-integer inverse transforms are given in Figs. 11 and 12, respectively. It is
seen in Figs. 11 and 12 that unlike the D-5/3 wavelet, the proposed orthonormal
symmetric wavelets can obtain an improvement up to 1.5 dB.
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Fig. 11. Lossy coding performance improvement for image Barbara.
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Fig. 12. Lossy coding performance improvement for image Lena.

6. Conclusions

In this paper, we have proposed an effective realization of orthonormal symmet-
ric wavelets composed of a single complex allpass filter for lossy to lossless image
coding. First, we have realized the irreversible real-to-real wavelet transform by
efficiently implementing the complex allpass filter. Then, we have presented the
invertible implementation of the complex allpass filter by incorporating the round-
ing operation into the filtering processing to realize the reversible integer-to-integer
wavelet transform. Finally, we have investigated the coding performance of the pro-
posed allpass-based orthonormal symmetric wavelets by using JPEG 2000 reference
software (part 5) JJ2000 (Java) version 5.1, and compared the lossy and lossless
coding performance with the D-9/7 and D-5/3 wavelets. It have been shown from
the experimental results that the proposed allpass-based orthonormal symmetric
wavelets can achieve a better lossy to lossless coding performance than the conven-
tional D-9/7 and D-5/3 wavelets.
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