CLOSED-FORM DESIGN OF MAXFLAT R-REGULAR FIR MTH-BAND FILTERS
WITH ARBITRARY GROUP DELAY USING WAVEFORM MOMENTS

Xi Zhand, Daisuke Kobayashi, Tatsuya Wada, Toshinori Yoshikawa and Yoshinori Takei

Nagaoka University of Technology
Department of Electrical Engineering
Nagaoka, Niigata, 940-2188 Japan
T xiz@inflab.nagaokaut.ac.jp

ABSTRACT 2. FIR MTH-BAND FILTERS
Mth-band filters have been found numerous application
in multirate signal processing systems, filter banks an
wavelets. In this paper, a new closed-form expression is pre- N—1
sented for the impulse response of the ma@aegular FIR H(z) = Zo haz ", (1)
Mth-band filters with arbitrary group delay. The filter coef- =

ficients are directly obtained by solving a linear system ofyhereh,, are real filter coefficients. Wheti(2) is designed

Vandermonde equations that are derived from the regulags anMth-band filter, its impulse response is required to be
ity conditions via waveform moments. Moreover, the groupexactly zero-crossing except for one pditi.e.,

delay of the proposed FIRIth-band filters can be arbitrar-
ily specified. Finally, some design examples are presented % (k=0)
to demonstrate the effectiveness of the proposed maxflat hi im = 0 (k=+1,42,..)

regular FIRMth-band filters.
whereK andM are integers, an# corresponds to the de-
1. INTRODUCTION sired group delay in the passband. In the case of FIR filters

Mth-band filters are an important class of digital filters and"ith €xactlinear phase, the filter coefficients have to be sym-
are often used in multirate digital signal processing systemdl€iC. i-€.,in = hiv_1n, and then, its group delay equals
filter banks and wavelets, and so on. Its impulse response —, (N-—1)/2. Hence K increases with an Increasing fil-
is required to be exactly zero-crossing except for one poin er IengthN. It results in a larger de]ay_when h'gheF ordgr
FIR Mth-band filters with exact linear phase have been stud: 'R filtérs are needed. In some applications of real-time sig-

; : : _nal processing, a lower delay is generally required. Here,
Ifﬁ?n? Xgoﬁﬂﬁg\r/]eilg Igi\[llei;][%ré?eo':r?;;?%?rg];&gdéilg ,&l&s_ed we consider the design of FIRth-band filters with arbitrary

band filters with exact linear phase in [4] and [5], while the9roup delay, resulting in an approximate linear phase re-

minimax solution can be found in [1] and [3]. However, a SPONS€ in the passband. .
larger delay results when higher order FIR linear phase filters _Mth-band filter is required to be lowpass, and the desired
are needed. This is because the group delay is equal to h&fFAUENCy response is given by

the filter order for the exact linear phase FIR filters. In some o e K©  (in passbany
applications of real-time signal processing, a lower delay is Ha(e'®) = { 0 (in stopbangl
generally needed. For this reason, lifh-band filters with P
arbitrary group delay need to be considered. For the designet a noncausal shifted version Bif(z) be H(z) = ZXH(2),

of FIR Mth-band filters with arbitrary group delay, a closed-j o i _ . By substituting the time-domain condition
form solution is given only for a specific class of the maxflat, Eq.(2) into Eq.(1), we have
R-regular FIRMth-band filters in [2], while the optimal so- ' '

et the transfer functioil (z) of a FIR digital filter of length

: ()

3)

lution with equiripple response in stopband can be found in - 1 N-1 B
[8]. The design of a general class of the maxRategular H(z) =ZH(2) = mt a2, 4
FIR Mth-band filters with arbitrary group delay is still open. LK kM

In this paper, we will consider the design of a general

class of the maxflaR-regular FIRMth-band filters with ar- and then 1 (in

: . . A passbhany
bitrary group delay. A new closed-form expression for its Hq(e!®) = { . . (5)
impulse response is presented. In the proposed method, we 0 (instopbang
derive a linear system of Vandermonde equations from thg can be seen from Eq.(4) that the frequency response of
regularity conditions of thévith-band filters via the block- H(z) always satisfies
wise waveform moments defined in [7], and then can get a -
set of filter coefficients by applying the Cramer’s formula e 2
and Vandermonde’s determinant. Moreover, the group delay > H (el )) =1, (6)
of the proposed FIRMth-band filters can be arbitrarily spec- k=0
ified. Finally, some examples are designed to demonstraighich means that the sum of the responses at the frequency
the effectiveness of the proposed maxRakegular FIRMth-  points wx = w+ 2kmr/M for k= 0,1,---,M — 1 keeps con-
band filters with arbitrary group delay. stant, regardless of what the filter coefficiengsare.



3. DEFINITION OF WAVEFORM MOMENTS FIR Mth-band filters with arbitrary group delay, however, a
L closed-form solution is given in [2] only for a specific class of
For a non-negative integer, the rth waveform moment the maxflatR-regular FIRMth-band filters withiK = kM — 1

around zero foh, is defined by andN = MR— 1, wherel < k < R— 1. Thus K is restricted
N_K_1 to several special integers and then the group delay cannot
_ re be arbitrarily specified. In the following, we will describe
my n'"hp. @) :
K how to design a general class of the maxRategular FIR
Mth-band filters with arbitrary group delay.
Note thathn ranges from-K to (N — K — 1). Itis known in It is known in [4] that anMth-band filter is said to be

[7] and [5] that therth waveform momentn, describes the R-regular if it has
rth differential coefficient of the frequency resporrseei©)

atw =0, H@) =@+z 4+ MR, (13)
=i M ) (8) whereQ(z) is a FIR filter of length_. Q(2) is used foH (z) to
0w |0 satisfy the time-domain condition in Eq.(2). Thus, the mini-

mal length ofQ(2) is L = R, in general, then the filter length

In [7] and [5], the blockwise waveform moment around of H(2) becomes

zero has been also defined by

" N=(M—-1)R+R=MR (14)
m(i)= 3% (KM +1)" Phut (9)  Deponding on the positin df, the filter lengthN may de-
k=N (i) grade toN = MR—1, whenhy =0if K=kM (1<k<R-1)
. orhyr-1 =0if K=KkM—-1 (1 <k<R-1). Itis known in
where0<i<M-—1land [4] that Eq.(13) is equivalent to
N (i) = = S5 J"H (el® JTH (el®
VT (10) onEn| _IHED o as)
Nu(i) = [“=x— M ] Jdw w=23T ow w=23T

Note that|x| is the largest integer not greater thanit fol- fork=1,2,---M—1andr=0,1,---,R—1. It can be ob-

lows from the definition ofr (i) in Eq.(9) that tained from Eq.(6) that
0r|:|(ej“’) 2kt N ai® M-1 j(w+2k")
- 7 rnr e J‘IVI’ 11 H(e ):1— H(e ‘WF) (16)
dwl’ o % ( ) kZ]_

i.e., the blockwise waveform moments describe the deriva’€n We have from Eq.(15),

tive behavior of the frequency respondée!®) at the fre- H‘(ejw)| -1 (r=0)
quency pointsa = 2kir/M (0 <k <M —1). Itis clear w=0" N
in Eq.(11) that the'th derivatives of the frequency response 0"H (el®) , a7)

H(el®) at w = 2krr/M are theM-point DFT (Discrete =0 (r=12--,R-1)

Fourier Transform) of the blockwise waveform moments

m (i). Thus, we have by the inverse transform which means that the magnitude resporiéel®)| and
group delayf (w) of H(z) satisfy atw =0

3
ow w0

L jTMZIoTH (@) aikr
m)=1 Y 52| . (12) L
M& do w2 HEY)],o=1 (r=0)
M (i@ 18
Itis clear that the blockwise waveform momenigi) bridge w =0 (r=12---,R-1) - (18)
between the time and frequency domains by Egs.(9) and (12). Jw =0
4. CLOSED-FORM DESIGN and I'E(w)
- o S =0 (r=0,1,---,R-2). (29)
M-band wavelets have been studied in [4] as a generalization ow |, 0

of 2-band wavelets, since they help to zoom in onto narrovxf:
band high frequency components of a signal, while simul-
taneously having a logarithmic decomposition of frequenc ave

rom the relationship betweét(z) andH(z) in Eq.(4), we

channels. In the construction bf-band wavelet bases, a reg- IH (eiw)” -1 (r=0)

ular M-band scaling filter needs to be designed firstly. It is 1w=0

known in [4] that thisM-band scaling filter can be obtained d"|H(e?)] 0 (r=12-R-1) (20)
from Mth-band filters. Therefore, the design\dth-band fil- 00 |40 e

ters satisfying th&-regularity condition will be required. In

[4] and [5], a closed-form solution is given for the maxflat and

R-regular FIRMth-band filters with exact linear phase. In (W), ,=K (r=0)

particular, the closed-form solution given in [5] is more gen- w=0

eral than that in [4], and is derived via the blockwise wave- Ir(w)| 0 (F=12..R_2 (21)
form moments defined in [7]. For the design Rfregular 00" |0 (r=12--,R-2)




It is seen in Eqgs.(20) and (21) thid{z) has both a flat mag-
nitude reponse and a flat group delaywt 0.

5. DESIGN EXAMPLES

By using the regularity conditions in Egs.(15) and (17),In this section, we consider the design of the maxRat

we have from Eq.(12)

1
M
(e

(r=0)

(r:l725"'7R_1) (22)

m (i) =

regular FIRMth-band filters withM = 7 andR = 10. The
filter length isN = 70 generally. We first sdf = 25and get

a set of filter coefficients by Eq.(26). The resulting magni-
tude response and group delay are shown in the solid line
in Fig.1 and Fig.2, respectively, and its impulse response

From definition of the blockwise waveform moment in IS Shown in Fig.3(a). We have also designed five other fil-
Eq.(9), we can derive a system of linear equations as followde"s WithK = 28,34,35,41,44. Their magnitude responses

Nu(i) 1
Z hm+i = = (r=0)

k=N (i) M 23
Na i) . - (239
z (kM—l—i)rhkMH:O (r:1,2,~~-,R—l)

kN 0)

Sincehy, = hnrk and the minimal length i8l = MR for the
R-regular FIRMth-band filters in general, we have

R-1 1
> vt = ] (r=0)
=0 24)
R-1 . (
;(kM—H—K)rhkMH:O (r=12---,R-1)
k=
We rewrite Eq.(24) in matrix form as
Vh=u, (25)

whereh = [hiahM+i7' ) h(Rfl)MJri]Tl u = [1/M70a e 70]Ty
and 1 1

(i—K)  (M+i-K)
V= : ;
(i—KRT (M4i—K)R?
1
(R-DM+i—K)

(R— 1)M:+i —K)R-1

and group delays are shown also in Fig.1 and Fig.2. The
impulse responses i = 28 and K = 34 are shown in
Fig.3(b) and Fig.3(c), respectively. Whin= 35 41 and44,

their impulse responses are the time-reversed versions of
K = 34,28 and 25, so are omitted here. It is then seen in
Fig.1 that the filters oK = 35,41 and44 have the same mag-
nitude responses as thatkf= 34,28 and25. As shown in
Fig.2, two filters withK = 34 andK = 35 have a constant
group delay at all frequencies, i.e., their phase responses are
exactly linear. Thus the two filters have a symmetric impulse
response, as shown in Fig.3(c). It is seen in Fig.2 that the
group delays oK = 25,28 34 are symmetric with that of

K = 44,41 35 about(N — 1) /2 = 34.5, respectively. Since

hp = 0 whenK = 28,35andhgg = 0 whenK = 34,41 by the
time-domain condition of Eq.(2), it is noted that these filters
have the actual filter lengtR = 69. From the above results,
we can conclude that the maxflRtregular FIRMth-band
filters with arbitrary group delay can be easily designed.

6. CONCLUSION

In this paper, a general class of the maxffategular FIR
Mth-band filters with arbitrary group delay have been consid-
ered. A new closed-form expression for its impulse response
has been presented. The filter coefficients are directly ob-
tained by solving a linear system of Vandermonde equations
that are derived from the regularity conditions of tki¢h-
band filters via the blockwise waveform moments. More-
over, the group delay of the proposed RVRh-band filters
can be arbitrarily specified. Finally, some design examples
have been presented to demonstrate the effectiveness of the
proposed maxflaR-regular FIRMth-band filters with arbi-

It should be noted thaV is the Vandermonde matrix with trary group delay.
distinct elements. Therefore, there is always a unique solu-
tion. By using the Cramer’s rule and Vandermonde’s deter-

minant, a closed-form solution can be obtained by

(DK (MK +)
- nM —K +i
P41 = L—k! 26
T T MRI(R—K—1)! (20)

OnceM, K andR are given, then a set of filter coefficients
can be easily obtained by using Eq.(26). From Eq.(26), we

have the following relation between the filter coefficients;

(k=1)M-K+i)(k—R)
(kM —K+i)k

(k+2)M =K +i)(k+1)

- (kM—K+i)(k+1—R) N pm+i- (27)

hmsi = (k—1)M-+i

It is found that the filter coefficients can be efficiently calcu-
lated by using Eq.(27) instead of EqQ.(26). Also, Eq.(27) will
lead to a new efficient implementation of the proposed filters.
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Figure 3: Impulse responses of the maxffategular FIR
Mth-band filters. (aK =25, (b)K =28, (c)K = 34.



