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ABSTRACT
Mth-band filters have been found numerous applications
in multirate signal processing systems, filter banks and
wavelets. In this paper, a new closed-form expression is pre-
sented for the impulse response of the maxflatR-regular FIR
Mth-band filters with arbitrary group delay. The filter coef-
ficients are directly obtained by solving a linear system of
Vandermonde equations that are derived from the regular-
ity conditions via waveform moments. Moreover, the group
delay of the proposed FIRMth-band filters can be arbitrar-
ily specified. Finally, some design examples are presented
to demonstrate the effectiveness of the proposed maxflatR-
regular FIRMth-band filters.

1. INTRODUCTION

Mth-band filters are an important class of digital filters and
are often used in multirate digital signal processing systems,
filter banks and wavelets, and so on. Its impulse response
is required to be exactly zero-crossing except for one point.
FIR Mth-band filters with exact linear phase have been stud-
ied exhaustively in [1]∼[6]. Among these methods, a closed-
form solution is given for the maxflatR-regular FIRMth-
band filters with exact linear phase in [4] and [5], while the
minimax solution can be found in [1] and [3]. However, a
larger delay results when higher order FIR linear phase filters
are needed. This is because the group delay is equal to half
the filter order for the exact linear phase FIR filters. In some
applications of real-time signal processing, a lower delay is
generally needed. For this reason, FIRMth-band filters with
arbitrary group delay need to be considered. For the design
of FIR Mth-band filters with arbitrary group delay, a closed-
form solution is given only for a specific class of the maxflat
R-regular FIRMth-band filters in [2], while the optimal so-
lution with equiripple response in stopband can be found in
[8]. The design of a general class of the maxflatR-regular
FIR Mth-band filters with arbitrary group delay is still open.

In this paper, we will consider the design of a general
class of the maxflatR-regular FIRMth-band filters with ar-
bitrary group delay. A new closed-form expression for its
impulse response is presented. In the proposed method, we
derive a linear system of Vandermonde equations from the
regularity conditions of theMth-band filters via the block-
wise waveform moments defined in [7], and then can get a
set of filter coefficients by applying the Cramer’s formula
and Vandermonde’s determinant. Moreover, the group delay
of the proposed FIRMth-band filters can be arbitrarily spec-
ified. Finally, some examples are designed to demonstrate
the effectiveness of the proposed maxflatR-regular FIRMth-
band filters with arbitrary group delay.

2. FIR MTH-BAND FILTERS

Let the transfer functionH(z) of a FIR digital filter of length
N be

H(z) =
N−1

∑
n=0

hnz−n, (1)

wherehn are real filter coefficients. WhenH(z) is designed
as anMth-band filter, its impulse response is required to be
exactly zero-crossing except for one pointK, i.e.,

hK+kM =

{
1
M (k = 0)

0 (k = ±1,±2, · · ·)
, (2)

whereK andM are integers, andK corresponds to the de-
sired group delay in the passband. In the case of FIR filters
with exact linear phase, the filter coefficients have to be sym-
metric, i.e.,hn = hN−1−n, and then, its group delay equals
K = (N− 1)/2. Hence,K increases with an increasing fil-
ter lengthN. It results in a larger delay when higher order
FIR filters are needed. In some applications of real-time sig-
nal processing, a lower delay is generally required. Here,
we consider the design of FIRMth-band filters with arbitrary
group delayK, resulting in an approximate linear phase re-
sponse in the passband.

Mth-band filter is required to be lowpass, and the desired
frequency response is given by

Hd(ejω) =
{

e− jKω (in passband)
0 (in stopband)

. (3)

Let a noncausal shifted version ofH(z) be Ĥ(z) = zKH(z),
i.e., ĥn = hn+K . By substituting the time-domain condition
of Eq.(2) into Eq.(1), we have

Ĥ(z) = zKH(z) =
1
M

+
N−1

∑
n=0

̸=K+kM

hnzK−n, (4)

and then

Ĥd(ejω) =
{

1 (in passband)
0 (in stopband)

. (5)

It can be seen from Eq.(4) that the frequency response of
Ĥ(z) always satisfies

M−1

∑
k=0

Ĥ(ej(ω+ 2kπ
M )) ≡ 1, (6)

which means that the sum of the responses at the frequency
pointsωk = ω + 2kπ/M for k = 0,1, · · · ,M − 1 keeps con-
stant, regardless of what the filter coefficientshn are.



3. DEFINITION OF WAVEFORM MOMENTS

For a non-negative integerr, the rth waveform moment
around zero for̂hn is defined by

mr =
N−K−1

∑
n=−K

nr ĥn. (7)

Note thatĥn ranges from−K to (N−K −1). It is known in
[7] and [5] that therth waveform momentmr describes the
rth differential coefficient of the frequency responseĤ(ejω)
at ω = 0;

mr = j r
∂ r Ĥ(ejω)

∂ω r

∣∣∣∣
ω=0

. (8)

In [7] and [5], the blockwise waveform moment around
zero has been also defined by

mr(i) =
Nu(i)

∑
k=Nl (i)

(kM+ i)r ĥkM+i , (9)

where0≤ i ≤ M−1 and{
Nl (i) = −⌊K+i

M ⌋

Nu(i) = ⌊N−K−i−1
M ⌋

. (10)

Note that⌊x⌋ is the largest integer not greater thanx. It fol-
lows from the definition ofmr(i) in Eq.(9) that

∂ r Ĥ(ejω)
∂ω r

∣∣∣∣
ω= 2kπ

M

= (− j)r
M−1

∑
i=0

mr(i)e− j 2ikπ
M , (11)

i.e., the blockwise waveform moments describe the deriva-
tive behavior of the frequency responseĤ(ejω) at the fre-
quency pointsωk = 2kπ/M (0 ≤ k ≤ M − 1). It is clear
in Eq.(11) that therth derivatives of the frequency response
Ĥ(ejω) at ωk = 2kπ/M are theM-point DFT (Discrete
Fourier Transform) of the blockwise waveform moments
mr(i). Thus, we have by the inverse transform

mr(i) =
j r

M

M−1

∑
k=0

∂ r Ĥ(ejω)
∂ω r

∣∣∣∣
ω= 2kπ

M

ej 2ikπ
M . (12)

It is clear that the blockwise waveform momentsmr(i) bridge
between the time and frequency domains by Eqs.(9) and (12).

4. CLOSED-FORM DESIGN

M-band wavelets have been studied in [4] as a generalization
of 2-band wavelets, since they help to zoom in onto narrow
band high frequency components of a signal, while simul-
taneously having a logarithmic decomposition of frequency
channels. In the construction ofM-band wavelet bases, a reg-
ular M-band scaling filter needs to be designed firstly. It is
known in [4] that thisM-band scaling filter can be obtained
from Mth-band filters. Therefore, the design ofMth-band fil-
ters satisfying theR-regularity condition will be required. In
[4] and [5], a closed-form solution is given for the maxflat
R-regular FIRMth-band filters with exact linear phase. In
particular, the closed-form solution given in [5] is more gen-
eral than that in [4], and is derived via the blockwise wave-
form moments defined in [7]. For the design ofR-regular

FIR Mth-band filters with arbitrary group delay, however, a
closed-form solution is given in [2] only for a specific class of
the maxflatR-regular FIRMth-band filters withK = kM−1
andN = MR−1, where1≤ k≤ R−1. Thus,K is restricted
to several special integers and then the group delay cannot
be arbitrarily specified. In the following, we will describe
how to design a general class of the maxflatR-regular FIR
Mth-band filters with arbitrary group delay.

It is known in [4] that anMth-band filter is said to be
R-regular if it has

H(z) = (1+z−1 + · · ·+z−(M−1))RQ(z), (13)

whereQ(z) is a FIR filter of lengthL. Q(z) is used forH(z) to
satisfy the time-domain condition in Eq.(2). Thus, the mini-
mal length ofQ(z) is L = R, in general, then the filter length
of H(z) becomes

N = (M−1)R+R= MR. (14)

Deponding on the positin ofK, the filter lengthN may de-
grade toN = MR−1, whenh0 = 0 if K = kM (1≤ k≤R−1)
or hMR−1 = 0 if K = kM−1 (1≤ k≤ R−1). It is known in
[4] that Eq.(13) is equivalent to

∂ rH(ejω)
∂ω r

∣∣∣∣
ω= 2kπ

M

=
∂ r Ĥ(ejω)

∂ω r

∣∣∣∣
ω= 2kπ

M

= 0, (15)

for k = 1,2, · · · ,M −1 andr = 0,1, · · · ,R−1. It can be ob-
tained from Eq.(6) that

Ĥ(ejω) = 1−
M−1

∑
k=1

Ĥ(ej(ω+ 2kπ
M )), (16)

then we have from Eq.(15),
Ĥ(ejω)

∣∣
ω=0 = 1 (r = 0)

∂ r Ĥ(ejω)
∂ω r

∣∣∣∣
ω=0

= 0 (r = 1,2, · · · ,R−1)
, (17)

which means that the magnitude response|Ĥ(ejω)| and
group delayτ̂(ω) of Ĥ(z) satisfy atω = 0

|Ĥ(ejω)|
∣∣
ω=0 = 1 (r = 0)

∂ r |Ĥ(ejω)|
∂ω r

∣∣∣∣
ω=0

= 0 (r = 1,2, · · · ,R−1)
, (18)

and
∂ r τ̂(ω)

∂ω r

∣∣∣∣
ω=0

= 0 (r = 0,1, · · · ,R−2). (19)

From the relationship betweenH(z) andĤ(z) in Eq.(4), we
have

|H(ejω)|
∣∣
ω=0 = 1 (r = 0)

∂ r |H(ejω)|
∂ω r

∣∣∣∣
ω=0

= 0 (r = 1,2, · · · ,R−1)
, (20)

and 
τ(ω)

∣∣
ω=0 = K (r = 0)

∂ rτ(ω)
∂ω r

∣∣∣∣
ω=0

= 0 (r = 1,2, · · · ,R−2)
. (21)



It is seen in Eqs.(20) and (21) thatH(z) has both a flat mag-
nitude reponse and a flat group delay atω = 0.

By using the regularity conditions in Eqs.(15) and (17),
we have from Eq.(12)

mr(i) =

{
1
M (r = 0)

0 (r = 1,2, · · · ,R−1)
. (22)

From definition of the blockwise waveform moment in
Eq.(9), we can derive a system of linear equations as follows;

Nu(i)

∑
k=Nl (i)

ĥkM+i =
1
M

(r = 0)

Nu(i)

∑
k=Nl (i)

(kM+ i)r ĥkM+i = 0 (r = 1,2, · · · ,R−1)

. (23)

Sinceĥn = hn+K and the minimal length isN = MR for the
R-regular FIRMth-band filters in general, we have

R−1

∑
k=0

hkM+i =
1
M

(r = 0)

R−1

∑
k=0

(kM+ i −K)rhkM+i = 0 (r = 1,2, · · · ,R−1)

. (24)

We rewrite Eq.(24) in matrix form as

Vh = u, (25)

whereh = [hi ,hM+i , · · · ,h(R−1)M+i ]T , u = [1/M,0, · · · ,0]T ,
and

V =


1 1 · · ·

(i−K) (M + i −K) · · ·
...

...
. . .

(i−K)R−1 (M + i −K)R−1 · · ·
· · · 1
· · · ((R−1)M + i−K)
.. .

...
· · · ((R−1)M + i−K)R−1

 .

It should be noted thatV is the Vandermonde matrix with
distinct elements. Therefore, there is always a unique solu-
tion. By using the Cramer’s rule and Vandermonde’s deter-
minant, a closed-form solution can be obtained by

hkM+i =

(−1)k
R−1

∏
n=0
̸=k

(nM−K + i)

MRk!(R−k−1)!
. (26)

OnceM, K andR are given, then a set of filter coefficients
can be easily obtained by using Eq.(26). From Eq.(26), we
have the following relation between the filter coefficients;

hkM+i =
((k−1)M−K + i)(k−R)

(kM−K + i)k
h(k−1)M+i

=
((k+1)M−K + i)(k+1)
(kM−K + i)(k+1−R)

h(k+1)M+i . (27)

It is found that the filter coefficients can be efficiently calcu-
lated by using Eq.(27) instead of Eq.(26). Also, Eq.(27) will
lead to a new efficient implementation of the proposed filters.

5. DESIGN EXAMPLES

In this section, we consider the design of the maxflatR-
regular FIRMth-band filters withM = 7 andR = 10. The
filter length isN = 70 generally. We first setK = 25 and get
a set of filter coefficients by Eq.(26). The resulting magni-
tude response and group delay are shown in the solid line
in Fig.1 and Fig.2, respectively, and its impulse response
is shown in Fig.3(a). We have also designed five other fil-
ters withK = 28,34,35,41,44. Their magnitude responses
and group delays are shown also in Fig.1 and Fig.2. The
impulse responses ofK = 28 and K = 34 are shown in
Fig.3(b) and Fig.3(c), respectively. WhenK = 35,41and44,
their impulse responses are the time-reversed versions of
K = 34,28 and 25, so are omitted here. It is then seen in
Fig.1 that the filters ofK = 35,41and44have the same mag-
nitude responses as that ofK = 34,28 and25. As shown in
Fig.2, two filters withK = 34 andK = 35 have a constant
group delay at all frequencies, i.e., their phase responses are
exactly linear. Thus the two filters have a symmetric impulse
response, as shown in Fig.3(c). It is seen in Fig.2 that the
group delays ofK = 25,28,34 are symmetric with that of
K = 44,41,35 about(N−1)/2 = 34.5, respectively. Since
h0 = 0 whenK = 28,35andh69 = 0 whenK = 34,41by the
time-domain condition of Eq.(2), it is noted that these filters
have the actual filter lengthN = 69. From the above results,
we can conclude that the maxflatR-regular FIRMth-band
filters with arbitrary group delay can be easily designed.

6. CONCLUSION

In this paper, a general class of the maxflatR-regular FIR
Mth-band filters with arbitrary group delay have been consid-
ered. A new closed-form expression for its impulse response
has been presented. The filter coefficients are directly ob-
tained by solving a linear system of Vandermonde equations
that are derived from the regularity conditions of theMth-
band filters via the blockwise waveform moments. More-
over, the group delay of the proposed FIRMth-band filters
can be arbitrarily specified. Finally, some design examples
have been presented to demonstrate the effectiveness of the
proposed maxflatR-regular FIRMth-band filters with arbi-
trary group delay.
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Mth-band filters. (a)K = 25, (b) K = 28, (c) K = 34.


