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Abstract

Digital filters with linear phase responses, that is, constant group delay responses are needed in many applications for

signal and image processing. In this paper, a novel method is proposed for designing maximally flat IIR filters with flat

group delay responses in the passband. First, a system of linear equations are derived from the flatness conditions of IIR

filters given in the passband and stopband, respectively. Then, a set of filter coefficients can be easily obtained by simply

solving this system of linear equations. In the proposed design method, the flatness of the frequency response can be

specified arbitrarily. The design of lowpass filters are described in detail, and bandpass and bandstop filters are given also.

Moreover, the causality and stability of the proposed maximally flat IIR filters are examined by designing various IIR

filters with different group delays. It is shown from the experimental results that the obtained maximally flat IIR filters are

causal stable if the group delay is set to be larger than a specific value. Finally, some design examples are presented to

demonstrate the effectiveness of the proposed maximally flat IIR filters.

r 2008 Elsevier B.V. All rights reserved.

Keywords: IIR filter; Maximally flat filter; Flat group delay; Linear phase
1. Introduction

Digital filters with linear phase responses, that is,
constant group delay responses are needed in many
applications for signal processing, image processing,
waveform transmission, and so on [1,2]. It is well
known [1–3] that FIR filters have been used to
obtain an exactly linear phase response. However,
its group delay is half the filter order, thus cannot be
specified arbitrarily in the design of exactly linear
phase FIR filters. Moreover, a larger delay results
when higher order FIR linear phase filters are
e front matter r 2008 Elsevier B.V. All rights reserved
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needed to get a sharp magnitude response. For these
reasons, the design of FIR filters with reduced
delay has been also considered in [7,11]. Compared
with FIR filters, IIR filters can obtain a compar-
able frequency response with lower filter order in
general [1–3]. One of the traditional methods for
designing IIR filters is to transform an analog
prototype filter to the digital domain by using
the bilinear transformation. However, the IIR filters
obtained by the bilinear transformation have
the same order numerator and denominator, and
do not have a constant group delay response.
Therefore, several methods have been also proposed
to design IIR filters directly in the digital domain
[5,6,8–10,12].
.
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In the design of maximally flat (MF) filters, MF
IIR filters can be obtained by transforming analog
Butterworth filters, while MF FIR filters were
originally addressed in [4]. The generalized digital
Butterworth filters with different order numerator
and denominator, including the classic Butterworth
IIR filters and FIR filters, have been also presented
in [8], however, their group delay responses cannot
be specified arbitrarily. In [5,6], a special class of IIR
filters, all-pole filters have been used to approximate
the passband group delay response to a constant in
the maximally flat sense. In [9], such an all-pole filter
with constant group delay response was chosen to
be the denominator, while a mirror image poly-
nomial was used as the numerator to have a flat
magnitude response. Therefore, the degree of
flatness in the magnitude and group delay responses
are separately determined by the numerator and
denominator. In [10], IIR lowpass filters with MF
magnitude responses, whose numerator is a mirror
image polynomial, have been presented by using the
above-mentioned all-pole filters, where the flat
group delay response can be also obtained by
appropriately adjusting the delay of the filter,
resulting in a parallel structure of a delay and an
allpass filter. In [12], MF IIR halfband filters, a
special case of IIR filters, have been derived directly
from the maximal flatness conditions given in the
passband and stopband, including the flatness
condition imposed on the group delay response.

In this paper, we consider a more general class of
IIR filters with different order numerator and
denominator, whose numerator is not restricted to
be a mirror image polynomial. We propose a novel
method for designing MF IIR filters with flat group
delay responses in the passband. In the proposed
design method, a system of linear equations are
derived directly from the flatness conditions of IIR
filters given in the passband and stopband. There-
fore, a set of filter coefficients can be easily
calculated by simply solving this system of linear
equations. The feature of this method is that the
flatness of the frequency response can be specified
arbitrarily. This design method can be applied to
not only the design of lowpass filters, but also
highpass, bandpass and bandstop filters. Moreover,
the causality and stability of the proposed MF IIR
filters are examined by designing various IIR filters
with different group delays. It is shown from the
experimental results that the proposed MF IIR
filters become causal and stable when the desired
group delay is chosen above a certain value. Finally,
some examples are designed to demonstrate the
effectiveness of the proposed MF IIR filters.

This paper is organized as follows. In Section 2,
the transfer function and frequency response of
general IIR filters are described. Section 3 proposes
a design method for MF lowpass filters with flat
group delay responses. The proposed method is
extended to the design of MF bandpass and
bandstop filters in Section 4. In Section 5, the
causality and stability of the proposed MF IIR
filters are examined, and some examples are shown
to investigate their frequency responses. Conclu-
sions are given in Section 6.

2. The transfer function of IIR filters

The transfer function of an IIR filter HðzÞ is
defined by

HðzÞ ¼
AðzÞ

BðzÞ
¼

PN
n¼0 anz�nPM

m¼0 bmz�m
, (1)

where N;M are numerator and denominator
orders, respectively, an and bm are real filter
coefficients, and b0 ¼ 1. It is noted that the classic
IIR filters obtained by the bilinear transformation
have the same order numerator and denominator,
i.e., N ¼M. Here we use the numerator and
denominator of different order, which makes us
flexible to design the filter. If N ¼ 0, it is an all-pole
filter in [5], while if M ¼ 0, it degrades to FIR filter.
In this paper, we do not restrict the numerator AðzÞ

to be a mirror image polynomial, and will consider
the design of general IIR filters.

The frequency response of HðzÞ is generally a
complex-valued function of the normalized fre-
quency o;

HðejoÞ ¼ jHðejoÞjejyðoÞ ¼

PN
n¼0 ane

�jnoPM
m¼0 bme�jmo

, (2)

where its magnitude and phase responses are given,
respectively, as

jHðejoÞj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
PN

n¼0 an cos noÞ2 þ ð
PN

n¼0 an sin noÞ2

ð
PM

m¼0 bm cosmoÞ2 þ ð
PM

m¼0 bm sinmoÞ2

s
,

(3)

yðoÞ ¼ � tan�1
PN

n¼0 an sin noPN
n¼0 an cos no

þ tan�1
PM

m¼0 bm sinmoPM
m¼0 bm cosmo

. (4)
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Then its group delay response is obtained by

tðoÞ ¼ �
dyðoÞ
do

. (5)

It should be noted that unlike [9,10], the numerator
will contribute to the group delay also, since it is not
restricted to be a mirror image polynomial.

3. Design of MF lowpass filters

In this section, we consider the design of MF
lowpass filters with flat group delay response. The
desired frequency response of lowpass filters is

Hdðe
joÞ ¼

e�jt0o ð0popopÞ;

0 ðospoppÞ;

(
(6)

where t0 is the desired group delay in passband, and
op;os are the cutoff frequencies of passband and
stopband, respectively. In passband, the flatness
conditions of the magnitude and group delay
responses are given by

jHðejoÞjjo¼0 ¼ 1;

qi
jHðejoÞj

qoi

����
o¼0
¼ 0 ði ¼ 1; 2; . . . ;K � 1Þ;

8><
>: (7)

tðoÞjo¼0 ¼ t0;

qitðoÞ
qoi

����
o¼0
¼ 0 ði ¼ 1; 2; . . . ;K � 2Þ;

8><
>: (8)

where K is a parameter that controls the degree of
flatness in passband. In stopband, the flatness
condition of the magnitude response is

qi
jHðejoÞj

qoi

����
o¼p
¼ 0 ði ¼ 0; 1; . . . ;L� 1Þ, (9)

where L is a parameter that controls the degree of
flatness in stopband.

First, we consider the flatness conditions in
passband. Let ĤðejoÞ be a noncausal shifted version
of HðejoÞ;

ĤðejoÞ ¼ HðejoÞejt0o ¼
AðejoÞejt0o

BðejoÞ
, (10)

which means

jĤðejoÞj ¼ jHðejoÞj;

t̂ðoÞ ¼ tðoÞ � t0;

(
(11)

where jĤðejoÞj and t̂ðoÞ are the magnitude and
group delay responses of ĤðejoÞ, respectively.
Therefore, the flatness conditions in Eqs. (7) and
(8) become

jĤðejoÞjjo¼0 ¼ 1;

qi
jĤðejoÞj

qoi

�����
o¼0

¼ 0 ði ¼ 1; 2; . . . ;K � 1Þ;

8>><
>>: (12)

qit̂ðoÞ
qoi

����
o¼0
¼ 0 ði ¼ 0; 1; . . . ;K � 2Þ. (13)

Let ŷðoÞ be the phase response of ĤðejoÞ. Since the
phase is 0 at o ¼ 0 for the digital filters with real-
valued coefficients, that is, ŷð0Þ ¼ 0, Eq. (13)
becomes

qiŷðoÞ
qoi

�����
o¼0

¼ 0 ði ¼ 0; 1; . . . ;K � 1Þ. (14)

Theorem 1. The flatness conditions in Eqs. (12) and

(14) are equivalent to

ĤðejoÞjo¼0 ¼ 1;

qiĤðejoÞ

qoi

�����
o¼0

¼ 0 ði ¼ 1; 2; . . . ;K � 1Þ:

8>><
>>: (15)

Proof. Since ĤðejoÞ ¼ jĤðejoÞjejŷðoÞ, Ĥð1Þ ¼ 1
means jĤð1Þj ¼ 1 and ŷð0Þ ¼ 0, and vice versa. We
have

qĤðejoÞ

qo
¼

qjĤðejoÞj
qo

ejŷðoÞ þ jĤðejoÞj
qejŷðoÞ

qo

¼
qjĤðejoÞj

qo
þ jjĤðejoÞj

qŷðoÞ
qo

" #
ejŷðoÞ, (16)

then

qĤðejoÞ

qo

�����
o¼0

¼
qjĤðejoÞj

qo

�����
o¼0

þ j
qŷðoÞ
qo

�����
o¼0

. (17)

Thus, qĤðejoÞ=qojo¼0 ¼ 0 is equivalent to
qjĤðejoÞj=qojo¼0 ¼ 0 and qŷðoÞ=qojo¼0 ¼ 0. Simi-
larly,

q2ĤðejoÞ
qo2

�����
o¼0

¼
q2jĤðejoÞj

qo2

�����
o¼0

þ j
q2ŷðoÞ
qo2

�����
o¼0

, (18)

..

.

qiĤðejoÞ

qoi

�����
o¼0

¼
qi
jĤðejoÞj

qoi

�����
o¼0

þ j
qiŷðoÞ
qoi

�����
o¼0

. (19)
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It can be seen that qiĤðejoÞ=qoijo¼0 ¼ 0 is equiva-
lent to qi

jĤðejoÞj=qoijo¼0 ¼ 0 and qiŷðoÞ=qoijo¼0 ¼

0. Therefore, it has been proven that Eqs. (12) and
(14) are equivalent to Eq. (15). &

It is clear that Theorem 1 holds for any o ¼ op,
where op is the specified frequency point in the
passband.

According to Theorem 1 in [9], the condition in
Eq. (15) is satisfied, if the numerator and denomi-
nator of ĤðejoÞ satisfy

qi
fAðejoÞejt0og

qoi

����
o¼0
¼

qiBðejoÞ

qoi

����
o¼0

ði ¼ 0; 1; . . . ;K � 1Þ. (20)

From Eq. (20), we then get

XN

n¼0

ðn� t0Þ
ian �

XM
m¼0

mibm ¼ 0 ði ¼ 0; 1; . . . ;K � 1Þ.

(21)

Next, we consider the flatness condition in stop-
band. According to [9, Theorem 2], the condition in
Eq. (9) is equivalent to

qiAðejoÞ

qoi

����
o¼p
¼ 0 ði ¼ 0; 1; . . . ;L� 1Þ, (22)

which means that L zeros are located at z ¼ �1, i.e.,
o ¼ p. Therefore, the degree of flatness L in
stopband is at most equal to the order of numerator
N, that is, LpN. From Eq. (22), we have

XN

n¼0

ð�1Þnnian ¼ 0 ði ¼ 0; 1; . . . ;L� 1Þ. (23)

It is clear that Eqs. (21) and (23) are a system of
linear equations. If K þ L ¼ N þM þ 1, then a set
of filter coefficients can be easily obtained by solving
Eqs. (21) and (23), due to b0 ¼ 1. It should be noted
that K must be chosen as K4M, since LpN.
Therefore, MF IIR lowpass filters with flat group
delay can be easily designed. It should be noted also
that if we choose M ¼ 0, then MF FIR filters with
flat group delay can be easily obtained.

4. Design of bandpass and bandstop filters

In the preceding section, we have described the
design method of MF lowpass filters with flat group
delay. MF highpass filters can be similarly designed
just by changing the flatness conditions imposed on
o ¼ 0 and p. Alternatively, MF highpass filters can
be readily derived from the MF lowpass filters
designed in the preceding section by replacing z with
�z in the transfer functions. Therefore, the discus-
sion of MF highpass filters with flat group delay is
omitted here. In this section, we will consider the
design of MF bandpass and bandstop filters with
flat group delay response.
4.1. MF bandpass filters

The desired frequency response of bandpass
filters is given by

Hd ðe
joÞ ¼

e�jðt0oþy0Þ ðop1popop2Þ;

0 ð0popos1;os2poppÞ;

(

(24)

where op1;op2 ðop1oop2Þ are the cutoff frequencies
of passband, and os1;os2 ðos1oos2Þ are the cutoff
frequencies of stopband, respectively. y0 is an initial
phase.

In the passband, the flatness conditions of the
magnitude and group delay responses are

jHðejoÞjjo¼op
¼ 1;

qi
jHðejoÞj

qoi

����
o¼op

¼ 0 ði ¼ 1; 2; . . . ;K � 1Þ

8>><
>>: (25)

and

tðoÞjo¼op
¼ t0;

qitðoÞ
qoi

����
o¼op

¼ 0 ði ¼ 1; 2; . . . ;K � 2Þ;

8>><
>>: (26)

where K is a parameter that controls the degree of
flatness at the given frequency point o ¼ op, and
op1poppop2.

Let ĤðejoÞ ¼ HðejoÞejðt0oþy0Þ, then the flatness
conditions in Eqs. (25) and (26) become

jĤðejoÞjjo¼op
¼ 1;

qi
jĤðejoÞj

qoi

�����
o¼op

¼ 0 ði ¼ 1; 2; . . . ;K � 1Þ;

8>>><
>>>:

(27)

qi t̂ðoÞ
qoi

����
o¼op

¼ 0 ði ¼ 0; 1; . . . ;K � 2Þ. (28)

Since the phase of HðzÞ is required to be equal to
the desired phase at o ¼ op, that is,
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yðopÞ ¼ �ðt0op þ y0Þ, thus, ŷðopÞ ¼ 0, and we have

qiŷðoÞ
qoi

�����
o¼op

¼ 0 ði ¼ 0; 1; . . . ;K � 1Þ. (29)

Similarly, according to Theorem 1 in this paper and
Theorem 1 in [9], Eqs. (27) and (29) are equivalent
to

qi
fAðejoÞejðt0oþy0Þg

qoi

����
o¼op

¼
qiBðejoÞ

qoi

����
o¼op

ði ¼ 0; 1; . . . ;K � 1Þ, (30)

that is,

XN

n¼0

ðn� t0Þ
iejfðt0�nÞopþy0gan

�
XM
m¼0

mie�jmopbm ¼ 0, (31)

which is separated into the real and imaginary parts;

XN

n¼0

ðn� t0Þ
i cosfðt0 � nÞop þ y0gan

�
XM
m¼0

mi cosðmopÞbm ¼ 0, (32)

and

XN

n¼0

ðn� t0Þ
i sinfðt0 � nÞop þ y0gan

þ
XM
m¼0

mi sinðmopÞbm ¼ 0. (33)

In the stopband, the flatness conditions of the
magnitude response are

qi
jHðejoÞj

qoi

����
o¼0
¼ 0 ði ¼ 0; 1; . . . ;L1 � 1Þ;

qi
jHðejoÞj

qoi

����
o¼p
¼ 0 ði ¼ 0; 1; . . . ;L2 � 1Þ;

8>>>><
>>>>:

(34)

where L1;L2 are parameters that control the degree
of flatness at o ¼ 0 and p, respectively. Similarly,
the flatness conditions in Eq. (34) derive a set of
linear equations;

PN
n¼0

nian ¼ 0 ði ¼ 0; 1; . . . ;L1 � 1Þ;

PN
n¼0

ð�1Þnnian ¼ 0 ði ¼ 0; 1; . . . ;L2 � 1Þ:

8>>><
>>>:

(35)
This means that L1 and L2 zeros are located at z ¼ 1
and �1, respectively. Thus, it is impossible that the
degree of flatness L1 þ L2 in the stopband is larger
than the order of numerator N, that is, L1 þ L2pN.
When 2K þ L1 þ L2 ¼ N þM þ 1, Eqs. (32), (33)
and (35) can be easily solved to obtain the filter
coefficients, since b0 ¼ 1. Therefore, K must be
chosen as K4M=2, and then MF bandpass filters
with flat group delay can be designed directly.
4.2. MF bandstop filters

The desired frequency response of bandstop
filters is

Hdðe
joÞ ¼

e�jt1o ð0popop1Þ;

0 ðos1popos2Þ;

e�jðt2oþy0Þ ðop2poppÞ;

8><
>: (36)

where op1;op2 ðop1oop2Þ are the cutoff frequencies
of passband, and os1;os2 ðos1oos2Þ are the cutoff
frequencies of stopband. t1; t2 are the desired group
delays in first and second passbands, respectively,
and can be set to be different. Since we consider
only the digital filters with real-valued coefficients,
y0 must be chosen to satisfy y0 þ t2p ¼ kp. It is
noted that Hð�1Þ ¼ 1 if k is even, while Hð�1Þ ¼
�1 if k is odd. That is, HðzÞ have the same phase at
o ¼ 0 and o ¼ p if k is even, while there is a phase
difference of p if k is odd.

In the first passband, the flatness conditions of
the magnitude and group delay responses are

jHðejoÞjjo¼0 ¼ 1;

qi
jHðejoÞj

qoi

����
o¼0
¼ 0 ði ¼ 1; 2; . . . ;K1 � 1Þ;

8><
>: (37)

tðoÞjo¼0 ¼ t1;

qitðoÞ
qoi

����
o¼0
¼ 0 ði ¼ 1; 2; . . . ;K1 � 2Þ;

8><
>: (38)

where K1 is a parameter that controls the degree
of flatness at o ¼ 0. Let Ĥ1ðe

joÞ ¼ HðejoÞejt1o,
then the flatness conditions in Eqs. (37) and (38)
become

qi
fAðejoÞejt1og

qoi

����
o¼0
¼

qiBðejoÞ

qoi

����
o¼0

ði ¼ 0; 1; . . . ;K1 � 1Þ, (39)
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that is,

XN

n¼0

ðn� t1Þ
ian �

XM
m¼0

mibm ¼ 0

ði ¼ 0; 1; . . . ;K1 � 1Þ. (40)

In the second passband, the flatness conditions of
the magnitude and group delay responses are

jHðejoÞjjo¼p ¼ 1;

qi
jHðejoÞj

qoi

����
o¼p
¼ 0 ði ¼ 1; 2; . . . ;K2 � 1Þ;

8><
>: (41)

tðoÞjo¼p ¼ t2;

qitðoÞ
qoi

����
o¼p
¼ 0 ði ¼ 1; 2; . . . ;K2 � 2Þ;

8><
>: (42)

where K2 is a parameter that controls the degree
of flatness at o ¼ p. Let Ĥ2ðe

joÞ ¼ HðejoÞejðt2oþy0Þ,
the flatness conditions in Eqs. (41) and (42)
become

qi
fAðejoÞejðt2oþy0Þg

qoi

����
o¼p
¼

qiBðejoÞ

qoi

����
o¼p

ði ¼ 0; 1; . . . ;K2 � 1Þ (43)

that is,

XN

n¼0

ð�1Þn�k
ðn� t2Þ

ian �
XM
m¼0

ð�1Þmmibm ¼ 0

ði ¼ 0; 1; . . . ;K2 � 1Þ, (44)

where k is chosen to be ð�1Þk ¼ 1 or ð�1Þk ¼ �1 for
having the same phase or phase difference of p at
o ¼ 0 and p.

In the stopband, the flatness condition of the
magnitude response is given by

qi
jHðejoÞj

qoi

����
o¼os

¼ 0 ði ¼ 0; 1; . . . ;L� 1Þ, (45)

where L is a parameter that controls the degree of
flatness at the given frequency point o ¼ os, and
os1pospos2. Similarly, the flatness condition in
Eq. (45) derives a set of linear equations;

XN

n¼0

nie�jnosan ¼ 0 ði ¼ 0; 1; . . . ;L� 1Þ (46)
that is,

PN
n¼0

ni cosðnosÞan ¼ 0 ði ¼ 0; 1; . . . ;L� 1Þ;

PN
n¼0

ni sinðnosÞan ¼ 0 ði ¼ 0; 1; . . . ;L� 1Þ:

8>>><
>>>:

(47)

This means that L zeros are located at o ¼ �os,
thus, LpN=2. When 2Lþ K1 þ K2 ¼ N þM þ 1,
Eqs. (40), (44) and (47) can be easily solved to
obtain the filter coefficients, since b0 ¼ 1. Therefore,
K1 þ K2 must be chosen as K1 þ K24M, and then
MF bandstop filters with flat group delay can be
designed directly.

5. Design examples

In this section, we give some design examples of
the proposed MF IIR filters to investigate their
frequency responses, and then examine the causality
and stability by designing various IIR filters with
different group delays.

Example 1. We consider the design of MF IIR
lowpass filters with N ¼ 7;M ¼ 3, and the desired
group delay t0 ¼ 5:2. The degrees of flatness in the
passband and stopband are set to be K ¼ 5; 6; 7; 8
and L ¼ 6; 5; 4; 3, respectively. Since K þ L ¼ Nþ

M þ 1, the filter coefficients can be easily obtained
by solving a system of linear equations in Eqs. (21)
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and (23). The resulting IIR filters are found to be
causal stable, and the magnitude and group delay
responses are shown in Figs. 1 and 2, respectively. It
is seen in Figs. 1 and 2 that the proposed MF IIR
filters have more flat magnitude and group delay
responses in passband with an increasing K.

Example 2. We consider the design of MF IIR
lowpass filters with N ¼ 8;M ¼ 3, and the degrees
of flatness K ¼ L ¼ 6 in the passband and stop-
band. The desired group delay is set to be
t0 ¼ 5:9; 5:2; 4:5; 3:8, respectively. The resulting
magnitude and group delay responses are shown
in Figs. 3 and 4, respectively. It is seen in Fig. 3 that
the magnitude response varies with the desired
group delay t0, regardless of the degree of flatness,
while the desired flat group delay responses have
been obtained in Fig. 4. It is also found that the IIR
filter with t0 ¼ 3:8 is not causal stable, having one
pole outside the unit circle, whereas other three
filters are causal stable. Therefore, this is thought
that the desired group delay t0 influences the
causality and stability of IIR filters [12]. Next, we
have designed MF IIR lowpass filters with
N ¼ 5;M ¼ 2, and K ¼ 3;L ¼ 5 to examine the
causality and stability by changing the desired
group delay from t0 ¼ �10 to t0 ¼ 10 with an
increment Dt ¼ 0:1. The trajectory of the poles with
the desired group delay t0 is shown in Fig. 5. It is
seen that when t0 increases, the poles move from the
outside to the inside of the unit circle, crossing the
unit circle at t0 ¼ 1:5. If t0!1, then the poles
! 1. Therefore, it is clear that this IIR filter is
causal and stable when t041:5. We have investi-
gated many MF IIR filter with different group
delays, and thus found that the proposed MF IIR
filters become causal stable if we choose the desired
group delay t0 to be larger than a specific value [12],
which is dependent on the design specification
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N;M;K ;L, and whose relationship needs to be
further investigated.

Example 3. We consider the design of MF IIR
bandpass filters with N ¼ 6;M ¼ 4, the desired
group delay t0 ¼ 12:8, and the degrees of flatness
K ¼ 3 at op ¼ 0:2p in passband and L1 ¼ 2;L2 ¼ 3
in stopband. The initial phase, which is absent in the
lowpass filter design, is set to be y ¼ 0; 0:25p; 0:5p,
respectively. The resulting magnitude and group
delay responses are shown in Figs. 6 and 7,
respectively. It is seen that the magnitude and group
delay responses slightly vary with the initial phase
y0, regardless of the degree of flatness and the
desired group delay. It is found also that the
obtained MF IIR bandpass filters are causal stable.

Example 4. We consider the design of MF IIR
bandstop filters with N ¼ 9;M ¼ 4, the desired
group delays t1 ¼ 8:8; t2 ¼ 9:2, and the degree of
flatness L ¼ 3 at os ¼ 0:5p in stopband. The degrees
of flatness in passband are set to be K1 ¼ 2; 4; 6 and
K2 ¼ 6; 4; 2, respectively. y0 ¼ �0:2p has been
chosen such that k ¼ 9 is odd and then
Hð�1Þ ¼ �1. The resulting magnitude and group
delay responses are shown in Figs. 8 and 9,
respectively, and the obtained MF IIR bandstop
filters are causal stable.

6. Conclusions

In this paper, we have proposed a new method for
designing a more general class of MF IIR filters
with flat group delay responses in the passband,
whose numerator and denominator are of different
order and whose numerator is not restricted to be a
mirror image polynomial. The proposed design
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method just needs to solve a system of linear
equations, which are derived directly from the
flatness conditions given in the passband and
stopband. Therefore, a set of filter coefficients can
be easily obtained by simply solving this system of
linear equations. The feature of the design method is
that the flatness of the frequency response can be
specified arbitrarily. Moreover, the causality and
stability of the proposed MF IIR filters have been
examined, and the MF IIR filters become causal
and stable when the desired group delay is chosen
above a certain value.

Although the design of lowpass, bandpass and
bandstop filters have been presented, it is straight-
forward to extend our design method to various
types of digital filters. Moreover, one common
problem of MF filters is that the frequency response
cannot be directly specified excluding the frequency
points on which the conditions of flatness are
imposed. Since our method needs to solve a system
of linear equations only, it is possible to specify
some frequency points, for example, 3dB-points, at
the expense of the degree of flatness.
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