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Abstract

In this paper, a novel method is proposed for designing two-channel biorthogonal perfect reconstruction filter banks
with exact linear phase using noncausal IIR filters. Since the structurally perfect reconstruction implementation is
adopted, the proposed filter banks are guaranteed to be a perfect reconstruction even when all filter coefficients are
quantized. From the view point of wavelets, design of biorthogonal IIR linear phase filter banks with an additional
flatness constraint is considered. The proposed design method is based on the formulation of a generalized eigenvalue
problem by using Remez exchange algorithm. Hence, the filter coefficients can be obtained by solving the eigenvalue
problem to compute the positive minimum eigenvalue, and the optimal solution in the Chebyshev sense is easily obtained
through a few iterations. The proposed procedure is computationally efficient, and the flatness constraint can be
arbitrarily specified. Some design examples are presented to demonstrate the effectiveness of the proposed method.
( 1999 Published by Elsevier Science B.V. All rights reserved.

Zusammenfassung

In diesem Beitrag wird eine neue Methode zum Entwurf zweikanaliger biorthogonaler Rekonstruktionsfilterbänke
mit exakt linearer Phase durch Verwendung nichtkausaler IIR-Filter vorgestellt. Da strukturell perfekte Rekonstruk-
tionsimplementierung angenommen wurde, sind die vorgestellten Filterbänke garantiert perfekte Rekonstruktionen,
selbst wenn alle Filterkoeffizienten quantisiert sind. Ausgehend von Wavelets wird der Entwurf biorthogonaler IIR
Filterbänke linearer Phase mit zusätzlicher Glattheitsforderung betrachtet. Die vorgeschlagene Entwurfsmethode basiert
auf der Formulierung eines verallgemeinerten Eigenwertproblems durch Ausnutzung des Remez-Algorithmus. Die
filterkoeffizienten können durch Lösung des Eigenwertproblems und Berechnung des kleinsten positiven Eigenwertes
erreicht werden. Die im Tschebyschew-Sinne optimale Lösung kann leicht durch einige Iterationen erreicht werden. Die
vorgestellte Prozedur ist numerisch effizient und die Glattheitsbedingung kann beliebig definiert werden. Einige
Entwurfsbeispiele werden zur Demonstration der Effektivität der vorgestellten Methode präsentiert. ( 1999 Published
by Elsevier Science B.V. All rights reserved.

Résumé

Dans cet article, nous proposons une nouvelle méthode de conception de bancs de filtres à reconstruction parfaite,
à phase linéaire exacte, biorthogonaux à deux canaux, en utilisant des filtres IIR non-causaux. Comme nous adoptons
l’implémentation à reconstruction structurellement parfaite, il est garanti que les bancs de filtres proposés sont
à reconstruction parfaite même quand tous les coefficients des filtres sont quantifiés. Du point de vue des ondelettes, nous
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considérons la conception de bancs de filtres IIR biorthogonaux à phase linéaire avec une constrainte supplémentaire de
platitude. La méthode de conception proposée repose sur la formulation d’un problème aux valeurs propres généralisé,
en utilisant un algorithme d’échange de Remez. Donc, les coefficients des filtres peuvent être obtenus par la résolution du
problème des valeurs propres pout calculer la valeur propre positive minimale, et la solution optimale au sens de
Chebyshev est obtenue aisément par quelques itérations. La procédure proposée est efficace en termes de temps de calcul,
et la contrainte de platitude peut être spécifiée de fac7 on arbitraire. Quelques exemples de conception sont présentés pour
démontrer l’efficacité de la méthode proposée. ( 1999 Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

Two-channel perfect reconstruction (PR) filter
banks have been used in different applications of
signal processing, such as subband coding of speech
and image signals, transmultiplexers, and voice
privacy systems [1—17]. The theory and design of
FIR PR filter banks have been well established in
recent years [2—8,10—17]. The PR filter banks in-
clude two cases: orthonormal and biorthogonal.
For orthonormal case, the FIR PR filter banks,
except Haar function, cannot possess exact linear
phase responses that are desired in some applica-
tions of image signal processing. Thus, biortho-
gonal PR filter banks are proposed to obtain exact
linear phase responses. Design of biorthogonal FIR
linear phase PR filter banks has been also discussed
in the previous works [2,3,5,7]. However, com-
pared with IIR filters, FIR filters generally require
higher-order filters for meeting the same magnitude
specification. Hence, using IIR filters will result in
computational savings [12]. In this paper, we will
consider the design of biorthogonal PR filter banks
with exact linear phase responses using IIR filters.
Although causal IIR filters can possess only ap-
proximately linear phase responses, we can obtain
an exact linear phase by using noncausal IIR filters,
which can be decomposed into causal and an-
ticausal parts to implement, and then anticausal
part can be realized by using time reversal for finite
length inputs. For example, in the subband image
coding systems, the generalized circular convolu-
tion and symmetric extension methods can be used
to treat the boundaries of images [12]. In most
designs, the PR property of filter banks cannot be
preserved generally when the filter coefficients are
quantized. To force the PR condition to be satisfied

regardless of what the filter coefficients are, the
structurally PR implementation will be required. In
[7], an efficient structurally PR implementation
has been proposed, where for the FIR case, exact
linear phase filters are used, and for the IIR case,
causal allpass filters are used.

In this paper, we propose a new method for
designing two-channel biorthogonal linear phase
PR filter banks by using noncausal IIR filters. We
adopt the structurally PR implementation pro-
posed in [7], thus the obtained IIR filter banks still
satisfy PR condition even when all filter coefficients
are quantized. It is well known [1,6,7,9—11,17] that
wavelet bases can be generated from PR filter
banks. Then, synthesis of wavelet bases has been
reduced to design PR filter banks. From the regu-
larity condition of wavelets, a flatness constraint is
required to impose on the PR filter banks. In this
paper, from the view point of wavelets, we consider
the design of IIR linear phase PR filter banks with
an additional flatness constraint. By using Remez
exchange algorithm, we formulate the design prob-
lem in the form of a generalized eigenvalue problem
[18,19]. Thus, by solving the eigenvalue problem to
compute the positive minimum eigenvalue, we can
get a set of filter coefficients as the corresponding
eigenvector. Therefore, the optimal filter coeffi-
cients with an equiripple response can be easily
obtained through a few iterations. The proposed
procedure is computationally efficient, and the flat-
ness constraint can be arbitrarily specified.

This paper is organized as follows. Section 2
describes an efficient structurally PR implementa-
tion. Section 3 presents a design method of IIR
linear phase PR filter banks based on eigenvalue
problem by using Remez exchange algorithm. Sec-
tion 4 shows two design examples to demonstrate
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the effectiveness of the proposed method. Con-
clusions are given in Section 5.

2. Structurally PR filter banks

In two-channel filter banks shown in Fig. 1, as-
sume that H

0
(z) and H

1
(z) are analysis filters, and

G
0
(z) and G

1
(z) are synthesis filters. It is well known

that the relationship of input X(z) and output ½(z)
of the filter banks is

½(z)"1
2
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Then the perfect reconstruction condition is
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where K is integer. By using the polyphase matrix
description,
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the perfect reconstruction condition of Eq. (2) be-
comes

G(z)H(z)"
z~K

2 C
1 0

0 1D"
z~K

2
I, (5)

Fig. 1. Two-channel filter bank.

where I is the identity matrix. It is well known that

C
z~N 0

!A(z) 1DC
1 0

A(z) z~ND"z~NI, (6)

C
1 B(z)

0 z~MDC
z~M !B(z)

0 1 D"z~MI, (7)

where N and M are integers, and A(z) and B(z) are
arbitrary transfer functions. If we constitute H(z)
and G(z) as

H(z)"C
z~M !B(z)

0 1 DC
1 0

1
2
A(z) 1

2
z~ND , (8)

G(z)"C
1
2
z~N 0
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2
A(z) 1D C1 B(z)

0 z~MD, (9)

then the perfect reconstruction condition of Eq. (5)
is satisfied regardless of what A(z) and B(z) are, i.e.,
the PR filter banks can be still obtained even when
the filter coefficients of A(z) and B(z) are quantized.
Note that K"N#M. The structurally PR imple-
mentation proposed in [7] is shown in Fig. 2.
Hence, the design problem of the filter bank will
become design of the analysis or synthesis filters.
From Eqs. (8) and (9), the transfer functions of
analysis and synthesis filters are

H
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respectively. In the following, we will consider the
design of the analysis filters H

0
(z) and H

1
(z).

Fig. 2. Structurally perfect reconstruction implementation.
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3. Design of IIR linear phase PR filter banks

In this section, we describe design of IIR linear
phase PR filter banks based on eigenvalue problem
by using Remez exchange algorithm. Here, we use
general IIR filters A(z) and B(z), that is,
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a
i
z~i
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i/0
b
i
z~i

, (12)
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are integers, a

i
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i
, c

i
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are real

coefficients, and b
0
"d

0
"1.

3.1. Desired magnitude responses

From Eq. (10), we have
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To obtain the exact linear phase, the filter coeffi-
cients of A(z) must be symmetric, that is,
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2

is odd, A(z) will have a pole at z"!1,
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where I
1

and I
2

are integers. Then, AK (z) becomes
zero phase, and its frequency response is given by
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Therefore, H
1
(z) has an exact linear phase, and its

magnitude response is
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where u
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and u
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are the passband and stopband

edge frequencies, respectively, and u
1
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4
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From Eq. (18), we can see that
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thus the desired magnitude response is reduced to
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From Eq. (10), we have
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Similarly, to force BK (z) to be zero phase, the follow-
ing conditions must be satisfied:
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where I
3

and I
4

are integers. Hence, the frequency
response of BK (z) is given by

BK (e+u)"
+I3

i/0
c
i
cos(I

3
!i#1

2
)u

1
2
d
I4
#+I4~1

i/0
d
i
cos(I

4
!i)u

. (27)

170 X. Zhang, T. Yoshikawa / Signal Processing 72 (1999) 167–175



E
!
(u)"1!AK (e+u)"

1
2
b
I2
#+I2~1

i/0
b
i
cos(I

2
!i)u!+I1

i/0
a
i
cos(I

1
!i#1

2
)u

1
2
b
I2
#+I2~1

i/0
b
i
cos(I

2
!i)u

. (30)

Then H
0
(z) has an exact linear phase and its magni-

tude response is
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Therefore, the design problem of the filter banks
will become approximation of A(z) and B(z). Note
that A(z) and B(z) are noncausal due to the symmet-
ric conditions of Eqs. (16) and (25). A(z) and B(z)
must be decomposed into causal and anticausal
parts to implement, then the anticausal part can be
realized by using time reversal for finite length
inputs, such as image signals.

3.2. Design of maximally flat filters

We consider design of H
1
(z), i.e., A(z). First, we

define an error function E
!
(u) between the desired

and actual magnitude responses of A(z) as

The design purpose is to find a set of filter coeffi-
cients a
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and b

i
to minimize E
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(u) in the band

[0,2u
1
].

It is well known [1,6,7,9—11,17] that wavelet
bases can be generated from PR filter banks, then
the synthesis of wavelet bases are reduced to design
PR filter banks. From the regularity condition of
wavelets, the PR filter banks are required to satisfy
certain flatness constraints, that is,
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straints of Eq. (31) are equivalent to
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Substituting Eq. (30) into Eq. (33), we get
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When the maximally flat filters are needed, we can
solve the (I

1
#I

2
#1) linear equations of Eq. (34)

to obtain the filter coefficients, since J
1
"I

1
#I

2
and b

0
"1. Therefore, the maximally flat filters can

be easily obtained.

3.3. Design of filters with given flatness

It is well known that the maximally flat filters are
poorly selective. However, frequency selectivity is
also thought of as a useful property for many ap-
plications. It is known in [10] that frequency selec-
tivity and regularity somewhat contradict each
other. For this reason, we consider design of IIR
filters that have the best-possible frequency selec-
tivity for a given flatness constraint. Assume that
the flatness constraints of Eq. (31) are required
where J

1
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. We want to obtain an

equiripple response by using the remaining degrees
of freedom. First, we select (I
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] as follows:
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By using Remez exchange algorithm, we then for-
mulate E

!
(u) as

E
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i
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where d ('0) is the magnitude error, and the de-
nominator polynomial of E
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Substituting Eq. (30) into Eq. (36), we rewrite
Eqs. (34) and (36) in the matrix form as

PA"d QA, (38)

where A"[a
0
,a

1
,2,a

I1
,b

0
,b

1
,2,b

I2
]T, and the

matrices P and Q are given by

It should be noted that Eq. (38) is a generalized
eigenvalue problem, i.e., d is an eigenvalue, and
A is a corresponding eigenvector [18]. It is known
in [18] that to obtain a solution that satisfies
Eq. (37), we only need to find the eigenvector
corresponding to the positive minimum eigen-
value. In this design problem, we have found
that the positive minimum eigenvalue is the abso-

lute minimum one. Therefore, a set of filter coeffi-
cients can be easily obtained. In order to achieve
an equiripple magnitude response, we make use of
an iteration procedure to get the optimal filter
coefficients. The design algorithm is shown as
follows.

3.4. Design algorithm

Procedure M Design Algorithm of IIR Linear Phase
Filters N
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1
, ¸

2
, J

1
and u
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.
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Repeat
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i
"X

i
(i"0,1,2,I

1
#I

2
!J

1
).

4. Compute P, Q by using Eqs. (39) and (40), then
find the positive minimum eigenvalue of Eq. (38)
to obtain the filter coefficients a

i
and b

i
that

satisfies Eq. (37).
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5. Search the peak frequencies of E
!
(u) within the

band [0,2u
1
], and store these frequencies into

the corresponding X
i
.

Until Satisfy the following condition for the pre-
scribed small constant e:

G
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i
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i
D)eH

End .

3.5. Design of H
0
(z)

We consider design of H
0
(z), i.e., B(z). B(z) can be

similarly designed by using the design algorithm
proposed in Section 3.4. It is seen from Eq. (28)
that the magnitude response of H

0
(z) is dependent

on that of both A(z) and B(z). Even if both A(z) and
B(z) have equiripple magnitude responses, we can-
not guarantee that the magnitude response of H

0
(z)

must be equiripple. To achieve an equiripple mag-
nitude response of H

0
(z), we define an error func-

tion E
"
(u) as

E
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and then use Remez exchange algorithm to formu-
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1
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where DH
1
(e+u@2)D can be considered to be a weight-

ing function. Hence, H
0
(z) will have an equiripple

magnitude response in stopband. Similarly, H
0
(z) is

also required to satisfy a given flatness constraint,
that is,
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where J
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Then we can get the linear equations similar to
Eq. (34). Therefore, we can formulate the design

problem of B(z) in the form of the eigenvalue prob-
lem, as shown in Section 3.3. The design algorithm
is the same as that in Section 3.4.

4. Design examples

In this section, we present two design examples
to demonstrate the effectiveness of the proposed
method.

Example 1. We consider design of the minimax
filter bank shown in Example 3.2 of [7] with
u

1
"0.4p and u

4
"0.6p for comparison purposes.

In [7], A(z) was a FIR linear phase filter of order 11,
and B(z) was the same as A(z). By using the coeffi-
cients shown in [7], we computed the magnitude
response of H

0
(z) and H

1
(z), which are shown in

Fig. 4 in the dotted line. The stopband attenuation
of H

0
(z) and H

1
(z) were 35.6 and 45.2 dB, respec-

tively. Note that the resulting magnitude responses
are different from that shown in Fig. 5 of [7]. We
cannot obtain the same result by using the coeffi-
cients given in [7]. We use the proposed method to
design the IIR linear phase PR filter bank with the
same specification. The order of A(z) needs to be
¸
1
"3 and ¸

2
"2 only. The magnitude response

of A(z) is shown in Fig. 3, and that of H
1
(z) is shown

in Fig. 4 in the solid line. It is clear that H
1
(z) has

an equiripple response and the stopband attenu-
ation 45 dB. To control the magnitude error of

Fig. 3. Magnitude responses of A(z) and B(z) in Example 1.
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Fig. 4. Magnitude responses of H
0
(z) and H

1
(z) in Example 1.

Fig. 5. Magnitude responses of A(z) and B(z) in Example 2.

H
0
(z) in stopband, we use B(z) different from A(z).

The order of B(z) is ¸
3
"3 and ¸

4
"4, and the

magnitude response is shown in Fig. 3 in the dotted
line. The magnitude response of H

0
(z) is shown in

Fig. 4. It is clear that it is equiripple and the stop-
band attenuation is 58.1 dB. The overall group de-
lay of this IIR filter bank is 1 sample, while that of
the FIR filter bank of [7] is 33 samples. However,
the proposed IIR filter banks need some extra stor-
ages for realizing the anticausal recursive filtering.

Example 2. We consider the design of an IIR linear
phase PR filter bank with a given flatness. The
design specification is J

1
"J

2
"4, u

1
"0.45p and

u
4
"0.55p. The order of A(z) and B(z) are ¸

1
"7,

Fig. 6. Magnitude responses of H
0
(z) and H

1
(z) in Example 2.

¸
2
"6 and ¸

3
"9, ¸

4
"6. The magnitude re-

sponses of A(z) and B(z) are shown in Fig. 5, and
that of H

0
(z) and H

1
(z) are shown in Fig. 6 in the

solid line. The stopband attenuation of H
0
(z) and

H
1
(z) are 68.0 and 56.7 dB, respectively. It is clear

that the equiripple responses with given flatness are
obtained. We have also designed a filter bank with
J
1
"6 and J

2
"4. The magnitude responses of

A(z) and B(z) are shown in Fig. 5, and that of H
0
(z)

and H
1
(z) are shown in Fig. 6 in the dotted line

also. It is seen that H
1
(z) is a maximally flat filter.

5. Conclusions

In this paper, we have proposed a new method
for designing two-channel IIR linear phase PR fil-
ter banks. Since we have adopted the structurally
PR implementation proposed in [7], the PR condi-
tion is still satisfied even when all filter coefficients
are quantized. From the view point of wavelets, we
have shown the design of IIR linear phase PR filter
banks with an additional flatness constraint. By
using Remez exchange algorithm, we have for-
mulated the design problem in the form of a gener-
alized eigenvalue problem. Therefore, by solving
the eigenvalue problem to compute the positive
minimum eigenvalue, a set of filter coefficients can
be obtained as the corresponding eigenvector. The
optimal filter coefficients with an equiripple
response can be easily obtained through a few
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iterations. The proposed procedure is computa-
tionally efficient, and the flatness constraint can be
arbitrarily specified.
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