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Abstract

This paper presents a new method for designing two-band orthonormal IIR wavelet "lter banks using allpass "lters. It
is well known that orthonormal wavelet bases can be generated by paraunitary "lter banks. Thus, synthesis of
orthonormal wavelet bases can be reduced to the design of paraunitary "lter banks. In this paper, two-band orthonormal
IIR wavelet "lter banks using a parallel connection of two real allpass "lters or a complex allpass "lter are examined.
From the regularity of wavelets, an additional #atness condition is required to impose on the "lter banks. Then, the
design problem of orthonormal IIR wavelet "lter banks with a given #atness condition is discussed. By considering the
given #atness condition and using the Remez exchange algorithm, the design problem can be formulated in the form of an
eigenvalue problem. Therefore, a set of "lter coe$cients can be easily gotten by solving the eigenvalue problem to
compute the absolute minimum eigenvalue, and the optimal solution with an equiripple response can be obtained after
using an iteration procedure. The proposed method is computationally e$cient since the e$cient Remez exchange
algorithm is employed, and the #atness condition can be arbitrarily speci"ed. Some design examples are presented to
demonstrate the e!ectiveness of the proposed method. ( 1999 Published by Elsevier Science B.V. All rights reserved.

Zusammenfassung

Diese Arbeit praK sentiert eine neue Methode zum Entwurf von zweikanaligen orthonormalen IIR-Wavelet-FilterbaK n-
ken unter Verwendung von AllpaK ssen. Es ist allgemein bekannt, da{ orthonormale Waveletbasen durch paraunitaK re
FilterbaK nke erzeugt werden koK nnen. Daher kann der Entwurf von orthonormalen Waveletbasen auf den Entwurf
von paraunitaK ren FilterbaK nken zuruK ckgefuK hrt werden. In dieser Arbeit untersuchen wir zweikanalige orthonormale IIR-
Wavelet-FilterbaK nke, die zwei parallel gekoppelte reelle AllpaK sse oder einen komplexen Allpa{ verwenden. Die
RegularitaK t der Wavelets erfordert eine zusaK tzliche Flachheitsbedingung beim Entwurf der Filterbank. Wir diskutieren
deshalb das Entwurfsproblem orthonormaler IIR-Wavelet-FilterbaK nke mit einer gegebenen Flachheitsbedingung. Die
Verwendung des Austauschverfahrens von Remez unter BeruK cksichtigung der gegebenen Flachheitsbedingung fuK hrt auf
eine Formulierung der Entwurfsaufgabe als Eigenwertproblem. Die Filterkoe$zienten koK nnen daher leicht durch LoK sen
des Eigenwertproblems (Bestimmung des absolut kleinsten Eigenwerts) berechnet werden. Die optimale LoK sung mit
konstanter Welligkeit erhaK lt man durch Anwendung eines Iterationsverfahrens. Die vorgeschlagene Methode ist
rechene$zient, da der e$ziente Remez-Austauschalgorithmus verwendet wird, und die Flachheitsbedingung kann
beliebig vorgegeben werden. Die Brauchbarkeit des vorgeschlagenen Verfahrens wird durch einige Entwurfsbeispiele
demonstriert. ( 1999 Published by Elsevier Science B.V. All rights reserved.
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Re2 sume2

Cet article preH sente une meH thode nouvelle pour la conception de bancs de "ltres d'ondelettes IIR orthonormaux
bi-bande à l'aide de "ltres passetout. II est bien connu ques les bases orthonormales d'ondelettes peuvent e( tre geH neH reH es
par des bancs de "ltres para-unitaires. De ce fait, la synthèse de bases d'ondelettes orthonormales peut e( tre reH duite à la
conception de bancs de "ltres para-unitaires. Dans cet article, des bancs de "ltres d'ondelettes IIR orthonormales
bi-bande utilisant la connexion parallèle de deux "ltres passe-tout reH els ou un "ltre passe-tout complexe sont examineH s.
Du fait de la reH gulariteH des ondelettes une condition additionnelle de platitude imposeH e aux bancs de "ltres est requise. Le
problème de la conception de bancs de "ltres d'ondelettes IIR orthonormales avec une condition de platitude donneH e est
donc discuteH . A l'aide de la condition de platitude et de l'algorithme d'eH change de Remez, ce problème de conception peut
e( tre formuleH sous la forme d'un problème de valeurs propres. De ce fait, un ensemble de coe$cients de "ltre peut e( tre
facilement obtenu par reH solution du problème de calcul de la valeur propre minimale en valeur absolue, et la solution
optimale preH sentant un taux d'ondulation constant en reH ponse peut e( tre obtenue après application d'une proceH dure
iteH rative. La meH thode proposeH e est e$ciente du point de vue calculatoire puisque l'algorithme d'eH change de Remez est
employeH , et que la condition de platitude peut e( tre speH ci"eH e arbitrairement. Quelques exemples de conception sont preH senteH s
pour illustrer l'e!ectiviteH de la meH thode proposeH e. ( 1999 Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

Wavelets have received considerable attention
in various "elds of applied mathematics, signal
processing, multiresolution theory, and so on
during the past several years [1,4,6,12]. The con-
nection between continuous-time wavelets and
discrete "lter banks was originally investigated
by Daubechies, and is now well understood
[1,2,4,6,12,14]. Wavelet bases can be generated by
perfect reconstruction (PR) "lter bank solutions. In
this paper, we will consider a two-band paraunitary
"lter bank, which, when iterated, generates or-
thonormal wavelet bases. Paraunitary "lter banks
can be realized using "nite impulse response (FIR)
or in"nite impulse response (IIR) "lters. The case of
FIR "lters, which lead to compactly supported
wavelets, has been examined in detail in
[1,3,6,8,9,12,14]. In this paper, we also restrict our-
selves to IIR "lters, which lead to more general
wavelets of in"nite support [2,17]. It is known in
[7,11,13] that IIR "lters composed of two real
allpass "lters or a complex allpass "lter can be
implemented with low complexity structures that
are robust to "nite precision e!ects. Hence such
allpass-based IIR "lters are more attractive than
general IIR "lters. In [5,10], design methods for
two-band IIR paraunitary "lter banks using a par-
allel connection of two real allpass "lters have been

proposed. However, only the maximally #at and
elliptic "lters were described. In addition, design of
orthonormal IIR "lter banks using a complex al-
lpass "lter is still open problem.

In this paper, we propose a new method for
designing two-band orthonormal IIR wavelet "lter
banks with a given #atness condition using a paral-
lel connection of two real allpass "lters or a com-
plex allpass "lter. From the regularity of wavelets,
an additional #atness condition is generally re-
quired to impose on the paraunitary "lter banks
[2,14]. We then consider the design of IIR wavelet
"lter banks with the best possible frequency selec-
tivity for a given #atness condition. By considering
the given #atness condition, we use the Remez
exchange algorithm and formulate the design prob-
lem in the form of an eigenvalue problem [15}17].
Therefore, we can easily get a set of "lter coe$-
cients by solving the eigenvalue problem to com-
pute the absolute minimum eigenvalue, and obtain
the optimal solution with an equiripple response
through a few iterations. The proposed method is
computationally e$cient since the e$cient Remez
exchange algorithm is employed and the interpola-
tion step has been reduced to the computation of
only one eigenvalue [16]. Furthermore, the #atness
condition can be arbitrarily speci"ed.

This paper is organized as follows. Section 2 de-
scribes two-band orthonormal IIR wavelet "lter

92 X. Zhang, T. Yoshikawa / Signal Processing 78 (1999) 91}100



banks using two real allpass "lters or a complex
allpass "lter. Section 3 presents a new method for
designing IIR "lters composed of two real allpass
"lters with a given #atness condition based on
a generalized eigenvalue problem by using the Re-
mez exchange algorithm. Section 4 describes design
of IIR "lters using a complex allpass "lter with
a given #atness condition. Section 5 shows some
design examples to demonstrate the e!ectiveness of
the proposed method. Conclusions are given in
Section 6.

2. Orthonormal wavelet 5lter banks

It is well known [1,2,4,6,12,14] that orthonormal
wavelet bases can be generated by a two-band
paraunitary "lter bank MH(z),G(z)N. Here, let H(z)
denote the lowpass "lter and G(z) the highpass
"lter. From the orthonormality of wavelets, the
"lter bank must satisfy

H(z)H(z~1)#H(!z)H(!z~1)"1,

G(z)G(z~1)#G(!z)G(!z~1)"1,

H(z)G(z~1)#H(!z)G(!z~1)"0.

(1)

In this paper, we "rst consider IIR "lters H(z) and
G(z) that are based on a parallel connection of two
real allpass "lters as shown in Fig. 1, i.e.,

H(z)"1
2
MA

1
(z2)#z~1A

2
(z2)N,

G(z)"1
2
MA

1
(z2)!z~1A

2
(z2)N,

(2)

where A
1
(z) and A

2
(z) are real allpass "lters, i.e.,

their coe$cients are real. It is clear that H(z) and
G(z) of Eq. (2) satisfy the orthonormal condition of
Eq. (1). Second, we consider H(z) and G(z) using

Fig. 1. Filter structure using real allpass "lters.

Fig. 2. Filter structure using complex allpass "lter.

a complex allpass "lter as shown in Fig. 2, i.e.,

H(z)"
1

2
MA(z)#AK (z)N,

(3)

G(z)"
z~1

2j
MA(z)!AK (z)N,

where A(z) and AK (z) are Nth-order complex allpass
"lters, and their coe$cients are mutually complex-
conjugate. To meet the orthonormal condition of
Eq. (1), the constraint that A(z) and AK (z) must
satisfy is

A(z)"$jAK (!z), (4)

which shows that if a is a pole of A(z), then !aH is
also a pole of A(z), where a is complex and aH is
complex-conjugate of a. Consequently, A(z) can be
expressed as

A(z)"gz~N
+N1

n/0
a
2n

z2n#j+N2

n/0
a
2n`1

z2n`1

+N1

n/0
a
2n

z~2n!j+N2

n/0
a
2n`1

z~2n~1
,

(5)

where a
n

are real, N, N
1

and N
2

are integers, and
g"exp[$jp/4]. When N is even, N

1
"N/2 and

N
2
"N/2!1, and when N is odd, N

1
"N

2
"

(N!1)/2.
It can be seen from Eq. (2) or (3) that the magni-

tude responses of H(z) and G(z) satisfy the following
power-complementary relation:

DH(e+u)D2#DG(e+u)D2"1, (6)

which means that we need to consider design of
only one "lter H(z). From the regularity of wavelets,
it is known [2,14] that an additional #atness condi-
tion is required to impose on H(z), i.e.,

LkDH(e+u)D
Luk Ku/p

"0 (k"0,1,2,K!1), (7)
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where K is integer. Hence, the resulting wavelet
function will have K consecutive vanishing mo-
ments. This #atness condition can be obtained if
H(z) contains K zeros located at z"!1. In many
applications of signal processing, frequency selec-
tivity is also thought of as a useful property from
the viewpoint of signal band-splitting. However, for
a given order "lter, regularity and frequency selec-
tivity somewhat contradict each other [8]. For this
reason, we consider design of H(z) that has the best
possible frequency selectivity for a given #atness
condition.

3. Design of IIR 5lters using two real allpass 5lters

In this section, we consider design of IIR "lters
H(z) using a parallel sum of two real allpass "lters,
and describe a new method for designing H(z) with
a given #atness condition based on an eigenvalue
problem by using the Remez exchange algorithm
[15}17].

From Eq. (2), we have

H(z)"1
2
MA

1
(z2)#z~1A

2
(z2)N

"1
2
A

1
(z2)M1#z~1;(z2)N, (8)

where ;(z) is a Nth-order real allpass "lter, and is
de"ned as

;(z)"
A

2
(z)

A
1
(z)

"z~N
+N

n/0
a
n
zn

+N
n/0

a
n
z~n

, (9)

where the "lter coe$cients a
n
are real, and a

0
"1.

Let h(u) be the phase response of z~1;(z2), i.e.,

exp[ jh(u)]"e~+(2N`1)u
+N

n/0
a
n
e+2nu

+N
n/0

a
n
e~+2nu

, (10)

h(u)"2 tan~1
+N

n/0
a
n
sinH

n
(u)

+N
n/0

a
n
cosH

n
(u)

, (11)

where H
n
(u)"(2n!N!1

2
)u. Then, the magni-

tude response of H(z) is given by

DH(e+u)D"cos
h(u)

2

"

+N
n/0

a
n
cosH

n
(u)

JM+N
n/0

a
n
sinH

n
(u)N2#M+N

n/0
a
n
cosH

n
(u)N2

.

(12)

It is clear from Eq. (12) that DH(e+p)D"0. To meet
the #atness condition in Eq. (7), the numerator
polynomial of Eq. (12) must satisfy

LkM+N
n/0

a
n
cosH

n
(u)N

Luk Ku/p

"0

(k"0,1,2,K!1), (13)

where K"2M#1 is odd, and M is integer. Thus,
we can get

N
+
n/0

a
nA2n!N!

1

2B
2m~1

"0 (m"1,2,2,M).

(14)

Note that M should be such that 0)M)N.
When M"N, H(z) becomes the maximally #at
"lter, and the solution can be obtained by solving
only the above linear equations for a

0
"1. When

0)M(N, our aim is to achieve an equiripple
magnitude response by using the remaining degree
of freedom. It is seen from Eq. (12) that H(z) has the
following relation between the passband [0,u

1
] and

stopband [u
4
,p];

DH(e+u)D2#DH(e+(p~u))D2"1, (15)

where u
1
#u

4
"p. This means that only the stop-

band response needs to be approximated. First, we
select (N!M#1) extremal frequencies u

i
in the

stopband [u
4
,p] as follows:

u
4
"u

0
(u

1
(2(u

(N~M)
(p. (16)

By using the Remez exchange algorithm, we formu-
late DH(e+u)D as

DH(e+ui)D"cos
h(u

i
)

2
"(!1)id

m
, (17)

where d
m

('0) is a magnitude error. From Eqs.
(12) and (17), we have

+N
n/0

a
n
cosH

n
(u

i
)

+N
n/0

a
n
sinH

n
(u

i
)

"cothMcos~1(!1)id
m
N"(!1)id, (18)

where d"d
m
/J1!d2

m
, and the denominator poly-

nomial must satisfy

N
+
n/0

a
n
sinH

n
(u)O0 (u

4
)u)p). (19)
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P"

(!1
2
!N) (3

2
!N) 2 (N!1

2
)

(!1
2
!N)3 (3

2
!N)3 2 (N!1

2
)3

F F } F

(!1
2
!N)2M~1 (3

2
!N)2M~1 2 (N!1

2
)2M~1

cosH
0
(u

0
) cos H

1
(u

0
) 2 cosH

N
(u

0
)

cosH
0
(u

1
) cos H

1
(u

1
) 2 cosH

N
(u

1
)

F F } F

cos H
0
(u

(N~M)
) cosH

1
(u

(N~M)
) 2 cosH

N
(u

(N~M)
)

, (21)

Q"

0 0 2 0

F F } F

0 0 2 0

sinH
0
(u

0
) sinH

1
(u

0
) 2 sinH

N
(u

0
)

!sinH
0
(u

1
) !sinH

1
(u

1
) 2 !sinH

N
(u

1
)

F F } F

(!1)N~MsinH
0
(u

(N~M)
) (!1)N~Msin H

1
(u

(N~M)
) 2 (!1)N~Msin H

N
(u

(N~M)
)

. (22)

Then, we rewrite Eqs. (14) and (18) in the matrix
form as

PA"dQA, (20)

where A"[a
0
, a

1
,2, a

N
]T, and the matrices P and

Q are

It should be noted that Eq. (20) is a generalized
eigenvalue problem, i.e., d is an eigenvalue, and A
is a corresponding eigenvector. It is known in
[15,16] that to obtain a solution that satis"es Eq.
(19), we only need to "nd the eigenvector corre-
sponding to the positive minimum eigenvalue. In
this design problem, we have found that the posit-
ive minimum eigenvalue is equal to the absolute
minimum one, and then this computation can be
done e$ciently by using the iterative power
method. Therefore, we can easily get a set of "lter
coe$cients by solving the above eigenvalue prob-
lem to compute the absolute minimum eigenvalue.
To achieve an equiripple magnitude response, we
make use of an iteration procedure to obtain the
optimal solution. Once the optimal "lter coe$-

cients a
n

are obtained, we compute poles of ;(z)
and then assign the poles inside the unit circle to
A

2
(z) as its poles and the poles outside the unit

circle to A
1
(z) as its zeros. Hence, we can get two

causal stable allpass "lters A
1
(z) and A

2
(z). The

design algorithm is shown as follows.

Procedure MDesign Algorithm of IIR Filters Using
Two Real Allpass FiltersN

Begin

1. Read speci"cations N, K, and cuto! frequency
u

4
.

2. Select initial extremal frequencies X
i

(i"0,1,2,N!M) equally spaced in the
stopband [u

4
,p].

Repeat

3. Set u
i
"X

i
(i"0,1,2,N!M).

4. Compute P, Q by using Eqs. (21) and (22), then
"nd the absolute minimum eigenvalue of Eq. (20)
to get a set of "lter coe$cients a

n
that satis"es

Eq. (19).
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;(z)"
AK (z)
A(z)

"

gH
g

+N1

n/0
b
2n

Mz2n#z~2nN!j+N2

n/0
b
2n`1

Mz2n`1#z~2n~1N
+N1

n/0
b
2n

Mz2n#z~2nN#j+N2

n/0
b
2n`1

Mz2n`1#z~2n~1N
, (24)

5. Search the peak frequencies of DH(e+u)D within the
stopband, and store these frequencies into the
corresponding X

i
.

Until Satisfy the following condition for the pre-
scribed small constant e:

G
N~M
+
i/0

DX
i
!u

i
D)eH

6. Compute poles of ;(z) and assign them to A
1
(z)

and A
2
(z) to obtain a causal stable H(z).

End

4. Design of IIR 5lters using a complex allpass 5lter

In this section, we describe design of IIR "lters
H(z) using a complex allpass "lter. From Eq. (3), we
have

H(z)"1
2
MA(z)#AK (z)N

"1
2
A(z)M1#;(z)N,

(23)

where ;(z) is a complex allpass "lter, and is given
from Eq. (5) by

where b
n

are real and b
0
"1/2. Then the phase

response h(u) of ;(z) is

h(u)"2 tan~1
G+N

n/0
($1)nb

n
cos nu

+N
n/0

(G1)nb
n
cos nu

, (25)

and the magnitude response of H(z) is

DH(e+u)D"cos
h(u)

2
"

+N
n/0

(G1)nb
n
cos nu

SM
N
+
n/0

($1)nb
n
cos nuN2#M+N

n/0
(G1)nb

n
cos nuN2

.

(26)

Similarly, to meet the #atness condition in Eq. (7),
the numerator polynomial of Eq. (26) must
satisfy

LkM+N
n/0

(G1)nb
n
cos nuN

Luk Ku/p

"0

(k"0,1,2, K!1) , (27)

where K"2M is even. Thus, we can get

N
+
n/0

($1)nb
n
n2m"0 (m"0,1,2, M!1). (28)

When M"N, the maximally #at "lter H(z) can be
obtained by solving the above linear equations
due to b

0
"1/2. When 0)M(N, we select

(N!M#1) extremal frequencies u
i
in the stop-

band [u
4
,p] as follows:

u
4
"u

0
(u

1
(2(u

(N~M)
)p. (29)

Note that when M'0, u
(N~M)

(p, and when
M"0, u

(N~M)
"p, thus H(z) becomes the elliptic

"lter. We then use the Remez exchange algorithm
and formulate DH(e+u)D as

DH(e+ui)D"cos
h(u

i
)

2
"(!1)id

m
. (30)

From Eqs. (26) and (30), we have

+N
n/0

(G1)nb
n
cos nu

i
G+N

n/0
($1)nb

n
cos nu

i

"(!1)id, (31)

where the denominator polynomial must satisfy

N
+
n/0

($1)nb
n
cos nuO0 (u

4
)u)p). (32)

We rewrite Eqs. (28) and (31) in the matrix form
as

PB"dQB, (33)
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where B"[b
0
,b

1
,2,b

N
]T, and the matrices P and

Q are

P"

1 $1 2 ($1)N

0 $1 2 ($1)NN2

F F } F

0 $1 2 ($)NN2(M~1)

1 G cosu
0

2 (G1)N cos (Nu
0
)

1 G cosu
1

2 (G1)N cos (Nu
1
)

F F } F

1 G cosu
(N~M)

2 (G1)N cos (Nu
(N~M)

)

, (34)

Q"

0 0 2 0

F F } F

0 0 2 0

G1 ! cos u
0

2 G($1)N cos (Nu
0
)

$1 cos u
1

2 $($1)N cos (Nu
1
)

F F } F

G(!1)N~M (!1)N~M`1 cosu
(N~M)

2 (G1)N`1(!1)M cos (Nu
(N~M)

)

. (35)

Therefore, we can get a set of "lter coe$cients by
solving the above eigenvalue problem to compute
the absolute minimum eigenvalue, and obtain the
optimal solution with an equiripple magnitude re-
sponse through a few iterations. When the optimal
"lter coe$cients b

n
are known, we compute poles of

;(z) and assign those poles inside the unit circle to
AK (z) to get a causal stable H(z). The design algo-
rithm is shown as follows.

Procedure MDesign Algorithm of IIR Filters Using
a Complex Allpass FilterN

Begin

1. Read speci"cations N, K, and cuto! frequency
u

4
.

2. Select initial extremal frequencies X
i

(i"0,1,2,N!M) equally spaced in the
stopband [u

4
,p].

Repeat

3. Set u
i
"X

i
(i"0,1,2,N!M).

4. Compute P, Q by using Eqs. (34) and (35), then
"nd the absolute minimum eigenvalue of Eq. (33)
to get a set of "lter coe$cients b

n
that satis"es

Eq. (32).
5. Search the peak frequencies of DH(e+u)D within the

stopband, and store these frequencies into the
corresponding X

i
.

Until Satisfy the following condition for the pre-
scribed small constant e:

G
N~M
+
i/0

DX
i
!u

i
D)eH

6. Compute poles of ;(z) and assign the poles
in the unit circle to AK (z) to get a causal stable
H(z).

End
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5. Design examples

In this section, we present some design examples
to demonstrate the e!ectiveness of the proposed
method.

Example 1. We consider design of an IIR "lter
bank using two real allpass "lters with
N"4, u

1
"0.4p and u

4
"0.6p. The order of H(z)

is 2N#1"9, and the order of A
1
(z) and A

2
(z) is 2.

By setting K"5, i.e., M"2, we have "rst designed
H(z) by using the proposed method. The obtained
magnitude responses are shown in Fig. 3 in the
solid line, and the scaling and wavelet functions
generated according to [14] are shown in Figs.
4 and 5, respectively. For comparison purposes, we
have designed H(z) with K"9 (i.e., M"4) and
K"1 (i.e., M"0) also. Their magnitude responses
are shown in Fig. 3 in the dotted line and in the
dashed line, respectively, and the scaling and
wavelet functions are shown in Figs. 4 and 5 also.
When K"9, it can be seen that H(z) is the maxi-
mally #at "lter that is the same as the one in [10],
and when K"1, it is the elliptic "lter that is the
same as the one in [5]. Note that H(z) with K"5
cannot be designed by using the methods proposed
in [5,10]. It is clear from Fig. 3 that the magnitude
error increases with increasing M. To increase
M implies that the resulting wavelet functions are

Fig. 3. Magnitude responses of H(z) in Example 1.

Fig. 4. Scaling functions of Example 1.

Fig. 5. Wavelet functions of Example 1.

more regular. It can be seen in Figs. 4 and 5 that the
scaling and wavelet functions decline more rapidly
as M increases.

Example 2. We consider the design of an IIR "lter
bank using a complex allpass "lter with N"4,
u

1
"0.4p and u

4
"0.6p. The order of H(z) is

2N"8. First, we have set K"4 (i.e., M"2) and
designed H(z) by using the proposed method. The
obtained magnitude responses are shown in Fig.
6 by a solid line, and the generated scaling and
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Fig. 6. Magnitude responses of H(z) in Example 2.

Fig. 7. Scaling functions of Example 2.

wavelet functions are shown in Figs. 7 and 8, re-
spectively. H(z) with K"8 (i.e., M"4) and K"0
(i.e., M"0) have also been designed. Their
magnitude responses are also shown in Fig. 6,
and the scaling and wavelet functions are shown in
Figs. 7 and 8, by a dotted line and in the dashed
line, respectively. It is seen in Fig. 6 that H(z)
is the maximally #at "lter when K"8, and the
elliptic "lter when K"0. It is noted that H(z)
does not have any zero located at z"!1 when
K"0.

Fig. 8. Wavelet functions of Example 2.

6. Conclusions

In this paper, a new method has been proposed
for designing two-band orthonormal IIR wavelet
"lter banks using two real allpass "lters or a com-
plex allpass "lter. From the regularity of wavelets,
the design problem of IIR "lters that have the best
possible frequency selectivity for a given #atness
condition has been discussed. The proposed design
method is based on the formulation of a generalized
eigenvalue problem by using the Remez exchange
algorithm and considering the given #atness
condition. Therefore, a set of "lter coe$cients can
be easily obtained by solving the eigenvalue prob-
lem to compute the absolute minimum eigenvalue,
and the optimal solution with an equiripple magni-
tude response can be attained through a few iter-
ations. The main advantages are that the proposed
design method is computationally e$cient since
the e$cient Remez exchange algorithm is em-
ployed, and the #atness condition can be arbitrarily
speci"ed.

References

[1] A.N. Akansu, M.J.T. Smith, Subband and Wavelet Trans-
forms: Design and Applications, Kluwer Academic Pub-
lishers, Boston, MA, 1996.

X. Zhang, T. Yoshikawa / Signal Processing 78 (1999) 91}100 99



[2] C. Herley, M. Vetterli, Wavelets and recursive "lter banks,
IEEE Trans. Signal Process. 41 (8) (August 1993)
2536}2566.

[3] O. Herrmann, On the approximation problem in non-
recursive digital "lter design, IEEE Trans. Circuit Theory
CT-18 (3) (May 1971) 411}413.

[4] S.K. Mitra, J.F. Kaiser, Handbook for Digital Signal Pro-
cessing, Wiley, New York, 1993.

[5] H. Ochi, U. Iye, and M. Nayeri, A design method of
orthonormal wavelet bases based on IIR "lters, IEICE
Trans. Fundamentals Japan J77-A (8) (August 1994)
1096}1099.

[6] T.A. Ramstad, S.O. Aase, J.H. Husoy, Subband Compres-
sion of Images: Principles and Examples, Elsevier, Amster-
dam, 1995.

[7] P.A. Regalia, S.K. Mitra, P.P. Vaidyanathan, The digital
allpass "lter: a versatile signal processing building block,
Proc. IEEE 76 (1) (January 1988) 19}37.

[8] O. Rioul, P. Duhamel, A Remez exchange algorithm for
orthonormal wavelets, IEEE Trans. Circuits Systems } II
41 (8) (August 1994) 550}560.

[9] S. Schweid, T.K. Sarkar, Projection minimization tech-
niques for orthogonal QMF "lters with vanishing
moments, IEEE Trans. Circuits Systems } II 42 (11)
(November 1995) 694}701.

[10] I.W. Selesnick, Formulas for orthogonal IIR wavelet "l-
ters, IEEE Trans. Signal Process. 46 (4) (April 1998)
1138}1141.

[11] P.P. Vaidyanathan, Multirate digital "lters, "lter banks,
polyphase networks, and applications: a tutorial, Proc.
IEEE 78 (1) (January 1990) 56}93.

[12] P.P. Vaidyanathan, Multirate Systems and Filter Banks,
Prentice-Hall, Englewood Cli!s, NJ, 1993.

[13] P.P. Vaidyanathan, P.A. Regalia, S.K. Mitra, Design of
doubly complementary IIR digital "lters using a single
complex allpass "lter, with multirate applications,
IEEE Trans. Circuits Systems CAS-34 (4) (April 1987)
378}389.

[14] M. Vetterli, C. Herley, Wavelets and "lter banks: theory
and design, IEEE Trans. Signal Process. 40 (9) (September
1992) 2207}2232.

[15] X. Zhang, H. Iwakura, Novel method for designing digital
allpass "lters based on eigenvalue problem, IEE Electron.
Lett. 29 (14) (July 1993) 1279}1281.

[16] X. Zhang, H. Iwakura, Design of IIR digital "lters based
on eigenvalue problem, IEEE Trans. Signal Process. 44 (6)
(June 1996) 1325}1333.

[17] X. Zhang, T. Yoshikawa, H. Iwakura, Recursive orthonor-
mal wavelet bases with vanishing moments, IEICE Trans.
Fundamentals Japan E80-A (8) (August 1997) 1472}1477.

100 X. Zhang, T. Yoshikawa / Signal Processing 78 (1999) 91}100


