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Abstract

In this paper, a class of real-valued orthonormal symmetric wavelet "lters is constructed by using allpass "lters, and
a new method for designing the allpass-based wavelet "lters with the given degrees of #atness is proposed. The proposed
method is based on the formulation of a generalized eigenvalue problem by using the Remez exchange algorithm and
considering the #atness condition. Therefore, a set of "lter coe$cients can be easily computed by solving the eigenvalue
problem, and the optimal solution in the minimax sense is obtained through a few iterations. Furthermore, the design of
the maximally #at allpass-based wavelet "lters is also included as a speci"c case, but it has a closed-form solution that is
the same as in Selesnick (IEEE Trans. Signal Process. 46 (4) (April 1998) 1138}1141) so that the iteration procedure is not
needed. Finally, some examples are designed to investigate the "lter characteristics, and it is shown that the number of
delay elements strongly in#uences the "lter magnitude responses. ( 2000 Elsevier Science B.V. All rights reserved.

Zusammenfassung

In dieser Arbeit wird die Konstruktion einer Klasse reellwertiger, orthonormaler und symmetrischer Wavelet"lter als
Allpa{"lter betrachtet. Es wird eine neue Methode fuK r den Entwurf der Allpa{-Wavelet"lter mit gewaK hltem Grad an
Glattheit vorgeschlagen. Die vorgeschlagene Methode beruht auf der Formulierung eines verallgemeinerien Eigenwert-
problems bei BeruK cksichtigung der Glattheitsbedingung und der Anwendung des Remezschen Austausch-Algorithms!
Deshalb koK nnen die Filterkoe$zienten nach LoK sung des Eigenwertproblems leicht berechnet werden und die optimale
LoK sung wird nach wenigen Iterationen erreicht. Der Entwurf des maximal glatten Allpa{-Wavelet"lters ist als Spezialfall
enthalten. Da seine LoK sung in geschlossener Form angegeben werden kann und diese dieselbe ist wie die in Selesnick
(IEEE Trans. Signal Process. 46 (4) (April 1998) 1138}1141) vorgeschlagene, ist in diesem Fall die Iterationsprozedur
verzichtbar. Es werden einige Beispiel-Wavelets entworfen, um deren Filter-Charakteristik zu untersuchen. Dabei wird
gezeigt, da{ die Zahl der VerzoK gerungselemente den Amplitudengang der Filterantwort beein#u{t. ( 2000 Elsevier
Science B.V. All rights reserved.

Re2 sume2

Nous construisons dans cet article une classe de "ltres d'ondelettes symeH triques, orthonormaux, et à valeurs reH elles
à l'aides de "ltres passe-tout, et preH sentons une meH thode nouvelle de conception des "ltres d'ondelettes baseH s sur les "ltres
passe-tout et ayant un degreH de platitude donneH . La meH thode proposeH ee est baseH e sur la formulation d'un problème de
valeurs propres geH neH raliseH es et utilise l'algorithme d'eH change de Remez pour une platitude donneH e. De ce fait, un
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ensemble de coe$cients de "ltre peut e( tre aiseHment calculeH en reH solvant le problème de valeurs propres, et la solution
optimale au sens minimax est obtenue en quelques iteH rations. De plus, la conception des "ltres d'ondelettes maximale-
ment plats est eH galement incluse comme cas particulier, mais elle a une solution analytique identique à celle de Selesnick
(IEEE Trans. Signal Process. 46 (4) (April 1998) 1138}1141) et ne requiert done pas de proceH dure iteH rative. En"n,
quelques exemples sont conc7 us pour eH tudier les caracteH ristiques des "ltres, et il est montreH que le nombre d'eH leHments de
retard in#uence consideH rablement les reH sponses en amplitude du "ltre. ( 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The discrete wavelet transform (DWT), which is
implemented by a two-channel perfect reconstruc-
tion "lter bank (PRFB), has been applied extensive-
ly to digital signal and image processing [1}14]. In
many applications such as digital image coding,
wavelets are required to be real since the signal is
real-valued in general. In this paper, we restrict
ourselves to real-valued wavelet "lters. In addition
to orthonormality, one desirable property for
wavelets is symmetry, which corresponds to the
phase linearity of the wavelet "lters. It is known
[10] that FIR "lters (corresponding to the com-
pactly supported wavelets) can easily realize the
linear phase. However, it had been proven in [4]
that there does not exist any real-valued compactly
supported orthonormal symmetric wavelets except
the Haar wavelet. To obtain symmetric wavelets, at
least one of the above properties has to be given
up. One possible solution to this dilemma is to
construct compactly supported biorthogonal sym-
metric wavelets [4,11,14]. In [2,14], biorthogonal
symmetric wavelets have been used in image coding
application and are required close to orthonormal.
Another possible solution is to construct orthonor-
mal symmetric wavelets by using IIR "lters [5,7].
In [5], a class of orthonormal symmetric wavelet
"lters has been constructed by using real allpass
"lters, but the design method for these allpass-
based wavelet "lters is not discussed. A closed-form
solution for the maximally #at allpass-based
wavelet "lters is given in [7], but only the case of
K"1 and even N is described, where K is the
number of delay elements and N is the order of
allpass "lter, as is explained in Section 2. It is
known [6] that frequency selectivity is a useful
property for many applications such as signal

processing, but the maximally #at "lter has a poor
frequency selectivity in general. For this reason, the
wavelet "lters are required to have the best-possible
frequency selectivity for the given degrees of #at-
ness, i.e., the given number of vanishing moments
(indication of regularity).

In this paper, we consider the design of the or-
thonormal symmetric wavelet "lters proposed in
[5], and propose a new method for designing the
allpass-based wavelet "lters with the given degrees
of #atness. The proposed method is based on the
formulation of a generalized eigenvalue problem by
using the Remez exchange algorithm and consider-
ing the #atness condition. Therefore, a set of "lter
coe$cients can be easily obtained by solving the
eigenvalue problem [15,16], and the optimal solu-
tion in the minimax sense is attained through a few
iterations. The proposed design algorithm is com-
putationally e$cient because it retains the speed
inherent in the Remez exchange algorithm. Fur-
thermore, the design of the maximally #at allpass-
based wavelet "lters that have the maximal degrees
of #atness is also included in the proposed method
as a speci"c case, but it has a closed-form solution
that is the same as in [7] so that the iteration
procedure is not needed. Finally, we design some
examples to investigate the "lter characteristics,
and show the e!ects of the number of delay ele-
ments on the "lter magnitude responses.

This paper is organized as follows. Section 2 de-
scribes a class of real-valued orthonormal sym-
metric wavelet "lters composed of allpass "lters.
Section 3 presents a design method for the
allpass-based wavelet "lters with the given degrees
of #atness based on the formulation of a generaliz-
ed eigenvalue problem by using the Remez ex-
change algorithm. Section 4 shows some design
examples to demonstrate the e!ectiveness of the
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Fig. 1. Magnitude responses of the maximally #at "lter H(z)
with K"1 and 3.

proposed method, and investigate the "lter charac-
teristics. Conclusions are given in Section 5.

2. Orthonormal symmetric wavelet 5lters

It is well known [3,4] that wavelets can be gener-
ated by a two-channel PRFB MH(z),G(z)N, where
H(z) is a lowpass "lter and G(z) is highpass. The
orthonormal condition that H(z) and G(z) must
satisfy is

H(z)H(z~1)#H(!z)H(!z~1)"1,

G(z)G(z~1)#G(!z)G(!z~1)"1, (1)

H(z)G(z~1)#H(!z)G(!z~1)"0.

When symmetric wavelets are required, H(z) and
G(z) must have an exact linear phase. In [5], Herley
and Vetterli have proposed a class of orthonormal
symmetric wavelet "lters by using real allpass "l-
ters, i.e.,

H(z)"1
2
MA(z2)#z~KA(z~2)N,

(2)
G(z)"1

2
MA(z2)!z~KA(z~2)N,

where K must be odd to satisfy the orthonormal
condition of Eq. (1), and A(z) is an allpass "lter of
order N and de"ned by

A(z)"z~N
+N

n/0
a
n
zn

+N
n/0

a
n
z~n

"

+N
n/0

a
n
zn~N@2

+N
n/0

a
n
z~n`N@2

, (3)

where a
n

is real and a
0
"1. Assume that the phase

response of A(z) is h(u),

h(u)"!Nu#2 tan~1
+N

n/0
a
n
sin nu

+N
n/0

a
n
cos nu

"2 tan~1
+N

n/0
a
n
sin (n!N/2)u

+N
n/0

a
n
cos (n!N/2)u

. (4)

Then, the frequency responses of H(z) and G(z) are
given by

H(e+u)"e~+(K@2)ucosGh(2u)#
K

2
uH

(5)

G(e+u)"je~+(K@2)usinGh(2u)#
K

2
uH.

It is clear in Eq. (5) that H(z) and G(z) have an exact
linear phase, and satisfy the following power-com-
plementary relation:

DH(e+u)D2#DG(e+u)D2"1. (6)

Therefore, the design problem of the allpass-based
wavelet "lters in Eq. (2) becomes the phase design
of allpass "lter A(z). However, the design method
for these wavelet "lters is not discussed in [5]. In
[7], a closed-form solution for the maximally #at
wavelet "lters is given, but only the case of K"1
and even N is described. Now, we will see what
happens when K"1 and N is chosen to be odd.
We consider the simplest case of N"1. Since there
is only one coe$cient to be computed, the maxi-
mally #at "lter design is very easy. The obtained
magnitude response of H(z) is shown in Fig. 1 in the
solid line. It is clear that H(z) has an undesired zero
and bump nearby u"p/2, thus, strictly speaking,
it is not a lowpass "lter. Here, we attempt to in-
crease the number of delay elements to K"3, i.e.,

H(z)"1
2
MA(z2)#z~3A(z~2)N. (7)

Its magnitude response is also shown in the dotted
line in Fig. 1, and it is clear that it is a reasonable
lowpass "lter. Therefore, will we ask what value
K should be taken to avoid the undesired zero and
bump nearby u"p/2? In the following, we will
answer this question.
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3. Design of orthonormal symmetric wavelet 5lters

In this section, we describe the design of the
allpass-based orthonormal symmetric wavelet "l-
ters with the given degrees of #atness based on
a generalized eigenvalue problem by using the
Remez exchange algorithm. We have proposed
a design method of allpass "lters in [16] and will
apply it to design the proposed wavelet "lters.

3.1. Desired phase response

H(z) and G(z) are required to be a pair of lowpass
and highpass "lters, and their desired magnitude
responses are

DH
$
(e+u)D"G

1 (0)u)u
1
),

0 (u
4
)u)p),

(8)

DG
$
(e+u)D"G

0 (0)u)u
1
),

1 (u
4
)u)p),

(9)

where u
1

and u
4

are the passband and stopband
cuto! frequencies of H(z), respectively, and
u

1
#u

4
"p. From Eq. (5), the phase response of

A(z) must satisfy

h(2u)#
K

2
u"G

0 (0)u)u
1
),

$p
2

(u
4
)u)n).

(10)

Due to the phase antisymmetry, the desired phase
response of A(z) can be obtained by

h
$
(u)"!

K

4
u (0)u)2u

1
). (11)

Let the phase error be h
%
(u)"h(u)!h

$
(u),

h
%
(u)"2 tan~1

+N
n/0

a
n
sin(n!N/2#K/8)u

+N
n/0

a
n
cos(n!N/2#K/8)u

"2 tan~1
N(u)

D(u)
, (12)

where

N(u)"
N
+
n/0

a
n
sin(n!q)u,

D(u)"
N
+
n/0

a
n
cos(n!q)u (13)

and q"N/2!K/8. Therefore, the design problem
is reduced to the phase approximation of A(z) to the
desired phase response of Eq. (11).

3.2. Maximally yat xlters

From the regularity of wavelets, H(z) and G(z)
are required to meet the following #atness condi-
tions:

LiDH(e+u)D
Lui Ku/p

"0 (i"0,1,2, 2¸), (14)

LiDG(e+u)D
Lui Ku/0

"0 (i"0,1,2, 2¸), (15)

where ¸ is integer, and 0)¸)N. This means that
H(z) and G(z) contain (2¸#1) zeros located at
z"!1 and 1, respectively. Since H(z) and G(z)
satisfy the power-complementary relation of Eq.
(6), we consider only the design of G(z) for conveni-
ence. Directly using the #atness condition of Eq.
(15) will result in a set of nonlinear equations to be
solved, which is di$cult when ¸ is large. To avoid
this di$culty, we decompose DG(e+u)D of Eq. (5) as

DG(e+u)D"sin h
%
(2u)"2 sin

h
%
(2u)

2
cos

h
%
(2u)

2

"2DG
1
(e+u)DDG

2
(e+u)D, (16)

where

DG
1
(e+u)D"sin

h
%
(2u)

2
"

N(2u)

JN(2u)2#D(2u)2
,

DG
2
(e+u)D"cos

h
%
(2u)

2
"

D(2u)

JN(2u)2#D(2u)2
. (17)

By di!erentiating Eq. (16), we have

LiDG(e+u)D
Lui

"2
i
+
k/0
A
i

kB
LkDG

1
(e+u)D

Luk

Li~kDG
2
(e+u)D

Lui~k
. (18)

Due to DG
2
(1)D"1, thus the #atness condition of

Eq. (15) is equivalent to

LiDG
1
(e+u)D

Lui Ku/0

"0 (i"0,1,2, 2¸). (19)
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Similarly, from Eq. (17), the condition of Eq. (19)
can be reduced to

LiN(u)

Lui Ku/0

"0 (i"0,1,2, 2¸). (20)

By substituting Eq. (13) into Eq. (20), we get

N
+
n/0

(n!q)2i`1a
n
"0 (i"0,1,2,¸!1). (21)

When the maximally #at "lter is needed (i.e.,
¸"N), Eq. (21) can be rewritten by using a

0
"1 as

C
1!q 2!q 2 N!q

(1!q)3 (2!q)3 2 (N!q)3

F F } F

(1!q)2N~1 (2!q)2N~1 2 (N!q)2N~1D C
a
1

a
2

F

a
N
D

"C
q

q3

F

q2N~1D (22)

which can be reduced to a nonsingular Vander-
monde matrix. Therefore, there is always a unique
solution, and the closed-form formula is given by

a
n
"(!1)nA

N

n B
n

<
i/1

2q!i#1

2q!i!N

"(!1)nA
N

n B
n

<
i/1

i!1!N#K/4

i#K/4
(23)

which is the same as in [7].

3.3. Wavelet xlters with given yatness

It is well known [9,12] that the maximally #at
"lter has a poor frequency selectivity. Of course,
frequency selectivity is also thought of as a useful
property for many applications such as signal pro-
cessing. However, as is known from Rioul and
Duhamel [6], regularity and frequency selectivity
somewhat contradict each other. For this reason,
we consider the design of the wavelet "lters that
have the best-possible frequency selectivity for the
given regularity, i.e., the given degrees of #atness.
When 0)¸(N, our aim is to achieve an

equiripple response by using the remaining degree
of freedom. To obtain an equiripple response, the
Remez exchange algorithm is often used, which
"nds the optimal solution in the minimax sense. It
is clear from Eq. (5) that the magnitude response of
G(z) satis"es the power-complementary relation be-
tween the passband and stopband. Hence, only
the stopband response needs to be approximated.
First, we select (N!¸#1) extremal frequencies
u

i
(u

1
"u

0
'u

1
'2'u

N~L
'0) in the stop-

band [0,u
1
] of G(z). We then use the Remez ex-

change algorithm and formulate DG(e+u)D as follows:

DG(e+ui)D"sin h
%
(2u

i
)"(!1)id

.
, (24)

where d
.

('0) is a magnitude error to be mini-
mized. From Eqs. (12) and (24), we have

+N
n/0

a
n
sin 2(n!q)u

i
+N

n/0
a
n
cos 2(n!q)u

i

"(!1)i tanG
sin~1d

.
2 H"(!1)id, (25)

where d
.
"2d/(1#d2)K2d, and the denominator

polynomial must satisfy

N
+
n/0

a
n
cos(n!q)uO0 (0)u)2u

1
). (26)

Eqs. (21) and (25) can be rewritten in the matrix
form as

Pa"dQa, (27)

where a"[a
0
, a

1
,2, a

N
]T, and the elements of the

matrices P, Q are given by

P
ij
"G

( j!q)2i`1 (i"0, 1,2,¸!1),

sin 2( j!q)u
i~L

(i"¸,¸#1,2, N),
(28)

Q
ij
"G

0 (i"0,1,2,¸!1),

(!1)i~Lcos 2( j!q)u
i~L

(i"¸,¸#1,2,N).

(29)

It should be noted that Eq. (27) is a generalized
eigenvalue problem, i.e., d is an eigenvalue and a is
a corresponding eigenvector. Therefore, to obtain
a solution that satis"es Eq. (26), we only need to
"nd the eigenvector corresponding to the positive
minimum eigenvalue, which corresponds to the ab-
solutely minimum one in most cases [15,16]. To
achieve an equiripple response, we make use of an
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Fig. 3. Magnitude responses of H(z) with K"$1 and $3 in
Example 1.

Fig. 2. Phase responses of A(z) with various K in Example 1.

iteration procedure to get the optimal solution. The
design algorithm is shown as follows.

3.4. Design algorithm

Procedure MDesign algorithm of orthonormal sym-
metric wavelet "ltersN

Begin

1. Read N, K,¸ and u
1
.

2. Select the initial extremal frequencies
X

i
(i"0,1,2, N!¸) equally spaced in

the band [0, u
1
].

Repeat

1. Set u
i
"X

i
for i"0,1,2,N!¸.

2. Compute P and Q by using Eqs. (28) and
(29), then "nd the positive minimum eigen-
value of Eq. (27) to obtain a set of "lter
coe$cients a

n
.

3. Compute the magnitude response DG(e+u)D
and search the peak frequencies X

i
in the

band [0,u
1
].

Until Satisfy the following condition for a pre-
scribed small constant e:

MDX
i
!u

i
D)e (for i"0,1,2, N!¸)N

End.

4. Filter properties and design examples

In this section, we present some design examples
to demonstrate the e!ectiveness of the proposed
method, and investigate the "lter characteristics, in
particular the e!ects of the number of delay ele-
ments on the "lter magnitude responses.

Example 1. We consider the design of the minimax
wavelet "lters with N"3, ¸"0 and u

1
"0.45p.

We designed A(z) with various K by using the
proposed method, and found that the range of
designable K is !4N!1)K)4N#1. The
obtained phase responses of A(z) are shown in Fig.
2. Note that when N increases and/or u

1
decreases,

A(z) with a larger DKD, such as DKD"4N#3 and so

on, can be designed also. It is seen in Fig. 2 that the
phase of A(z) at u"p is h(p)"!(N!2k)p,
where 0)k)N. This is because A(z) has k poles
located outside the unit circle [16]. The magnitude
responses of H(z) with K"$1 and$3 are shown
in Fig. 3, and it is clear that when K"$1, H(z) has
an undesired zero and bump nearby u"p/2. We
recall that the desired phase response of A(z) is
h
$
(u)"!Ku/4. When K"$1, the phase error

at u"p is h
%
(n)"$3p/4 due to h

$
(u)"$u/4.

Since the phase error approximates to 0 in the band
[0, 2u

1
], h

%
(u) changes from 0 to $3p/4 in the

band [2u
1
, p]. Thus, there exists a frequency point

u8 where h
%
(u8 )"$n/2, which results in the unde-

sired zero and bump. When K"4(N!2k)$3, the
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Fig. 5. Phase responses of A(z) with K"1 and 3 in Example 2.

Fig. 4. Maximum phase error versus K in Example 1.

Fig. 7. Scaling function of K"1 and 3 in Example 2.

Fig. 6. Magnitude responses of H(z) with K"1 and 3 in
Example 2.

undesired zero and bump arise similarly due to
h
%
(p)"$3p/4, whereas when K"4(N!2k)$1,

a pair of reasonable lowpass and highpass "lters
can be obtained. Therefore, to avoid the un-
desired zero and bump, K must be chosen as
DKD"3, 5, 11, 13,2 when N is odd and DKD"1, 7,
9, 15,2 when N is even. It is known from Eq. (5)
that the magnitude errors of H(z) and G(z) are
dependent on the phase error of A(z). We then
investigate the in#uence of K on the phase error.
The plot of the maximum phase error versus K is
given in Fig. 4. It is seen that the maximum phase
error increases with an increasing DKD, thus, we must
choose DKD as small as possible to get the minimum
error. To summarize the above results, to obtain
a pair of reasonable lowpass and highpass "lters

with the minimum error, the optimal K is K"$1
when N is even and K"$3 when N is odd.

Example 2. We consider the design of the maxi-
mally #at wavelet "lters with N"¸"4. We de-
signed A(z) with K"1 and 3 by using the proposed
method, and its phase responses are shown in Fig.
5. The magnitude responses of H(z) with K"1 and
3 are shown in Fig. 6. As described in Example 1,
H(z) of K"3 has the undesired zero and bump
nearby u"p/2. The scaling and wavelet functions
generated by these wavelet "lters are shown in Figs.
7 and 8, respectively. It is seen in Figs. 7 and 8 that
the scaling function is symmetric, while the wavelet
function is antisymmetric. Although H(z) with
K"1 and 3 have the same degrees of #atness, it is
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Fig. 8. Wavelet function of K"1 and 3 in Example 2.

Fig. 9. Phase responses of A(z) in Example 3.

Fig. 10. Magnitude responses of H(z) and G(z) in Example 3.

Fig. 11. Scaling functions in Example 3.

seen that the scaling and wavelet functions of
K"3 decline more slowly than that of K"1,
because of the in#uence of the undesired zero and
bump.

Example 3. We consider the design of the wavelet
"lter with N"3, K"3, and u

1
"0.45p. We de-

signed A(z) with ¸"3,2,1 by using the proposed
method. The phase responses of A(z) are shown in
Fig. 9, and the magnitude responses of H(z) and
G(z) are shown in Fig. 10. It is clear in Fig. 10 that
the wavelet "lter of ¸"3 is maximally #at, and the
magnitude error decreases with a decreasing ¸. The
scaling and wavelet functions generated by these
wavelet "lters are shown in Figs. 11 and 12, respec-
tively. To increase ¸ implies that the resulting

wavelet functions are more regular. It is seen in
Figs. 11 and 12 that the scaling and wavelet func-
tions decline more rapidly as ¸ increases.

5. Conclusions

In this paper, we have given a class of real-valued
orthonormal symmetric wavelet "lters composed of
allpass "lters, and proposed a new method for
designing the allpass-based wavelet "lters with the
given degrees of #atness. The proposed method is
based on the formulation of a generalized eigen-
value problem by using the Remez exchange algo-
rithm and considering the #atness condition.
Therefore, the "lter coe$cients can be easily
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Fig. 12. Wavelet functions in Example 3.

computed by solving the eigenvalue problem, and
the optimal solution is obtained through a few
iterations. The proposed design algorithm is com-
putationally e$cient because it retains the speed
inherent in the Remez exchange algorithm. Fur-
thermore, the design of the maximally #at allpass-
based wavelet "lters is also included as a speci"c
case, but it has a closed-form solution that is the
same as in [7]. Finally, it is shown through some
design examples that the number of delay elements
strongly in#uences the "lter magnitude responses,
and must be appropriately chosen to avoid the
undesired zero and bump.
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