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Design of FIR Haltband Filters for Orthonormal
Wavelets Using Remez Exchange Algorithm

Xi Zhang, Senior Member, IEEE

Abstract—A new method is presented for designing FIR
halfband filters for orthonormal wavelets. When the filter de-
gree, number of vanishing moments, and tolerance error in
passband/stopband are specified, the filters with the maximal
passband/stopband width are designed by using Remez exchange
algorithm. It is well-known that Remez exchange algorithm is
an efficient approach for equiripple design of FIR linear phase
filters. Therefore, FIR halfband filters with a given tolerance error
can be easily obtained. Finally, some examples are presented to
demonstrate the effectiveness of the proposed design method.

SPL EDICS : DSP-FILT

Index Terms—Equiripple design, FIR halfband filter, or-
thonormal wavelet, Remez exchange algorithm.

I. INTRODUCTION

T is known in [1] that orthonormal wavelets can be gener-
I ated by two band orthonormal filter banks. The key to de-
sign two band filter banks is a halfband product filter. Lowpass
and highpass filters in the filter banks can be obtained from a
spectral factorization of the halfband filter. For wavelet bases
to be orthonormal, the frequency response of halfband filters
must be nonnegative, that is, the nonnegativity property. It is
also known in [1] that the halfband filters are required to have
some zeros at z = —1, that is, the vanishing moment (VM) con-
dition.

In [1], [5] and [6], the maximally flat FIR halfband filters
are used to obtain the maximum number of VMs, that is, the
maximum number of zeros are located at z = —1. However,
the maximally flat filters have a slow transition band roll-off.
In constract, Smith and Barnwell used FIR halfband filters with
an equiripple (Minimax) magnitude response in [4], which do
not preserve any VMs. There are also many methods for de-
signing FIR halfband filters with the specified number of VMs
[7]1-[12]. In [7], Caglar and Akansu introduced a parametric
Bernstein polynomial (PBP) to represent the transfer function
of FIR halfband filters. By using this transfer function, the spec-
ified number of VMs can be easily obtained only by setting
some coefficients to be zero. Therefore, the design becomes how
to satisfy the nonnegativity constraint and to make the roll-off
sharper simultaneously. In [10], Tay has proposed a simple zero-
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pinning technique for this problem, but the design is difficult if
there are many zeros needed pinning. In [12], Yu pointed out that
the zero-pinning technique cannot guarantee the nonnegativity
property, thus the frequency response must be both lower- and
upper-bounded. Therefore, Yu considered the design problem
(Problem 1 in [12]) in which the passband/stopband width is
maximized for a given tolerance error. However, this problem
was not directly solved in [12]. Instead, Yu used the semidefinite
programming (SDP) to solve another design problem (Problem
2) in which the tolerance error is minimized when the pass-
band/stopband is fixed. The solution to Problem 1 was obtained
by solving Problem 2 iteratively to find an appropriate band-
width. It is obviously time-consuming.

It is well-known in [2] and [3] that the Remez exchange al-
gorithm is an efficient approach for designing FIR linear phase
filters with an equiripple magnitude response. Remez exchange
algorithm had been also used to solve Problem 2 in [8] and [9].
In this letter, we want to use Remez exchange algorithm to solve
Problem 1 directly. Firstly, we describe how to solve Problem
2 by using Remez exchange algorithm. Next, we propose a new
direct method to solve Problem 1. In the proposed method, a set
of filter coefficients is easily obtained only by solving a system
of linear equations. The optimal solution is attained through a
few iterations. The proposed design algorithm is computation-
ally efficient because it retains the speed inherent in Remez ex-
change algorithm. Therefore, FIR halfband filters with a given
tolerance error can be easily designed. Finally, some design ex-
amples are presented to demonstrate the effectiveness of the pro-
posed design method.

II. PARAMETRIC BERNSTEIN POLYNOMIAL (PBP)

The PBP was first introduced in [7], and expressed in [10]
and [12] as

(N-1)/2
B(z)=K(z) - Z a; Ki(x) (H
1=L
where
(N-1)/2 N
k=3 ({)a-0 @

N) [z'(1—2)N " =2V (1 —2)]  (3)

7

Ki(z) = (

and the filter coefficients «; are real, the filter degree IV is odd,
and L isintegerand 0 < L < (N +1)/2.

By using # = —z(1 — z7')2/4, we can obtain the product
filter P(z) = B(—z(1 — 2z71)2/4). It is clear that P(z) is a
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zero-phase halfband filter since P(z) = P(z7') and P(2) +
P(—2) = 1. In addition, B(z) has L zeros at x = 1, that is,
P(z) has 2L zeros at z = —1. It means that L is the number
of VMs. If «; = 0 for all ¢, then the maximally flat FIR filters
are obtained, which have the maximum number of VMs, that is,

Since the VM condition is structurally imposed, the design
problem is how to meet the nonnegativity constraint, that is,
B(z) > 0in [0, 1] for orthonormal wavelets and to make
the frequency response sharper simultaneously. It is seen that
B(z) + B(1 — ) = 1. It means that B(z) is antisymmetrical
with respect to the point (0.5, 0.5), and B(0.5) = 0.5. Thus, the
nonnegativity condition is reduced to

0<B(x)<1 (0<x<0.5) “)

or

0<B(z)<1 (05<z<1). ©)

To have a sharper frequency response, we want B(z) to sat-
isfy

1-6<B(x)<1 (0<z<x,) 6)

and

0< B(z) <6 (za<z<1) @)
where § (0 < 6§ < 0.5) is a tolerance error, and [0, z,] and
[, 1] are the passband and stopband respectively. Because of
the antisymmetry of B(xz), =, + ©. = 1. The approximation
only needs to be done in the passband [0, z,,] or stopband [z, 1].
In the following, we will consider the design in the stopband
[xs,1].

In [12], Yu wanted to maximize the passband/stopband width
x, = 1 —x, for a given tolerance error 6 (Problem I). However,
it cannot be directly solved by using standard SDP. Instead, Yu
used SDP to solve Problem 2 in which ¢ is minimized if z,, =
11—z, is specified. Then, the solution to Problem 1 was obtained
by solving Problem 2 iteratively to find an appropriate ;. It is
obviously time-consuming.

III. DESIGN BASED ON REMEZ EXCHANGE ALGORITHM

It is well-known in [2] and [3] that the Remez exchange algo-
rithm is an efficient approach for designing linear phase FIR fil-
ters with equiripple frequency responses. In [8] and [9], Remez
exchange algorithm had been also used to design FIR halfband
filters with the specified number of VMs. In this section, we
first describe how to use Remez exchange algorithm to solve
Problem 2. Next, we propose a new direct method based on
Remez exchange algorithm to solve Problem 1. Main compu-
tation is to solve a system of linear equations, and the optimal
solution can be attained through a few iterations. Therefore, the
proposed design method is computationally efficient.

By applying Remez exchange algorithm in the stop-
band [z, 1], we first select (M + 1) extremal points z,, as
Ts=w9 <z <+ <awpy <1,where M =(N+1)/2—-L
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must be even,! as discussed in [8] and [9]. Then, we formulate
B(x) as

1+ (=™

B(wm) = B

0. ®)
It should be noted that if xo,, for m = 0,1,---, M/2 are
maxima and xs,,—1 for m = 1,2,---, M/2 are minima, then
(8) means that (7) is satisfied.

By substituting B(z) in (1) into (8), we derive a system of
linear equations as follows;

(N—-1)/2 m
K(:L’m) — Z aiKi(xm) = ﬂ(s )

‘ 2
1=L
form =0,1,---, M.
If x, is specified in Problem 2, we initially select z,,, equally
spaced in the stopband [z, 1], and then have from (9)

(N=1)/2
1 —1)™
Z a; Ki(z,,) + %

=L

6=K(r,) (10)

form = 0,1,---, M.TItis clear that there are (M +1) equations
with respect to M = (N + 1)/2 — L unknown coefficients «;
plus one error ¢. Therefore, we can solve (10) to obtain a set of
coefficients ;. Since the maxima xs,,, and minima xs,,_1 are
unknown a priori, we need to utilize an iteration procedure sim-
ilar to standard Remez exchange algorithm to get the equiripple
response of B(z). The design algorithm for Problem 2 is shown

in detail as follows.

Procedure {Design Algorithm for Problem 2}

Begin
1) Read N, L, and z,.
2) Select initial extremal points X,,, (zs = Xo < X1 <
-+ < Xy < 1) equally spaced in [z, 1].

Repeat
3) Setz,, = X,,, form =0,1,---, M.
4) Solve (10) to obtain a set of coefficients «;.
5) Find the maxima X5,, and minima Xs,,_1
(1175 =Xo< X1 << Xy< 1) OfB(:E) in [11757 1].

Until
Satisfy the following condition for a prescribed small constant
eeg.,e=10"%);

M
Z [T — X | < €
m=1

End.

Next, we consider Problem 1. When ¢ is specified, we want to
maximize the passband/stopband width z,, = 1 — x, that is, to
minimize x,. In standard Remez exchange algorithm, zg = x,
is also considered as a maximum. However, we cannot select z,,,

Tn [12], Yu restricted that (N — 1)/2 — L was even. It is mistaken. (N +
1)/2 — L should be even.
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Fig. 1. Responses of B(z) in Example 1.

in the above-mentioned manner, since x4 is unknown. It should
be noted that there are only M unknown «; in (9), if ¢ is given.
Then, we have

(N-1)/2

> aiKi(zm) = K(tm) —

i=L

1+(-D)m™

5 0. (11)
To obtain M unknown «, it is known that we only need M
equations. Thus, we can exclude o = x5 and select M/2
minima Za,, 1 and M/2 maxima za,, form = 1,2,--- M/2
in such away that 0.5 < 21 < 2 < --- < Ty < 1. By
solving (11), we can obtain a set of coefficients «; such that
B(x2m—1) = 0and B(x2,,) = 6. Similarly, we find the minima
Tom—1 and maxima zs,,, and then iteratively solve the linear
equations in (11) to get the equiripple response. The design al-
gorithm for Problem 1 is shown as follows.

Procedure {Design Algorithm for Problem 1}

Begin
1) Read N, L, and 6.
2) Select initial extremal points X,,, (0.5 < X7 < X5 <
-+ < X < 1) equally spaced in (0.5, 1].
Repeat
3) Setx,, = X, form=1,2,---, M.
4) Solve (11) to obtain a set of coefficients «;.

5) Find the minima X5,,_1 and maxima Xo,,
(0.5 < X1 < Xo<---< Xy <1)of B(z)in (0.5, 1].

Until
Satisfy the following condition for a prescribed small constant
€(e.g., e =107%);

M
Z [Zm — Xm| <€
m=1

End.
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Fig. 2. Responses of B(x)y in Example 2.

1V. DESIGN EXAMPLES

In this section, we present two design examples to demon-
strate the effectiveness of the proposed design method.

Example 1: We consider the design of FIR halfband filters
with N = 13 in [12]. The tolerance error is specified to be
6 = 0.04, and the number of VMSs is chosenas L = 7, 5, 3,
1. L = 7 is correspondent to the maximally flat filter. The filter
coefficients are easily obtained by using the design algorithm
for Problem I with 5 iterations, and the resulting responses are
shown in Fig. 1, which are the same as in Fig. 3 of [12].2 It is seen
inFig. 1 that1— ¢ < B(z) < linpassband and 0 < B(z) < ¢
in stopband, and the band width increases as L decreases.

Example 2: We consider the design of FIR halfband filters
with N = 23. The band width is specified to be z,, = 0.4 and
T = 0.6. The number of VMs is chosen as L = 12, 10, 8, 6.
L = 12 is correspondent to the maximally flat filter. This class
of filters are designed by using the design algorithm for Problem
2. The resulting responses are shown in dB in Fig. 2. It is seen
in Fig. 2 that the error § decreases as L decreases. The number
of iteration is 5.

V. CONCLUSION

In this letter, we have proposed a new design method of FIR
halfband filters for orthonormal wavelets by using Remez ex-
change algorithm. In the proposed method, a set of filter coeffi-
cients can be easily obtained only by solving a system of linear
equations, and the optimal solution is attained through a few
iterations. Therefore, the proposed design algorithm is compu-
tationally efficient. The nonnegativity property for orthonormal
wavelets is ensured by forcing 0 < B(z) < ¢ in the stopband.
By adjusting —6 < B(z) < 4 in the stopband, the design al-
gorithm is also applicable to biorthogonal case where the non-
negativity is not needed [11]. Finally, some design examples are
presented to demonstrate the effectiveness of the proposed de-
sign method.

2In Fig. 3 of [12], X -axis should be w/, not x, where w = 2sin~! (/).
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