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Abstract—A new method is proposed for designing Hilbert
transform pairs of orthonormal wavelet bases with improved
analyticity. Selesnick proposed a simple common factor technique
for designing the Hilbert transform pairs in [7], where the phase
factor is required to satisfy the half-sample delay condition, while
the common factor is used to obtain the maximum number of
vanishing moments and to satisfy the condition of orthonormality.
To improve the analyticity of complex wavelets, we propose a
novel method to design the phase factor by using the Remez
exchange algorithm, so that the difference in the frequency re-
sponse between two scaling lowpass filters is minimized. One
design example is presented to demonstrate the effectiveness of
the proposed method.

Index Terms—Analyticity, Hilbert transform pair, orthonormal
wavelet, Remez exchange algorithm, vanishing moment.

I. INTRODUCTION

H ILBERT transform pairs of wavelets have been proposed
and found to be successful in many applications [3]–[12].

It has been proven in [6], [8], [9] that the half-sample delay
condition between two scaling lowpass filters is the necessary
and sufficient condition for the corresponding wavelet bases to
form a Hilbert transform pair. Many design methods for the
Hilbert transform pairs have been presented in [3]–[7], [11],
[12]. In [7], Selesnick had proposed a simple common factor
technique, where the common factor is used to satisfy the con-
dition of orthonormality and to obtain the maximum number of
vanishing moments, while the phase factor is required to meet
the half-sample delay condition. In [7], Selesnick had used the
maximally flat phase approximation for the phase factor. How-
ever, the maximally flat approximation yields a larger phase
error as increases, thus it will influence the analyticity of
complex wevelets. In [11], we have improved the analyticity by
using the Remez exchange algorithm to sharpen the magnitude
responses of scaling lowpass filters, at the expense of vanishing
moments. In [12], Tay has presented a downsampling-based ap-
proach for designing the phase factor to increase the sharpness
of the magnitude responses.
In this letter, we propose a new method for designing the

phase factor by using the Remez exchange algorithm, where the
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difference in the frequency response between two scaling low-
pass filters is minimized to improve the analyticity of complex
wavelets. It is well-known in [2] that the Remez exchange al-
gorithm is an efficient approach for designing FIR linear phase
filters with an equiripple magnitude response. In the proposed
method, the design problem of the phase factor is reduced to the
design of FIR linear phase filters, thus, a set of filter coefficients
can be easily obtained only by using the Remez exchange algo-
rithm. The optimal solution is attained through a few iterations.
Therefore, the proposed design algorithm is computationally ef-
ficient. Finally, one design example is presented and compared
with the conventional methods to demonstrate the effectiveness
of the proposed method.

II. HILBERT TRANSFORM PAIR OF WAVELET BASES

It is known in [1] that orthonormal wavelet bases can be
generated by two-band orthogonal filter banks ,
where , 2. Now we assume that and are low-
pass and highpass filters, respectively. The orthonormality con-
dition of two-band filter banks are given by

(1)

We denote the scaling and wavelet functions by
respectively. Thus, the corresponding dilation and wavelet
equations are expressed as

(2)

where and are the impulse responses of and
, respectively.

It is known in [6], [8] and [9] that two wavelet functions are
a Hilbert transform pair:

(3)

that is

(4)

if and only if two scaling lowpass filters satisfy the following
condition;

(5)

where is the Fourier transform of . Equation (5) is
the so-called half-sample delay condition between two scaling
lowpass filters. Equivalently, the scaling lowpass filters should
be offset from one another by a half sample. It is the necessary
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and sufficient condition for two wavelet bases to form a Hilbert
transform pair.
It is known that the complex wavelet function

is analytic, i.e., its spectrum is one-sided:
for , if and

are an ideal Hilbert transform pair. However, it cannot be exact
in practice, because the half-sample delay condition (5) can
only be approximated with realizable filters. To evaluate the
analyticity, we use the -norm of the spectrum to define
an objective measure of quality as

(6)

where

(7)

If , is the peak error in the negative

frequency domain, which is equal to proposed in [12]. When
, is the square root of the negative frequency energy.1

In this letter, we will use and defined in (6) to evaluate
the analyticity of the complex wavelet functions.

III. THE COMMON FACTOR TECHNIQUE

In [7], Selesnick had proposed a common factor technique
for Hilbert transform pairs of orthonormal wavelet bases. The
scaling lowpass filters and are constructed by

(8)

where is the common factor, and is the phase factor
and is given by

(9)

where is the degree of , are real filter coefficients
and .
By defining the transfer function of the allpass filter as

(10)

it can be easily verified that

(11)

that is, can be expressed as the product of and
. If the allpass filter is an approximate half-sample

delay:

(12)

1The negative frequency energy was defined as in [12].

then the half-sample delay condition (5) is achieved approxi-
mately, and thus two orthonormal wavelet bases form an ap-
proximate Hilbert transform pair.
Once is determined, needs to be designed for

and . To obtain wavelet bases with vanishing
moments, is chosen as

(13)

Thus

(14)

It is clear that and have the same product filter
:

(15)

Let be an FIR filter and defining

(16)

(17)

where for and for
, then we have

(18)

We can write the orthonormality condition (1) as

(19)

where and
. Note that is a halfband filter,

thus the degree of is and is an
odd number. Since , there are
equations with respect to unknown coefficients
in (19). Therefore, it is clear that we can obtain a unique
solution if . In [7], Selesnick had chosen

and obtained the filter of minimal degree
for given and , which corresponds to the maximal

for given and
. Thus the scaling lowpass filters have the maximally flat

magnitude response, resulting in the maximum number of
vanishing moments.

IV. PHASE FACTOR DESIGN USING REMEZ
EXCHANGE ALGORITHM

Now, we define the error function as

(20)
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From (11), we have

(21)

thus the magnitude response of is

(22)

where is the phase response of . It is clear that the
magnitude response of is dependent on both the mag-
nitude response of and the phase error of . Since

is a lowpass filter, we must minimize the phase error not
only in passband but also in transition band of . In [7], Se-
lesnick had chose the maximally flat allpass filters. Since
is chosen as the point of approximation, the phase error will in-
crease as increasing . Thus, has a large error in tran-
sition band, as shown in [11].
In the following, we will discuss how to design the phase

factor to improve the analyticity. From (20), we have

(23)

and then define

(24)
Thus, it is clear that . is linear with
respect to , if is known. Therefore, it can be re-
duced to the design of FIR linear phase filters, where
is viewed as a weighting function.
Next, we use the Remez exchange algorithm in [2] to obtain

an equiripple response of . Let
be the extremal frequencies. We formulate as

(25)

where is an error. Then, we rewrite (25) as

(26)

In the common factor technique in [7], is firstly de-
signed by using the maximally flat approximation, then
is obtained by solving the linear equations in (19) and using the
spectral factorization. Thus, is unknown before is
designed.
In this letter, we use instead of , and assume

, then (26) becomes

(27)

Fig. 1. Magnitude responses of scaling lowpass filters .

where is designed by using the method proposed in [7].
Since is known, we can view as the weighting
function in the FIR linear phase filter design, and then solve the
linear equations in (27) to obtain a set of filter coefficients .
Note that since , , and
for . Moreover, we make use of an iteration pro-
cedure to obtain an equiripple response. The design algorithm
is shown as follows.

Procedure {Phase Factor Design Algorithm}

Begin
1) Read , and .
2) Select initial extremal frequencies

equally spaced in .

Repeat
3) Set .
4) Solve (27) to obtain a set of filter coefficients .
5) Search the peak frequencies

of in .

Until

Satisfy the following condition for a prescribed small
constant ;

End.

V. DESIGN EXAMPLE

In this section, we present one design example and com-
pare the frequency responses with the conventional methods to
demonstrate the effectiveness of the proposed design method.
We consider the Hilbert transform pair of orthonormal

wavelet bases with , , in [12, Example
1]. The degree of is . Firstly, we designed

by using the method proposed in [7]. Then, using the ob-
tained common factor as , we have designed by the
above-mentioned phase factor design algorithm, and obtained

. The resulting magnitude response of is shown in
solid line in Fig. 1. For comparison, the magnitude responses
of in [7] and in [12] by Tay are shown in Fig. 1 also.
Note that the maximally flat (MaxFlat) allpass filter was used
in [7]. It is seen in Fig. 1 that the magnitude response of the
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Fig. 2. Magnitude responses of .

Fig. 3. Magnitude responses of .

Fig. 4. Magnitude responses of .

proposed filter is between the conventional filters. Moreover,
the magnitude responses of are shown in Fig. 2, and the
maximum error of the proposed filter is the smallest. Finally,
the spectrums of and of are shown
in Fig. 3 and Fig. 4, respectively. It is clear in Fig. 4 that the
spectrum using the proposed filter is closest to zero in
the negative frequency domain , although the spec-
trums are almost same in Fig. 3. Analyticity measures
are given in Table I, and both and of the proposed filter
are the smallest.
Discussion: In the proposed algorithm, we have used
instead of , thus the resulting is not exactly

TABLE I
ANALYTICITY MEASURES OF AND

equiripple, as shown in Fig. 2. It is possible to repeat the
proposed algorithm using the obtained as to get the
equiripple response of . However, it cannot be guaranteed
to obtain a further improvement of the analyticity, because the
wavelet function is defined by the infinite product formula.

VI. CONCLUSION

In this letter, we have proposed a new method for designing
Hilbert transform pairs of orthonormal wavelet bases with
improved analyticity. To improve the analyticity of complex
wavelets, we have used the well-known Remez exchange
algorithm to design the phase factor, so that the difference in
the frequency response between two scaling lowpass filters
is minimized. Since the design problem of the phase factor
has been reduced to the design of an FIR linear phase filter, a
set of filter coefficients can be easily obtained by iteratively
solving a system of linear equations, and the optimal solution
is attained through a few iterations. Therefore, the proposed
design algorithm is computationally efficient. Finally, one
design example has been presented and compared with the
conventional methods to demonstrate the effectiveness of the
proposed method.
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