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Abstract—This paper proposes a new method for designing a
class of Hilbert pairs of almost symmetric orthogonal wavelets
with arbitrary center of symmetry. Two scaling lowpass filters are
designed simultaneously to satisfy the specified degree of flatness
of group delays, vanishing moments and orthogonality condition
of wavelets, along with improved analyticity. Therefore, the
resulting scaling lowpass filters have flat group delay responses
and the specified number of vanishing moments. Moreover,
the difference of the frequency responses between two scaling
lowapss filters can be effectively minimized to improve the
analyticity of complex wavelets. The condition of orthogonality
is linearized, and then an iterative procedure is used to obtain
the filter coefficients. Finally, several examples are presented to
demonstrate the effectiveness of the proposed design procedure.

I. INTRODUCTION

The Dual Tree Complex Wavelet Transform (DTCWT) was
originally proposed by Kingsbury in [2], and has been found
to be successful in a variety of applications of signal pro-
cessing and image processing [2]∼[11]. DTCWT has limited
computational redundancy compared with the conventional un-
decimated wavelets, while it is of approximate shift invariance,
and possesses a good directional selectivity for multidimen-
sional signals [2]. The key of DTCWT lies in that two scaling
lowpass filters are required to satisfy the half-sample delay
condition, resulting in the corresponding wavelet bases form
a Hilbert transform pair.

Several design procedures for DTCWT had been presented
in [2]∼[15]. In [6], Selesnick had proposed a common-factor
design technique based on the maximally flat allpass filters.
This method is simple and effective, but the resulting fil-
ters have non-linear phases responses. In [3] and [15], Q-
shift filter was firstly introduced by Kingsbury in order to
provide the improved orthogonality and symmetry properties.
Q-shift filters are required to have linear phase responses.
The design technique proposed in [3] and [4] was based on
the optimization of a set of rotations θi in the polyphase
structure, but this is a highly non-linear problem and works
well for relatively short filters. An alternative method proposed
by Kingsbury in [7] works effectively for Q-shift filters of
length up to 50 or more taps. In [13], Zhang had proposed
a design method of Q-shift filters with improved vanishing
moments based on the condition of flatness of group delay,
vanishing moments and orthogonality. The resulting Q-shift
filters have flat group delay responses and the specified number
of vanishing moments. Moreover, Zhang and Morihara made

use of the transfer function proposed by Gopinath in [9] that
satisfies the flatness condition of group delay at ω = 0 and
the number of vanishing moments at z = −1. Thus a set of
equations is derived only from the condition of orthonormality
in [14].

In this paper, we propose a new method for designing a class
of Hilbert pairs of almost symmetric orthogonal wavelets with
arbitrary center of symmetry. Differently from the technique
proposed in [13], the scaling lowpass filters have arbitrarily
specified linear phase responses. We specify the degree of
flatness for the group delay responses at ω = 0, then locate the
specified number of zeros at z = −1 from the viewpoint of
vanishing moments. Moreover, the difference of the frequency
responses between two scaling lowpass filters are minimized to
improve the analyticity of DTCWTs. Therefore, the resulting
scaling lowpass filters have flat group delay responses and
the specified number of vanishing moments. In the proposed
method, the filter coefficients of two lowpass filters can be
obtained simultaneously by iteratively solving a set of linear
equations only. Finally, several examples are presented to
demonstrate the effectiveness of the proposed design method.

II. HILBERT PAIR OF
ALMOST SYMMETRIC ORTHOGONAL WAVELETS

It is well-known that DTCWT is constituted of two real
discrete wavelet transforms (DWTs), where the first DWT
gives the real part of DTCWT and the other one is the
imaginary part. Let φH(t), φG(t) and ψH(t), ψG(t) be the
scaling and wavelet functions of two DWTs, respectively. It
has been shown in [5], [8] and [10] that two wavelet functions
ψH(t) and ψG(t) form a Hilbert transform pair:

ψG(t) = H{ψH(t)}, (1)

that is

ΨG(ω) =

{
−jΨH(ω) (ω > 0)

jΨH(ω) (ω < 0)
, (2)

where ΨH(ω) and ΨG(ω) are the Fourier transforms of ψH(t),
ψG(t), respectively.

It is known that if two wavelet functions are a pair of Hilbert
transform, the complex wavelet ψc(t) = ψH(t) + jψG(t) is
ideally analytic, i.e., the spectrum is one-sided:

Ψc(ω) = ΨH(ω) + jΨG(ω) =

{
2ΨH(ω) (ω > 0)

0 (ω < 0)
. (3)



In [5], Selesnick had proved that the necessary and sufficient
condition for two wavelet bases to form a Hilbert transform
pair is that the corresponding scaling lowpass filters satisfy

G(ejω) = H(ejω)e−j ω
2 (|ω| < π). (4)

Eq.(4) is the so-called half-sample delay condition between
two scaling lowpass filters H(z) and G(z). Specifically, the
scaling lowpass filters should be offset from one another by
a half sample. Since G(ejω) needs to be approximated to
H(ejω)e−j ω

2 , we define the error function E(ω) between
H(ejω) and G(ejω),

E(ω) = G(ejω) −H(ejω)e−j ω
2 . (5)

Moreover, to evaluate the analyticity of corresponding com-
plex wavelets, we use the p-norm of the spectrum Ψc(ω) to
define an objective measure of quality as

Ep =
||Ψc(ω)||p,[−∞,0]

||Ψc(ω)||p,[0,∞]
, (6)

where

||Ψc(ω)||p,Ω =
(∫

Ω

|Ψc(ω)|pdω
) 1

p

. (7)

If p = ∞, E∞ = lim
p→∞

Ep is the peak error in the negative

frequency domain. If p = 2, E2 is the square root of the
negative frequency energy. In this paper, we will use E∞ and
E2 to evaluate the analyticity of the complex wavelet.

The transfer functions of FIR filters H(z), G(z) are given
by 

H(z) =
N∑

n=0

h(n)z−n

G(z) =
N∑

n=0

g(n)z−n

, (8)

where h(n), g(n) are real filter coefficients and the degree
N is an odd number. In addition, H(z) and G(z) have to
satisfy the following condition of orthogonality to generate
the orthonormal wavelet bases;{

H(z)H(z−1) +H(−z)H(−z−1) = 2

G(z)G(z−1) +G(−z)G(−z−1) = 2
. (9)

Furthermore, the lowpass filters are required to have linear
phase responses, therefore the desired phase responses of
H(z), G(z) are  θH

d (ω) = −τ0ω

θG
d (ω) = −(τ0 +

1
2
)ω

, (10)

where the group delay τ0 can be arbitrarily specified. Thus,
the orthogonal wavelets are almost symmetric and have an
arbitrary center of symmetry by varying the group delay τ0.

III. DESIGN OF ALMOST SYMMETRIC ORTHOGONAL
WAVELET FILTERS

In this section, we discuss the design of orthogonal wavelet
filter H(z) with flat group delay and the specified number
of vanishing moments. It should be noted that G(z) can be
designed similarly with the group delay (τ0 + 1/2).

Firstly, we consider the flatness condition of the group
delay response. There exist many criterions in the group
delay approximations, e.g., weighted least square, equiripple
approximation, and so on [1]. In this paper, we consider the
maximally flat approximation. From Eq.(8), the phase response
of H(z) is given by

θ(ω) = − tan−1

N∑
n=0

h(n) sin(nω)

N∑
n=0

h(n) cos(nω)

. (11)

Thus, the difference θe(ω) between θ(ω) and θH
d (ω) is

θe(ω) = θ(ω) − θH
d (ω) = tan−1 N(ω)

D(ω)
, (12)

where 
N(ω) =

L∑
n=0

h(n) sin{(τ0 − n)ω}

D(ω) =
L∑

n=0

h(n) cos{(τ0 − n)ω}
. (13)

H(z) is required to have the specified degree of flatness at
ω = 0 for the group delay response,

τ(0) = τ0

∂2rτ(ω)
∂ω2r

∣∣∣∣
ω=0

= 0 (r = 1, 2, · · · , L− 1)
, (14)

where L (> 0) controls the degree of flatness. Since τ(ω) =
−∂θ(ω)

∂ω , Eq.(14) is equivalent to

∂2r+1θe(ω)
∂ω2r+1

∣∣∣∣
ω=0

= 0 (r = 0, 1, · · · , L− 1). (15)

By using Eq.(12), Eq.(15) can be reduced to

∂2r+1N(ω)
∂ω2r+1

∣∣∣∣
ω=0

= 0 (r = 0, 1, · · · , L− 1). (16)

By substituting N(ω) in Eq.(13) into Eq.(16), we can derive
a set of linear equations as follows

N∑
n=0

(τ0 − n)2r+1h(n) = 0 (r = 0, 1, · · · , L− 1). (17)

It is clear that there are L equations in Eq.(17) with respect
to (N + 1) unknown coefficients h(n).

In addition to the condition given in Eq.(17), H(z) is
required to satisfy the condition of orthonormality and to have



the maximum number of vanishing moments, respectively. We
firstly rewrite the condition of orthonormality in Eq.(9) as

N−2n∑
k=0

h(2n+ k)h(k) = δ(n) =

{
1 (n = 0)
0 (n > 0)

, (18)

where there exist (N + 1)/2 equations with respect to h(n).
Next, H(z) must have K zeros at z = −1 to get the

specified number of vanishing moments,

H(z) = Q(z)(1 + z−1)K . (19)

Therefore, we have
∂rH(ejω)
∂ωr

∣∣∣∣
ω=π

= 0 (r = 0, 1, · · · ,K − 1), (20)

where there are totally K equations with respect to h(n). If
K+L = (N+1)/2, then there are K+L+(N+1)/2 = N+1
equations in Eqs.(17), (18) and (20) with respect to (N + 1)
unknown filter coefficients. Therefore, the filter coefficients
h(n) can be obtained by solving Eqs.(17), (18) and (20).

It is seen that Eq.(18) is a set of quadratic constraints on the
filter coefficients h(n), which is difficult to solve particularly
when the filter is of higher degree. Therefore, an alternative
method by linearizing the quadratic constraints into an iterative
process will be introduced in the following section.

IV. AN ITERATIVE PROCEDURE

In this section, we firstly linearize the non-linear problem
in Eq.(18), and then use an iterative procedure to obtain a set
of scaling lowpass coefficients h(n).

Let h(i)(n) be the filter coefficients at ith iteration, and is
given by

h(i)(n) = h(i−1)(n) + ∆h(i)(n). (21)

Therefore, Eq.(18) becomes

N−2n∑
k=0

[h(i−1)(k + 2n)h(i−1)(k) + h(i−1)(k + 2n)∆h(i)(k)

+h(i−1)(k)∆h(i)(k+2n)+∆h(i)(k)∆h(i)(k+2n)] = δ(n).
(22)

Assuming ∆hi(k) becomes as small as i increases, then the
term ∆h(i)(k)∆h(i)(k+ 2n) can be neglected. Thus we have

N∑
k=0

[h(i−1)(k + 2n) + h(i−1)(k + 2n)]∆h(i)(k)

= δ(n) −
N−2n∑
k=0

h(i−1)(k + 2n)h(i−1)(k), (23)

where h(i−1)(k) = 0 for k < 0 , k > N . Moreover, Eqs.(17)
and (20) become

N∑
n=0

(τ0 − n)2r+1∆h(i)(n) =
N∑

n=0

(n− τ0)2r+1h(i−1)(n)

(24)
N∑

n=0

(−1)nnr∆h(i)(n) =
N∑

n=0

(−1)n+1nrh(i−1)(n). (25)
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Fig. 1. Magnitude responses of H(z) in Example 1.
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Fig. 2. Magnitude responses of G(z) in Example 1.

TABLE I
ANALYTICITY MEASURES E∞ AND E2 IN EXAMPLE 1.

N K L E∞(%) E2(%)

15 3 5 4.812 5.422

15 4 4 2.593 3.028

15 5 3 14.403 15.596

Therefore, we can obtain ∆h(i)(n) by solving the set of
linear equations in Eqs.(23), (24) and (25), if coefficients
h(i−1)(n) are known. The filter coefficients are subsequently
updated by ∆h(i)(n) in Eq.(21).

To converge to the optimal solution, a set of good initial
coefficients h(0)(n) are needed. It is known that P (z) =
H(z)H(z−1) is a linear phase half-band filter. Therefore,
we firstly design P (z) as the maximally flat half-band filter;
The magnitude response of H(z) is expressed as |H(ejω)| =
|P (ejω)| 12 . Thus, H(ejω) = |P (ejω)| 12 e−jτ0ω. Then, a set of
initial coefficients h(0)(n) are computed by taking (N + 1)
point IDFT.

Example 1: We have designed the scaling lowpass filters
H(z) and G(z) with N = 15 by using the proposed method,
where group delay τ0 = 9 was chosen. Since the number
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Fig. 3. Group delay responses of H(z) in Example 1.
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Fig. 4. Group delay responses of G(z) in Example 1.

TABLE II
ANALYTICITY MEASURES E∞ AND E2 IN EXAMPLE 1.

K L τ E∞(%) E2(%)

4 4 8.0 5.798 6.609

4 4 8.3 4.812 5.337

4 4 8.7 5.679 6.497

4 4 9.0 2.593 3.028

4 4 9.4 7.925 8.741

of vanishing moments can be arbitrarily specified, we choose
{K,L} = {3, 5}, {4, 4}, {5, 3}, respectively. Fig. 1 and Fig.
2 show the magnitude responses of the scaling lowpass filters
H(z), G(z) with different K, respectively. With an increasing
K, the magnitude responses of lowpass filters become sharper.
The group delay responses are shown in Fig. 3 and Fig. 4,
respectively, where the group delay responses satisfy the half-
sample delay condition and become more flat as L increases.
The magnitude responses of E(ω) are shown in Fig. 5. It
is seen in Fig. 5 that E(ω) with {K = 4, L = 4} has the
minimum error, while the filter of {K = 5, L = 3} has
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Fig. 5. Magnitude responses of E(ω) in Example 1.
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(a) K=3,L=5
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Fig. 6. Scaling and wavelet functions φH(t), φG(t), ψH(t), ψG(t) in
Example 1.

the maximum error. Moreover, the scaling functions φH(t),
φG(t) and wavelet functions ψH(t), ψG(t) are shown in
Fig. 6, respectively. Furthermore, the complex wavelet Ψc(ω)
are shown in Fig. 7. In Fig. 7, it is obvious that a certain
degree of flatness of group delay and number of vanishing
moments {K = 4, L = 4} can achieve a better analyticity
of complex wavelet. Furthermore, the analyticity measures
of E∞ and E2 are summarized in Table I. In addition, we
investigated the error function E(ω) with different τ0. Since
the center of symmetry can be arbitrarily specified, we picked
τ0 = {8.0, 8.4, 8.7, 9.0, 9.4}, respectively. E(ω) are presented
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Fig. 7. Magnitude responses of Ψc(ω) in Example 1.
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Fig. 8. Magnitude responses of E(ω) in Example 1.

in Fig. 8, while Table II summarizes the values of E∞ and
E2. It is obvious in Fig. 8 and Table II that the error E(ω) and
analyticity measures vary with the group delay τ0. Therefore, a
new procedure for designing H(z), G(z) simultaneously will
be proposed in the following to improve the analyticity.

V. AN PROCEDURE FOR IMPROVED ANALYTICITY

In this section, we want to minimize the error function E(ω)
between H(z) and G(z) to improve the analyticity.

We consider the case of L+K < (N+1)/2. The remaining
degree of freedom is J = (N + 1)/2 −K − L. Let ωk(0 <
ω0 < ω1 < · · · < ωJ−1) be the frequencies points at that
E(ejωk) = 0. Therefore,

E(ejωk) = G(ejωk) −H(ejωk)e−j
ωk
2 = 0. (26)

By substituting ∆h(i)(n), ∆g(i)(n) into Eq.(26), we derive a
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Fig. 9. Magnitude responses of H(z) in Example 2.
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Fig. 10. Magnitude responses of G(z) in Example 2.

set of linear equations as follows;

N∑
n=0

∆h(i)(n)e−j(n+ 1
2 )ωk −

N∑
n=0

∆g(i)(n)e−jnωk

=
N∑

n=0

g(i−1)(n)e−jnωk −
N∑

n=0

h(i−1)(n)e−j(n+ 1
2 )ωk . (27)

It should be noted that since h(n), g(n) are real coefficients,
Eq.(27) needs to be separated into the real and imaginary part,
respectively. Therefore, we obtain ∆h(i)(n), ∆g(i)(n) together
by solving a set of linear equations in three conditions of both
H(z) and G(z), combined with Eq.(27). We use the filter
coefficients of lowpass filters with the maximum degree of
flatness as a set of initial coefficients h(0)(n), g(0)(n). Thus,
h(n) and g(n) can be obtained simultaneously by the iterative
procedure.

Example 2: We have designed the scaling lowpass filters
H(z), G(z) of degree N = 15 with K = 4, L = 3
and τ0 = 9. Therefore, the remaining degree of freedom is
J = (N + 1)/2 − K − L = 1. We set ωk = 0.544π to
minimize the error function E(ω). The magnitude responses of
H(z) and G(z) are shown in Fig. 9 and Fig. 10, respectively.
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Fig. 11. Group delay responses of H(z) in Example 2.
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Fig. 12. Group delay responses of G(z) in Example 2.

TABLE III
ANALYTICITY MEASURES E∞ AND E2 IN EXAMPLE 2.

N K L J E∞(%) E2(%)

15 4 4 0 2.593 3.028

15 4 3 1 1.006 1.293

15 4 2 2 0.547 0.598

The corresponding group delay responses are shown in Fig.
11 and Fig. 12, respectively. For comparison, the magnitude
responses of H(z), G(z) using different degree of flatness
L = 4 , L = 2 with J = 0 and J = 2 are shown in Fig. 9 and
Fig. 10 also. When J = 2, two frequency points are chosen
as ωk = {0.449π, 0.640π}. These scaling lowapass filters
have the maximally number of vanishing moments (K = 4).
However, E(ω) are different, as shown in Fig. 13. When
J = 2, the maximum error of E(ω) is minimum, while it
is maximum when J = 0. It is clear that the maximum error
of E(ω) can be effectively minimized at the expense of the
reduced degree of flatness. In addition, the scaling functions
φH(t), φG(t) and wavelet functions ψH(t), ψG(t) are shown
in Fig. 14 respectively. Moreover the spectrum Ψc(ω) are
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Fig. 13. Magnitude responses of E(ω) in Example 2.
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Fig. 14. Scaling and wavelet functions φH(t), φG(t), ψH(t), ψG(t) in
Example 2.

given in Fig. 15, where the complex wavelets by our proposed
method have an improved analyticity compared with the case
of the maximum degree of flatness. Table III summarizes the
analyticity measures of E∞ and E2.

Example 3: We have chosen τ0 = 11.7 and designed the
corresponding scaling lowpass filters with N = 19, K = 5
with L = {3, 4, 5}. Therefore, the remaining degree of
freedom should be J = {2, 1, 0}. We set ωk = 0.414π when
J = 1 and ωk = {0.442π, 0.64π} for J = 2, respectively. The
corresponding magnitude responses of scaling lowpass filters
H(z), G(z) are shown in Fig. 16 and Fig. 17, respectively.
Since H(z) and G(z) have the same number of vanishing
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Fig. 15. Magnitude responses of Ψc(ω) in Example 2.
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Fig. 16. Magnitude responses H(z) in Example 3.
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Fig. 17. Magnitude responses of G(z) in Example 3.

moments, the magnitude responses in Fig. 16 and Fig. 17 are
almost same. In Fig. 18 and Fig. 19, the group delay responses
of the filters are given. In addition, E(ω) are shown in Fig. 20.
It is obvious in Fig. 20 that with an increasing J , the error has
been substantially reduced. In addition, the scaling function
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Fig. 18. Group delay responses of H(z) in Example 3.
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Fig. 19. Group delay responses of G(z) in Example 3.

TABLE IV
ANALYTICITY MEASURES E∞ AND E2 IN EXAMPLE 3.

N K L J E∞(%) E2(%)

19 5 5 0 15.647 17.115

19 5 4 1 4.572 4..748

19 5 3 2 0.965 0.809

φH(t), φG(t) and wavelet functions ψH(t), ψG(t) are shown
in Fig. 21 respectively. Moreover, Ψc(ω) are given in Fig.
22, where the analyticity of complex wavelet has been greatly
improved. Finally, we evaluated the analyticity measures, E∞
and E2 and summarized in Table IV.

VI. CONCLUSION

In this paper, we have proposed a new method for design-
ing a class of Hilbert pairs of almost symmetric orthogonal
wavelets with arbitrary center of symmetry. We have firstly
designed two scaling lowpass filters independently. Next, we
have used the remaining degree of freedom to minimize
the error function E(ω) between two scaling lowpass filters.
Therefore, two lowpass filters can be designed simultaneously
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Fig. 20. Magnitude responses of E(ω) in Example 3.

by linearizing the condition of orthogonality of wavelets. The
proposed design method is computationally efficient. More-
over,the filter coefficients can be computed easily by iteratively
solving a set of linear equations only. As a result, the obtained
orthogonal wavelet filters have flat group delay responses and
the specified number of vanishing moments, while minimizing
the error to improve the analyticity. Finally, several examples
are presented to demonstrate the effectiveness of the design
method proposed in this paper.
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Fig. 21. Scaling and wavelet functions φH(t), φG(t), ψH(t), ψG(t) in
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