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Design of Two Channel Biorthogonal Graph Wavelet Filter Banks
with Half-Band Kernels
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SUMMARY In this paper, we propose a novel design method of two
channel critically sampled compactly supported biorthogonal graph wavelet
filter banks with half-band kernels. First of all, we use the polynomial
half-band kernels to construct a class of biorthogonal graph wavelet filter
banks, which exactly satisfy the PR (perfect reconstruction) condition. We
then present a design method of the polynomial half-band kernels with
the specified degree of flatness. The proposed design method utilizes the
PBP (Parametric Bernstein Polynomial), which ensures that the half-band
kernels have the specified zeros at λ = 2. Therefore the constraints of
flatness are satisfied at both of λ = 0 and λ = 2, and then the resulting graph
wavelet filters have the flat spectral responses in passband and stopband.
Furthermore, we apply the Remez exchange algorithm to minimize the
spectral error of lowpass (highpass) filter in the band of interest by using
the remaining degree of freedom. Finally, several examples are designed to
demonstrate the effectiveness of the proposed design method.
key words: graph signal processing, graph wavelets, biorthogonal graph
filter bank, polynomial half-band kernel, Remez exchange algorithm, flat-
ness

1. Introduction

Graph signal processing has a wide range of applications
such as biological, energy, social, sensor, transportation net-
works and so on [7], [8]. Graph signal processing aims to ex-
tend the classical signal processing concepts and methodolo-
gies to signals defined on general graphs. Major challenges
are how to efficiently analyze, compress and process large
amounts of graph signals. In the classical signal processing
theory, it is known that wavelets can provide a sparse repre-
sentation of signals as a widely used signal processing tool
[1]–[3]. In recent years, there are many works to extend the
classical wavelet transforms to graph signals, namely, graph
wavelet transforms [9]–[26]. However, a drawback is that
those transforms proposed in [9]–[11] and [14] are not crit-
ically sampled. Critical sampling is important for compact
representation of signals, e.g., compression. Two channel
critically sampled graph wavelet filter banks have been pro-
posed in [12], [13], [15], [17], [20]–[26] also. Furthermore,
the graph filters are required to be compactly supported in
the graph, i.e., the output at each vertex is computed exactly
from the signal at that vertex and its K-hop neighborhood.
It can be achieved by a polynomial approximation of the de-
sired spectral kernel. The lifting-based graph wavelet filter
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banks in [12] and [13] are compactly supported, but not or-
thogonal. Two channel orthogonal graph wavelet filter banks
graph-QMFs have been proposed in [15], but the conditions
of PR (perfect reconstruction) and orthogonality cannot be
exactly achieved by using the polynomial approximation of
kernel filters. Narang and Ortega have proposed a simple
design technique based on the Meyer’s wavelet construction
to obtain near orthogonal graph-QMFs in [15], but the re-
construction error cannot be directly controlled and may be
quite large. In [21], Tay and Lin have proposed a constrained
optimization method to minimize the reconstruction error of
graph-QMFs, which used the PBP (Parametric Bernstein
Polynomial) for generating the initial solution needed in the
optimization. In [20], graph-QMFs with flatness constraints
have been discussed also, where only one extra parameter
was used to reduce the reconstruction error. In [25], we have
also proposed a new design method to minimize the recon-
struction error of graph wavelet filter banks with the spec-
ified degree of flatness. In [17], Narang and Ortega have
also proposed two channel compactly supported biorthog-
onal graph wavelet filter banks graphBior by relaxing the
condition of orthogonality, and given a design method based
on the Cohen-Daubechies-Feauveau’s wavelet construction
of factorizing the maximally flat half-band filter. However,
the spectral responses of the resulting graph filters are poor.
In [23], Tay and Zhang have used the notion of polyphase
representation and ladder structures adapted to graph filter
banks to construct a class of biorthogonal graph filter banks,
and used the modified PBP as half-band kernels, where the
half-band kernel with the the specified degree of flatness, but
lowpass (highpass) spectral filter, was designed in the least
squares sense. In [24] and [26], the techniques for converting
the classical wavelet filter banks to graph wavelet filter banks
have been proposed also, which is an alternative to the direct
design of graph wavelet filter banks. However, the resulting
spectral filters are not polynomials by using the direct linear
mapping of the frequency variable ω to the spectral variable
λ in [24]. When the spectral filters are approximated to
polynomials, the PR condition cannot be exactly satisfied,
especially if the degree of polynomial is lower. In addition,
the resulting spectral filters are polynomials by using the
conversion technique in [26], but the spectral responses are
dependent on both the mapping function and the frequency
responses of classical wavelet filters.

In this paper, we propose a novel direct design method of
critically sampled compactly supported biorthogonal graph
wavelet filter banks with half-band kernels. First of all, we
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use the polynomial half-band kernels to construct a class
of biorthogonal graph wavelet filter banks, where the PR
condition is structurally satisfied. Then we present a design
method of the polynomial half-band kernel with the speci-
fied degree of flatness, in which the PBP is utilized to ensure
that the polynomial half-band kernel has the specified zeros
at λ = 2. Furthermore, we apply the Remez exchange algo-
rithm to minimize the spectral error of lowpass (highpass)
filter in the band of interest by using the remaining degree
of freedom. It is well-known that the Remez exchange algo-
rithm is an efficient approach for designing FIR linear phase
filters with the equiripple magnitude response. The Remez
exchange algorithm has been also used to design FIR linear
phase half-band filters in [6]. In the proposed design method,
a set of coefficients is easily obtained only by solving a sys-
tem of linear equations, and the optimal solution is attained
through a few iterations. Therefore, the proposed design al-
gorithm is computationally efficient. Finally, several design
examples are shown to demonstrate the effectiveness of the
design method proposed in this paper.

2. Preliminaries

We firstly give a brief review of signal processing on graphs
in [7], [8] and [15]. A graph is denoted as G = (V, E),
whereV is the set of vertices (nodes) and E is the set of edges
(links). The size of graph N = |V | is the number of vertices.
A is the adjacency matrix, whose element A(i, j) represents
the weight of the edge between vertex i and j, and A(i, j) = 0
if there is no edge. D = diag(di) is the diagonal degree ma-
trix, where di =

∑
j A(i, j) is the sum of weights of all edges

connected to vertex i. The Laplacian matrix of the graph is
defined as L = D−A, and the normalized Laplacian matrix is
L = D−1/2LD−1/2 = I − D−1/2AD−1/2, where I is the iden-
tity matrix. Both L and L are symmetric positive semidefi-
nite matrices, and have a complete set of orthonormal eigen-
vectors. Now we denote the eigenvectors of the normalized
Laplacian matrix L by ui = [ui (1), ui (2), · · · , ui (N )]T and
the associated eigenvalues by λi , where ui (n) is real-valued
and 0 = λ1 < λ2 ≤ · · · ≤ λN ≤ 2.

A graph signal is a function defined on the graph and the
sample value f (n) at vertex n can be represented as a vector
f = [ f (1), f (2), · · · , f (N )]T . The graph Fourier transform
(GFT) is defined as the projections of a signal f on the graph
onto the eigenvectors;

F (λi) = fTui =
N∑
n=1

f (n)ui (n) (1)

and the inverse graph Fourier transform (IGFT) is given by

f (n) = FTU(n) =
N∑
i=1

F (λi)ui (n) (2)

where F = [F (λ1), F (λ2), · · · , F (λN )]T and U(n) =
[u1(n), u2(n), · · · , uN (n)]T .

A filtering operation of a signal f in the vertex do-
main can be expressed in the matrix form as y = Hf, where
y = [y (1), y (2), · · · , y (N )]T is output signal and H is the
transform matrix of the filter given by

H =
N∑
i=1

H (λi)uiuT
i (3)

where H (λ) is the spectral kernel of the filter.
By using GFT, we have in the spectral domain

Y (λi) = H (λi)F (λi) (4)

where Y (λi) is the GFT of output signal y.
If the kernel filter H (λi) is a polynomial of degree K ,

H (λi) =
K∑
k=0

akλki , (5)

we then have

y (n) =

N∑
i=1

F (λi)H (λi)ui (n)

=

N∑
m=1

f (m)
K∑
k=0

ak
N∑
i=1
λki ui (m)ui (n),

=

N∑
m=1

f (m)
K∑
k=0

ak (Lk )n,m

(6)

where ak are real-valued filter coefficients. Note that
(Lk )n,m = 0 when the shortest path distance between ver-
tices n and m is greater than k. Therefore, the output signal
at vertex n is a linear combination of the components of input
signal at vertices within a K-hop local neighborhood of ver-
tex n. It is known in [15] and [17] that it can be implemented
iteratively with K one-hop operations at each vertex without
any matrix diagonalization.

3. Graph Wavelet Filter Banks

The two channel graph wavelet filter bank {Hk,Gk }k=0,1 pro-
posed in [15] is shown in Fig. 1. The corresponding trans-
form matrices are given by


Hk =

N∑
i=1

Hk (λi)uiuTi

Gk =

N∑
i=1

Gk (λi)uiuT
i

(7)

Fig. 1 Two channel graph wavelet filter bank.
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where Hk (λ),Gk (λ) are the spectral kernels of analysis and
synthesis filters, respectively. H0,G0 act as lowpass filters
and H1,G1 are highpass. The down-sampling operation βL
discards the output coefficients of lowpass channel in the
set H , while βH discards the output coefficients of highpass
channel in the set L, where |H | + |L | = N and H ∩ L = 0.
The overall transform matrix of the filter bank is given by

T =
1
2
{G0(I + Jβ)H0 +G1(I − Jβ )H1}

=
1
2
{(G0H0 +G1H1) + (G0JβH0 −G1JβH1)}

(8)

where Jβ = diag(βi) is a diagonal matrix, and βi is a parti-
tion function such that βi = 1 if vertex i ∈ L and βi = −1
if vertex i ∈ H . Thus the down-and-up sampling operation
βL in lowpass channel can be expressed in the matrix form
as 1

2 (I + Jβ), while βH in highpass channel as 1
2 (I − Jβ ).

It is shown in [15] and [17] that the PR condition of two
channel graph wavelet filter banks is given by


G0H0 +G1H1 = 2I

G0JβH0 −G1JβH1 = 0
(9)

wnere 0 is the zero matrix. From Eq. (7), we have

G0H0 +G1H1 =

N∑
i=1
{G0(λi)H0(λi) + G1(λi)H1(λi)}uiuT

i

(10)

and since (2− λi) is also an eigenvalue of L if λi is a unique
eigenvalue of L in a bipartite graph with eigenvector [15];

u(2−λi ) = ±Jβuλi , (11)

then,

G0JβH0 −G1JβH1 =

N∑
i=1
{G0(λi)H0(2 − λi) − G1(λi)H1(2 − λi)}uiuT

i Jβ .

(12)

Therefore the PR condition in Eq. (9) becomes


H0(λ)G0(λ) + H1(λ)G1(λ) = 2

H0(2 − λ)G0(λ) − H1(2 − λ)G1(λ) = 0
(13)

To cancel aliasing, synthesis kernels are chosen as


G0(λ) = H1(2 − λ)

G1(λ) = H0(2 − λ)
. (14)

Thus the PR condition in Eq. (13) is reduced to

H0(λ)H1(2 − λ) + H0(2 − λ)H1(λ) = 2 (15)

which leads to a biorthogonal graph wavelet filter bank.
Furthermore, defining the product filter P(λ) as

P(λ) = H0(λ)H1(2 − λ), (16)

thus Eq. (15) becomes

P(λ) + P(2 − λ) = 2. (17)

It is known in [17] that P(λ) should be a half-band kernel
and an odd degree polynomial to satisfy Eq. (17). It is also
a lowpass kernel since H0(λ) and G0(λ) = H1(2 − λ) are
lowpass. Moreover, if orthogonal graph wavelet filter banks
are needed, the condition of G0(λ) = H0(λ) must be im-
posed. However, it is known in [15] that the conditions of
PR and orthogonality cannot be exactly achieved by using a
polynomial approximation of kernel filters.

4. Design of Biorthogonal Graph Wavelet Filter Banks

It is known in [15] and [17] that if the spectral kernel is a
polynomial of degree K , then the graph filter is exactly K-hop
localized and can be implemented iteratively with K one-hop
operations at each vertex without any matrix diagonalization.
In this paper, we will discuss the polynomial approximation
of the desired kernels.

4.1 Construction with Half-Band Kernel

In this subsection, we firstly discuss the design of lowpass
kernel H0(λ). We construct H0(λ) using Q0(λ) as

H0(λ) =
1
√

2
(1 +Q0(λ)) (18)

and

Q0(λ) =
K0∑
k=0

a0k (λ − 1)2k+1 (19)

where the degree of polynomial Q0(λ) is 2K0 + 1 and a0k
are real-valued coefficients.

Since Q0(λ) = −Q0(2 − λ), we have

H0(λ) + H0(2 − λ) =
√

2 (20)

which means that H0(λ) defined in Eq. (18) is a polynomial
half-band kernel.

Next, we construct the highpass kernel H1(λ) using
Q1(λ) as

H1(λ) =
√

2 −Q1(λ)H0(λ) (21)

and

Q1(λ) =
K1∑
k=0

a1k (λ − 1)2k+1 (22)

where the degree of H1(λ) is 2(K0 + K1) + 2 since that
of Q1(λ) is 2K1 + 1, and a1k are real-valued. Similarly,
Q1(λ) = −Q1(2 − λ) is satisfied.

Therefore, we have
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P(λ) = H0(λ)H1(2 − λ)

= 1 +Q0(λ) +
1
2

Q1(λ) − 1
2

Q2
0(λ)Q1(λ) (23)

It is clear that the PR condition in Eq. (17) is always satisfied
regardless of what the coefficients a0k and a1k of Q0(λ) and
Q1(λ) are, which means that the PR condition in Eq. (17) is
structurally satisfied.

4.2 Desired Spectral of Kernel Filters

For H0(λ) in Eq. (18) to be lowpass with the desired gain
√

2
in passband [0, λp] and 0 in stopband [λs, 2], we must have

Q0(λ) =


1 (0 ≤ λ ≤ λp)

−1 (λs ≤ λ ≤ 2)
(24)

where λp and λs are the cutoff frequencies of passband and
stopband respectively, and λp + λs = 2.

Since Q0(λ) is antisymmetric (Q0(λ) = −Q0(2 − λ))
between [0, λp] and [λs, 2], its desired spectral response
Qd

0 (λ) can be reduced to

Qd
0 (λ) = 1 (0 ≤ λ ≤ λp). (25)

Further, H1(λ) in Eq. (21) should be highpass, that is,
H1(λ) = 0 in [0, λp] and H1(λ) =

√
2 in [λs, 2]. In [λs, 2],

H0(λ) = 0, thus we have H1(λ) =
√

2. On the other hand,
since H0(λ) =

√
2 in [0, λp] ideally, then the desired spectral

response Qd
1 (λ) is the same as Qd

0 (λ);

Qd
1 (λ) = 1 (0 ≤ λ ≤ λp). (26)

However, H0(λ) has some spectral errors in practice. Thus
we have from Eq. (21)

Qd
1 (λ) =

√
2

H0(λ)
(0 ≤ λ ≤ λp). (27)

That is, the actual spectral response of H0(λ) should be
considered in the design of H1(λ). In the following, we
discuss the design of Q0(λ) and Q1(λ) (that is, H0(λ) and
H1(λ)) by using the PBP (Parametric Bernstein Polynomial).

4.3 Approximation of Half-band Kernel

The PBP (Parametric Bernstein Polynomial) was first intro-
duced in [4], and expressed in [5] and [6] as

B(x) = κ(x) −
Kb∑
i=L

αiκi (x) (28)

and

κ(x) =
Kb∑
i=0

(
2Kb + 1

i

)
xi (1 − x)2Kb+1−i (29)

κi (x) =
(
2Kb + 1

i

)
{xi (1−x)2Kb+1−i−x2Kb+1−i (1−x)i }

(30)

where the degree of B(x) is 2Kb + 1, the coefficients αi are
real, L is integer, and 0 ≤ L ≤ Kb +1. It is clear that B(x) is
a halfband polynomial since B(x) + B(1− x) = 1, and B(x)
has L zeros at x = 1. If αi = 0 for all i, then the maximally
flat response is obtained, that is, Lmax = Kb + 1.

By using the PBP B(x), we define

H0(λ) =
√

2B(
λ

2
) =
√

2{κ( λ
2

) −
K0∑
i=L0

α0iκi (
λ

2
)} (31)

where the degree of H0(λ) is 2K0 + 1 and thus H0(λ) has
L0 zeros at λ = 2. Therefore, we have from Eq. (18)

Q0(λ) = 2B(
λ

2
)−1 = 2{κ( λ

2
)−

K0∑
i=L0

α0iκi (
λ

2
)}−1 (32)

Next, we use the method proposed in [6] to design
H0(λ). To obtain a sharper spectral response, we use the
remaining degree of freedom for B( λ2 ) to satisfy

1 − δ ≤ B(
λ

2
) ≤ 1 + δ (0 ≤ λ ≤ λp) (33)

and

−δ ≤ B(
λ

2
) ≤ δ (λs ≤ λ ≤ 2) (34)

where δ is a tolerance error.
From Eq. (32), Eqs. (33) and (34) can be reduced to

1 − 2δ ≤ Q0(λ) ≤ 1 + 2δ (0 ≤ λ ≤ λp). (35)

By applying the Remez exchange algorithm, we select
(M0 + 1) extremal points λm as λp = λ0 > λ1 > · · · >
λM0 ≥ 0, where M0 = K0 − L0 + 1, and then formulate
Q0(λ) as

Q0(λm) = 1 − (−1)m2δ. (36)

By substituting Q0(λ) in Eq. (32) into Eq. (36), we de-
rive a system of linear equations as follows;

κ(
λm
2

) −
K0∑
i=L0

α0iκi (
λm
2

) = 1 − (−1)mδ (37)

which becomes
K0∑
i=L0

α0iκi (
λm
2

) − (−1)mδ = κ(
λm
2

) − 1 (38)

for m = 0, 1, · · · ,M0. It is clear that there are (M0+1) equa-
tions with respect to M0 = K0 − L0 +1 unknown coefficients
α0i plus one error δ. Therefore, we can solve Eq. (38) to
obtain a set of coefficients α0i . Since the extremal points λm
are unknown a priori, we initially select λm equally spaced
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in [0, λp], and then utilize an iteration procedure to obtain
the equiripple spectral response. Since it only needs to solve
a system of linear equations iteratively, the proposed design
algorithm is computationally efficient.

On the other hand, the desired spectral response of
Q1(λ) is dependent on H0(λ) as shown in Eq. (27), and
H0(λ) has some spectral errors in practice. Thus we need to
consider the actual spectral response of H0(λ) in the design
of H1(λ). We use the remaining degree of freedom to satisfy

√
2−δ ≤ H0(λ)Q1(λ) ≤

√
2+δ (0 ≤ λ ≤ λp). (39)

Similarly, we define

Q1(λ) = 2{κ( λ
2

) −
K1∑
i=L1

α1iκi (
λ

2
)} − 1 (40)

where the degree of Q1(λ) is 2K1 + 1. Then we apply the
Remez exchange algorithm in [0, λp] and formulate Q1(λ)
as

H0(λm)Q1(λm) =
√

2 − (−1)mδ. (41)

where λp = λ0 > λ1 > · · · > λM1 ≥ 0, and M1 = K1 − L1 +
1. Therefore, we can obtain

K1∑
i=L1

α1iκi (
λm
2

)− (−1)m

2H0(λm)
δ= κ(

λm
2

)−1
2
− 1
√

2H0(λm)

(42)

for m = 0, 1, · · · ,M1. There are (M1 + 1) equations with re-
spect to M1 = K1− L1+1 unknown coefficients α1i plus one
error δ, thus we can solve Eq. (42) to obtain α1i . Note that
the stopband error of highpass filter H1(λ) is minimized re-
garding the actual response of H0(λ). The design algorithm
for kernel filters is shown in detail as follows.

4.4 Design Algorithm

Procedure {Design Algorithm for Kernel Filters}
Begin

1) Read K0, K1, L0, L1, and λp .
2) Select initial extremal points λ̃m (λp = λ̃0 > λ̃1 >
· · · > λ̃M0 ≥ 0) equally spaced in [0, λp].

Repeat
3) Set λm = λ̃m for m = 0, 1, · · · ,M0.
4) Solve a system of linear equations in Eq. (38) to obtain

a set of coefficients α0i .
5) Find the maxima λ̃2m−1 and minima λ̃2m (λp = λ̃0 >
λ̃1 > · · · > λ̃M0 ≥ 0) of Q0(λ) in [0, λp].

Until
Satisfy the following condition for a prescribed small con-

stant ϵ (e.g., ϵ = 10−8);

M0∑
m=1
|λm − λ̃m | < ϵ

6) Select initial extremal points λ̃m (λp = λ̃0 > λ̃1 >
· · · > λ̃M1 ≥ 0) equally spaced in [0, λp].

Repeat
7) Set λm = λ̃m for m = 0, 1, · · · ,M1.
8) Solve a system of linear equations in Eq. (42) to obtain

a set of coefficients α1i .
9) Find the maxima λ̃2m−1 and minima λ̃2m (λp = λ̃0 >
λ̃1 > · · · > λ̃M1 ≥ 0) of H0(λ)Q1(λ) in [0, λp].

Until
Satisfy the following condition for a prescribed constant ϵ ;

M1∑
m=1
|λm − λ̃m | < ϵ

End.

5. Design Examples

In this section, we present several design examples and com-
pare their spectral responses with the conventional method
graphBior to demonstrate the effectiveness of the design
method proposed in this paper. Since the biorthogonal graph
wavelet filter bank proposed in this paper is not orthogonal,
we evaluate the filter bank by using the measure of orthogo-
nality defined in [17] given as

Θ = 1 − max {
√

C(λ)} −min {
√

C(λ)}
max {

√
C(λ)} +min {

√
C(λ)}

(43)

where

C(λ) =
H2

0 (λ) + H2
1 (λ)

2
. (44)

Example 1: We have designed the proposed biorthog-
onal graph wavelet filter banks with the maximally flat half-
band spectral kernels. We have chosen K0 = 7, 10, 15
and K1 = 6. The obtained spectral responses of H0(λ)
and H1(λ) are shown in Fig. 2. For comparison, the
spectral response of biorthogonal graph wavelet filter bank
graphBior(8, 8) in [17] has also been shown in Fig. 2, where
the degree of H0(λ) and H1(λ) are 16 and 15 respectively.

Fig. 2 Spectral responses of H0 (λ) and H1 (λ) in Example 1.
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Fig. 3 Spectral responses of C (λ) in Example 1.

Fig. 4 Spectral responses of H0 (λ) and H1 (λ) in Example 2.

It is seen that the spectral responses of the proposed filter
banks are flatter at λ = 0 and λ = 2 than the graphBior(8, 8),
and become sharper nearby λ = 1 with an increasing K0.
Furthermore, the spectral responses of C(λ) are shown in
Fig. 3, and Θ = 0.81, 0.85, 0.88 for K0 = 7, 10, 15 whereas
Θ = 0.81 for graphBior(8, 8). It is clear that the measure of
orthogonality Θ becomes better with an increasing K0.

Example 2: We have designed the biorthogonal graph
wavelet filter bank with K0 = K1 = 10, and λp = 0.8,
λs = 1.2. We have chosen L0 = 7 and designed H0(λ),
and then chosen L1 = 5, 7, 9 to design H1(λ). The spectral
responses of H0(λ) and H1(λ) are shown in Fig. 4. It is seen
that the equiripple spectral responses of H0(λ) and H1(λ)
have been obtained in the stopband by using the Remez
exchange algorithm, but H1(λ) has an overshooting above
λ = 1. The spectral responses of C(λ) are shown in Fig. 5,
and Θ = 0.77, 0.79, 0.82 for L1 = 5, 7, 9 respectively. It
is clear that the spectral error of H1(λ) in the stopband
becomes larger with an increasing L1, while the measure of
orthogonality Θ becomes better. Therefore, the measure of
orthogonality Θ can be improved by increasing the degree
L1 of flatness of the kernel filter H1(λ).

Example 3: We have designed the biorthogonal graph
wavelet filter bank with K0 = K1 = 10, and λp = 0.8,
λs = 1.2. We have chosen L0 = 11, 9, 7 and designed
H0(λ). The spectral responses of H0(λ) with L0 = 11, 9, 7
are shown in Fig. 6. Note that L0 = 11 means the maximally

Fig. 5 Spectral responses of C (λ) in Example 2.

Fig. 6 Spectral responses of H0 (λ) and H1 (λ) in Example 3.

Fig. 7 Spectral responses of C (λ) in Example 3.

flat half-band spectral kernel. It is seen that the spectral
error of H0(λ) become smaller with a decreasing L0. We
have then designed H1(λ) with L1 = 5, and the spectral
responses of H1(λ) are shown in Fig. 3 also. It is seen that the
equiripple spectral responses of H1(λ) have been obtained in
the stopband. Furthermore, the spectral responses of C(λ)
are shown in Fig. 7, andΘ = 0.49, 0.72, 0.77 for L0 = 11, 9, 7
respectively. It is seen that the the measure of orthogonality
Θ becomes better with a decreasing L0, where Θ of the
maximally flat kernel filter H0(λ) is the worst. Therefore,
the measure of orthogonalityΘ can be improved by reducing
the degree L0 of flatness of the kernel filter H0(λ).
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Fig. 8 (a) Minnesota traffic graph, (b) the graph signal, (c) the recon-
structed signal using graphBior(5, 5) (SNR: 51.61 dB), and (d) the recon-
structed signal using the proposed filter bank (SNR: 55.02 dB).

Example 4: To demonstrate that the graph wavelet
filter banks proposed in this paper is useful in analyzing and
compressing arbitrary signals defined on irregular graphs,
we have applied the graph wavelet filter bank with the max-
imally flat half-band spectral kernels (K0 = 1, K1 = 3) to
the Minnesota traffic graph signal [14], [15], [17]. The de-
gree of H0(λ) and H1(λ) are 3 and 10 respectively. The
graph is shown in Fig. 8(a), and the graph signal in Fig. 8(b),
where the color of the node represents the sample value. We
used the Matlab code provided in [15] and [17] to imple-
ment it. The signal is reconstructed by using a fraction of
absolute-largest highpass coefficients and all of lowpass co-
efficients. For comparison, the compression performance of
graphBior(5, 5) has been also investigated, where the degree
of H0(λ) and H1(λ) are 10 and 9 respectively. The recon-
structed signals are shown in Fig. 8(c) and 8(d), where 8% of
highpass coefficients are used, and the Signal-to-Noise-Ratio
(SNR) of the reconstructed graph signals are 55.02 dB for
the proposed filter bank, and 51.61 dB for graphBior(5, 5).
If 12% of highpass coefficients are used, the SNR increases
to 118.74 dB and 90.23 dB respectively. It is seen that the
graph wavelet filter banks proposed in this paper outperform
the existing graph wavelet filter banks.

6. Conclusion

In this paper, we have proposed a new class of critically sam-
pled compactly supported biorthogonal graph wavelet filter
banks with flat spectral responses. We have used the polyno-
mial half-band kernels to construct biorthogonal graph filter
banks, which structurally safisfy the perfect reconstruction
condition. We then have presented a design method for the
polynomial half-band kernel, in which the PBP is utilized to
ensure that the polynomial half-band kernel has the specified

zeros at λ = 2. Furthermore, we have applied the Remez
exchange algorithm to minimize the spectral error of low-
pass (highpass) filter in the band of interest. In the proposed
method, a set of coefficients can be easily obtained only by
solving a system of linear equations. The optimal solution
is attained through a few iterations. Therefore, the proposed
design algorithm is computationally efficient. Finally, sev-
eral design examples have been shown to demonstrate the
effectiveness of the design method proposed in this paper.
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