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PAPER

Image Adjustment for Multi-Exposure Images Based on
Convolutional Neural Networks

Isana FUNAHASHI†a), Student Member, Taichi YOSHIDA†b), Member, Xi ZHANG†c),
and Masahiro IWAHASHI††d), Senior Members

SUMMARY In this paper, we propose an image adjustment method for
multi-exposure images based on convolutional neural networks (CNNs).
We call image regions without information due to saturation and object
moving in multi-exposure images lacking areas in this paper. Lacking ar-
eas cause the ghosting artifact in fused images from sets of multi-exposure
images by conventional fusion methods, which tackle the artifact. To avoid
this problem, the proposed method estimates the information of lacking
areas via adaptive inpainting. The proposed CNN consists of three net-
works, warp and refinement, detection, and inpainting networks. The sec-
ond and third networks detect lacking areas and estimate their pixel values,
respectively. In the experiments, it is observed that a simple fusion method
with the proposed method outperforms state-of-the-art fusion methods in
the peak signal-to-noise ratio. Moreover, the proposed method is applied
for various fusion methods as pre-processing, and results show obviously
reducing artifacts.
key words: high dynamic range imaging, multi-exposure image fusion,
artifact removal, convolutional neural networks

1. Introduction

A set of multi-exposure images consists of ones that cap-
ture the same scene with different exposure-settings of dig-
ital cameras, and is variously utilized in image applica-
tions. Since the images are taken by ordinary digital cam-
eras with low dynamic range (LDR), they respectively have
over- and under-exposure regions for high dynamic range
(HDR) scene, where are called saturated regions in this pa-
per. The images have the information in saturated regions
of each other, and therefore the fusion of the sets produces
a fine image without saturated ones. The sets are utilized in
image applications such as HDR imaging, multi-exposure
image fusion, and so on [1]–[15].

The ghosting artifact occurs in an image produced by
fusing a set of multi-exposure images in which locations
of objects and details are different. Since ordinary digi-
tal cameras cannot take multi-exposure images at exactly
the same time, the difference generally occurs for natural
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Fig. 1 Results of multi-exposure image fusion. (a) input images, (b) im-
age fused by the conventional method [15], and (c) by the simple fusion
method [6] with the proposed method, where the top-right of (a) is defined
as standards for location of objects and deteils in fusion process.

scenes. When images with the difference are fused, the
same object appears at different locations in resultant one,
which is the ghosting artifact. Figure 1 shows an example
of multi-exposure fusion, where (a)–(c) show an input set
of multi-exposure images, an image fused by the conven-
tional method [15], and by a simple fusion method [6] with
the proposed method. From Fig. 1 (b), it is observed that the
artifacts occur at the wall of the building, for example in the
red frame.

For avoiding the ghosting artifact, various image fusion
and correction methods have been proposed [10]–[12], [15].
The traditional methods use the patch matching [7], [8]. For
a local region of an image, they effectively choose patches
in other ones that have the information of its same location
without saturation, and fuse them to produce a fine image.
The recent methods often use convolutional neural networks
(CNNs) [11], [14], [15]. They use CNN models for refining
multi-exposure images, fusing them, and estimating weights
for the fusion. CNN-based methods generally show superior

Copyright c© 2022 The Institute of Electronics, Information and Communication Engineers
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fused images to the traditional ones.
Unfortunately, the methods still produce the artifact in

areas where the set has no-information due to the saturation
and the object moving, which are called lacking areas in this
paper. For example, the lacking area is shown at the wall of
the building in Fig. 1 (a) that are highlighted with the red
frame. It is observed that these images have no-information
in that area. Almost all methods use the matching of im-
age features for avoiding the artifact. However, they induce
failed matchings in lacking areas, because they cannot ob-
tain image features of there.

In this paper, we propose a method that adjusts ob-
jects and details in multi-exposure images with adaptive in-
painting based on CNN for reducing the bad influence of
lacking areas. The proposed method adjusts a set of multi-
exposure images and estimates the lacking areas via adap-
tive inpainting by three CNNs, warping and refining, detec-
tion, and inpainting networks. The first network provides
pre-refinement for the set, the second one detects its lack-
ing areas, and finally, the third one restores there. Fusing
multi-exposure images adjusted by the proposed method de-
rives a fine image without not only the ghosting artifact but
also other artifacts, and thus it can be used as pre-processing
for HDR imaging, multi-exposure image fusion, and so on.
Figure 1 (c) shows a natural image that has no ghosting ar-
tifacts on the lacking area. In the experiments, the proposed
method shows fused images compared with state-of-the-art
ones [12], [15]. For general datasets of multi-exposure im-
ages, the simple fusion method [6] with the proposed one
shows better scores in peak signal-to-noise ratio (PSNR).
Moreover, through showing images fused by several meth-
ods [9], [12], [13] with and without the proposed one, it
is recognized that the proposed one obviously reduces ar-
tifacts. The contribution of this paper is as follows: The
definition of lacking areas is introduced, and it is shown that
the specific estimation of their information is effective for
fusion of multi-exposure images as pre-processing through
experiments. Based on this knowledge shown in this paper,
fusion methods are expected to reduce the artifact more ef-
ficiently.

The rest of the paper is organized as follows: Sec-
tion 2 describes related work of image adjustment methods
for multi-exposure images, fusion methods with artifact re-
moval, and inpainting methods. Section 3 presents the fun-
damentals of inpainting and CNN. Section 4 describes de-
tails of the proposed method. Section 5 shows evaluation
results with the proposed method and state-of-the-art meth-
ods for the ghosting artifact removal, and evaluation results
with the proposed method as pre-processing. In Sect. 6, we
conclude this paper.

2. Related Work

Image Adjustment for Multi-exposure Images

Methods of image adjustment for multi-exposure im-
ages take a reference image from a set of multi-exposure im-
ages, and then adjust objects and details of others to it [2]–

[5]. The traditional methods use matching algorithms with
features based on edges and key-points in images such as
SIFT [2], [3]. Tomaszewska and Mantiuk have proposed
a method that globally adjusts images based on SIFT fea-
tures [3], and Hu et al. have also proposed one based on
patch matching [16]. Unfortunately, there are no methods
that tackle lacking areas.

Fusion of Multi-exposure Images with Artifact Removal

Fusion methods with artifact removal for multi-
exposure images produce a fine image without artifacts from
a set of multi-exposure ones [10], [11], [14], [15], [17]. Sen
et al. have proposed a fusion method based on the optimiza-
tion of a patch-wise objective function [8]. A method that
uses dense SIFT features for measuring the spatial consis-
tency between each exposure image has been proposed by
Liu et al. [9]. Recently, several methods based on CNN have
been proposed [11], [14], [15]. Kalantari and Ramamoorthi
have proposed a method that uses alpha blending and esti-
mates its weights by a CNN model [11]. A method proposed
by Prabhakar et al. has a two-step network consisting of a re-
finement step of input images and a fusion step of resultant
ones [15]. Unfortunately, they induce miss-adjustments in
their adjustment and fusion processes due to lacking areas,
and therefore the artifacts still occur in their fused images.

Image Inpainting

Methods of image inpainting restore missing regions in
images [18]–[26]. The traditional methods use the diffusion
of pixel values and the matching of image patches [20]–[22].
Criminisi et al. have proposed a method that copies patches
based on residual structures and textures [20]. State-of-the-
art methods of image inpainting are usually based on CNNs
with supervised learning algorithms and generative adver-
sarial networks (GANs) [18], [23]–[26]. Pathak et al. firstly
used GANs to restore large missing regions [23]. Iizuka
et al. have proposed a method that has two discriminator net-
works calculating the global and local consistency of output
images for training [18]. The method has been developed by
Yu et al. based on the contextual attention layer, and it can
restore fine details [25]. Therefore, the proposed inpainting
network is realized based on it and uses the contextual at-
tention layer.

3. Fundamentals for Propposd Method

3.1 Dilated Convolution Layer

The dilated convolution layer is one of the famous convolu-
tional one for increasing receptive fields of CNNs [27]. Di-
lated convolution layers apply filters that have fixed spaces
between each filter elements for input signals. The operation
of dilated convolution layers is written as

yi, j =

k′h∑
u=−k′h

k′w∑
v=−k′w

Wk′h+u,k′w+vxi+lu, j+lv, (1)

where y, x, W, and l denote output and input signals, values
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of filter elements, and a factor of fixed spaces,

k′h =
kh − 1

2
, (2)

k′w =
kw − 1

2
, (3)

and kh and kw denote the size of filter kernels along two
directions, respectively [18]. Note that l is called a dila-
tion factor in this paper. Dilated convolution layers with
l = 1 are normal convolution ones. Dilated convolutional
layers with an exponential increase of dilation factors expo-
nentially grow the size of their receptive fields. Therefore,
CNNs with the layers can refer to image features in a large
region.

3.2 Contextual Attention Layer

The contextual attention layer reconstructs detailed features
of the output image from feature maps of input images [25].
The layer uses two feature maps of images, where one im-
age is called a target and another is a source. Firstly, the
layer extracts 3×3 patches from a feature map of the source
image. The layer calculates the normalized inner product of
the target patch ti′, j′ and the source patch si, j with the soft-
max operation as

pi, j,i′, j′ = softmax

(
〈 si, j

‖si, j‖ ,
ti′, j′

‖ti′, j′ ‖ 〉
)
, (4)

where pi, j,i′, j′ denotes the attention score of each pixel. The
operations are easily implemented by convolutional layers
and channel-wise softmax operations. Finally, the layer ap-
plies the transposed convolution that uses the source patches
as filters to the feature map of the target image. Thanks to
the above operations, features of the source image that is
most similar to the target patch of the target image are cho-
sen, and are copied to the target image.

3.3 Residual Block

The residual block is one of CNN architectures that enable
CNN methods to have a great depth. Residual blocks are

Fig. 2 Fusion process with the proposed method for more than two of images. (Reference image:
middle exposure one)

constructed with two convolutional layers, activation func-
tions, batch normalizations [28], and a skip connection [29].
It has been reported in [30] that the batch normalization re-
duces the flexibility of CNNs by its normalizing process. To
avoid this problem, a residual block without batch normal-
izations has been proposed [31]. Therefore, residual blocks
in the proposed CNN architectures also avoid batch normal-
izations.

4. Proposed Method

4.1 Overview

In this paper, we propose a CNN-based adjustment method
for a set of multi-exposure images. The proposed method
adjusts locations of objects and details in a source image
denoted as Isrc to ones in a reference image denoted as Iref .
For more than two images, Iref is firstly defined, then the
proposed method is applied for each source image, one by
one. For example, for three images, I1, I2, and I3, if I1 is de-
fined as Iref , the proposed method is applied for I2, and then
for I3. In Fig. 2, a fusion process of the proposed method is
shown with multi-exposure images, in which the middle ex-
posure image is determined as Iref . Thanks to the proposed
method as pre-processing of multi-exposure image fusion,
fused images avoid artifacts.

The proposed method is shown in Fig. 3 and consists
of three steps as follows; (1) warping and refining Isrc based
on the conventional method [15], (2) detecting areas for in-
painting, and (3) inpainting the detected areas. In the pro-
posed method, we warp Isrc with its calculated optical flows
and apply refinement for Isrc based on CNN [15]. Then lack-
ing areas are detected via the detection network, and the de-
tected results are used in the inpainting network as a mask
of inpainting.

4.2 Detection of Lacking Areas with CNN

Inputs of the proposed detection network are Isrc, Iref , and
estimated results of occlusion regions Osrc. They are con-
catenated along the color channel. Osrc indicates locations
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Fig. 3 Overview of the proposed method.

Fig. 4 Architecture of the proposed detection network.

of occlusion regions and is calculated from optical flows of
input images [32]. Osrc is a binary map whose size is equal
to input images. If a pixel of Isrc are in occlusion regions,
the corresponding element of Osrc are 1, and otherwise, 0.
The d-th element of Osrc is 1 when the following condition
is satisfied:∣∣∣ ffw(d) + fbw(d + ffw(d))

∣∣∣2
< 0.01 ×

(∣∣∣ ffw(d)
∣∣∣2 + ∣∣∣ fbw(d + ffw(d))

∣∣∣2) + 0.5,
(5)

where d is an index of pixels, and ffw and fbw denote optical
flows of Isrc estimated by Iref and Iref by Isrc, respectively.
These optical flows are estimated in the warping process (1)
shown in Fig. 3. The proposed detection network is repre-
sented as follows:

W = Fdtn(Iref , I
′
src,Osrc), (6)

where Fdtn and W denote the proposed detection network
and the map for I′src, respectively.

Figure 4 shows an architecture of the proposed detec-
tion network, which is based on the U-Net [33], and its pa-
rameters are shown in Table 1, where “Output ch.” and
“conv.” means the number of output channels and the con-
volution, respectively. The network has three downsampling

Table 1 Parameters of the proposed detection network.

Layer type Filter size Stride Padding Output ch.

Conv. 5 × 5 1 2 32

Conv. 3 × 3 1 1 64

Conv. 3 × 3 2 1 128

Conv. 3 × 3 1 1 128

Conv. 3 × 3 2 1 256

Conv. 3 × 3 1 1 256

Conv. 3 × 3 2 1 512

Conv. 3 × 3 1 1 512

Transposed conv. 4 × 4 2 1 256

Concatenation - - - 512

Conv. 3 × 3 1 1 256

Transposed conv. 4 × 4 2 1 128

Concatenation - - - 256

Conv. 3 × 3 1 1 128

Transposed conv. 4 × 4 2 1 64

Concatenation - - - 128

Conv. 3 × 3 1 1 64

Conv. 1 × 1 1 0 1

and concatenation processes. Different from the U-Net, we
use the convolution with stride 2 for the downsampling.
Thanks to the process, the proposed detection network uses
multi-resolution information of images. The ReLU [34] is
used as activation functions in the network except the last
layer , and the sigmoid function is applied after the last layer
to normalize into [0, 1].

4.3 Inpainting for Lacking Areas

The proposed inpainting network Finp restores lacking areas
as follows:

Îsrc = Finp(Iref , I
′
src,W), (7)
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Table 2 Parameters of the proposed inpainting network.

Layer type Filter size Stride Padding Dilation Output ch.

.5

(a)

Conv. 5 × 5 1 2 - 32

Conv. 3 × 3 2 1 - 64

Conv. 3 × 3 1 1 - 64

Conv. 3 × 3 2 1 - 128

.175
(b)

Contextual attention - - - - 128

Residual Conv. 3 × 3 1 1 - 128

block Conv. 3 × 3 1 1 - 128

.4

(c)

Conv. 5 × 5 1 2 - 32

Conv. 3 × 3 2 1 - 64

Conv. 3 × 3 1 1 - 64

Conv. 3 × 3 2 1 - 128

Residual Dilated conv. 3 × 3 1 2 2 128

block Dilated conv. 3 × 3 1 4 4 128

Residual Dilated conv. 3 × 3 1 8 8 128

block Dilated conv. 3 × 3 1 16 16 128

.4

(d)

Concatination - - - - 256

Residual Dilated conv. 3 × 3 1 2 2 256

block Dilated conv. 3 × 3 1 4 4 256

Transposed conv. 4 × 4 2 1 - 128

Conv. 3 × 3 1 1 - 128

Transposed conv. 4 × 4 2 1 - 64

Conv. 3 × 3 1 1 - 32

Conv. 1 × 1 1 1 - 3

Fig. 5 Architecture of the proposed inpainting network.

where Îsrc and I′src are restored and warped source images,
respectively. For inputs of the network, W is concatenated
to Iref and I′src along the color channel. Finally, the adjusted
image Ŷ is calculated by

Ŷ = I′src � (1 −W) + Îsrc �W, (8)

where � denotes the pixel-wise multiplication.
The proposed inpainting network is constructed with

contextual attention layers [25] and dilated convolution lay-
ers [27] mentioned in Sect. 3, which is shown in Fig. 5, and
Table 2 shows its parameters. First, the network extracts
feature maps by three parallel encoder networks. The first

and second encoder networks extract image features from
Iref and I′src for the contextual attention layer. Since the
contextual attention layer uses two features for calculating
their similarity, the encoder networks have same parameters
of convolutional layers. The third encoder network extracts
global features of images using the residual block with the
dilated convolution. The resultant features are concatenated
and merged by the decoder network to produce the inpaint-
ing result. The leaky ReLU [35] is used as activation func-
tions in the network expect the last layer and its parameter
is set 0.2. A sigmoid function is also applied after the last
layer to normalize into [0, 1].

4.4 Training for Proposed Networks

The proposed networks are trained through two steps that
are the pre-training of the proposed inpainting network and
the main training of the detection and inpainting network.
Unfortunately, there are no datasets for the pre-training of
the detection network, and therefore the two-step training is
used. Note that pixel values of datasets are linearly normal-
ized into [0, 1] in this training.

First, the proposed inpainting network is trained on a
large dataset of image inpainting. The input image I, which
randomly has lost regions, is produced by

I = x � m, (9)

where x is the raw image of I without the lost regions and m
is a binary mask that indicates their locations, respectively.
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x is also used as a ground truth image for the pre-training.
The resultant image x̂ is produced by

x̂ = I � (1 − m) + Finp(I, I,m) � m, (10)

where I is used twice as input instead of Iref and I′src in the
pre-training. For the loss function of the pre-training, the
pixel-wise mean absolute error (MAE) is used as

Lpre(x̂, x) =
1

3wh

w∑
i=1

h∑
j=1

‖x̂i, j − xi, j‖1, (11)

where w and h denote the width and height of images, and
xi, j and x̂i, j are vectors of RGB values at (i, j) pixel of x and
x̂ respectively. The ADADELTA algorithm is used in the
optimization [36].

Next, the proposed networks are trained on a dataset
of multi-exposure images. The source image is randomly
chosen from several exposure images with under- and over-
exposures, and hence the proposed model covers images of
several exposures for image adjustment. (10) shows that
the proposed method only uses differentiable operations for
combining results of the proposed networks. Therefore, the
computational graph of the detection and inpainting net-
works is connected, and they are trained at a time. For the
loss function, MAE is also used as

Lmain(Ŷ ,Y) =
1

3wh

w∑
i=1

h∑
j=1

‖Ŷi, j − Yi, j‖1, (12)

where Ŷi, j and Yi, j denote vectors of RGB values at (i, j)
pixel of the output image Ŷ and the ground truth image Y ,
respectively. The ADADELTA algorithm is also used in the
optimization [36].

5. Experiment

5.1 Training Details

Dataset

We used the Places2 dataset [37] for the pre-training
shown in Sect. 4. We randomly chose 10000 images from
the dataset, and separated them into training and validation
sets, which have 9000 and 1000 images, respectively. We
used images of resolution 256 × 256 with a 128 × 128 hole
and their masks as inputs, and used raw images without the
hole as ground truth.

We used the Kalantari dataset [11] for the main training
shown in Sect. 4. The dataset contains 74 sets of three multi-
exposure images and their HDR images. We determined
middle exposure images in the sets as the reference one. As
ground truth, we produced sets of multi-exposure images
from the HDR images via several camera response functions
and appropriate exposure values [38]. Training images were
resized into 384×256 and clipped to 256×256 patches with
a 64-pixel step, and we applied the rotation and the horizon-
tal flipping for the patches. Finally, the training dataset has

4440 sets of Isrc, Iref , and Y .

Implementation

We implemented the proposed network on Chainer
v7, CUDNN v7, CUDA v10.0, and trained it on Intel(R)
Xeon(R) E5-2620 v4 and GeForce(R) GTX1080ti. We used
a batch-size of 12 and 225000 iterations for the pre-training,
and a batch-size of 10 and 177600 ones for the main train-
ing. The method proposed by Mertens et al., which is simple
and ignores reducing artifacts, was used for the fusion [6].

5.2 Quantitative Evaluation

Quantitative evaluation for the proposed method is shown
here via the test set of the Kalantari dataset. In this sec-
tion, the proposed method is compared with state-of-the-
art ones of multi-exposure image fusion, proposed by Prab-
hakar et al. [15] and Ma et al. [12]. The dataset has natu-
ral sets of multi-exposure images with objects moving and
their HDR images. Therefore, for a fair comparison, LDR
images are produced as ground-truth by applying the global
tone-mapping for the HDR images, where exposure settings
are fit to ones of reference images and the Agfacolor Fu-
ture 100DC, which is modeled in [38], is used as the cam-
era response curve. Table 3 shows their PSNR scores, and
Fig. 6 (a), (b)–(d), and (e) show the input of multi-exposure
images, resultant images of each method, and the fused
ground truth for Image 3 in Table 3, respectively. Images in
the bottom row of Fig. 6 show enlarged images of each re-
sultant image. From Table 3, the proposed method achieves
the highest score in the average. Unfortunately, Prop.+ [6]
for Image 1 shows a lower PSNR score compared with the
conventional one, but it is observed from Fig. 6 that the pro-
posed method clearly reduces artifacts and hence produces
perceptually outperformed images. Thanks to the adaptive
inpainting, the proposed method reduces the artifacts and
produces better results.

Unfortunately, the proposed method sometimes pro-
duces inaccurate restorations for large lacking areas, shown
in enlarged images of Fig. 6 (d) and (e), and we will tackle
this problem in future work since it is caused by the inpaint-
ing network. Generally, the restoration of large areas is the
challenging task in inpainting [18]. Moreover, the training
dataset [11] includes a few sets of images having large lack-
ing areas, because it is constructed without considering lack-
ing areas. In future work, we will try to improve the archi-
tecture based on state-of-the-art methods of inpainting that

Table 3 Results of quantitative evaluation on the Kalantari dataset.

PSNR [dB]
[15] [12] Prop.+ [6]

Image 1 27.29 21.40 26.88
Image 2 24.18 20.53 27.86
Image 3 24.32 22.07 27.56
Image 4 29.21 25.96 31.14
Image 5 30.06 26.03 32.07

Average on the Kalantari dataset (15 sets) 26.92 22.87 27.34
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Fig. 6 Results of multi-exposure image fusion for Image 3. (a) Input images, (b)–(d) fused results by
[12], [15], and Prop.+ [6], and (e) ground truth, respectively, where in (b)–(e), the bottom row shows
enlarged images at red frames in the top row.

Fig. 7 Results of multi-exposure image fusion for a set of the Karaduzovic-Hadziabdic dataset. (a)
Input images, and (b)–(d) fused results by [12], [15], and Prop.+ [6], respectively, where in (b)–(d), the
bottom row shows enlarged images at red frames in the top row, and particular artifacts are highlighted
by red arrows.

are effective for various sizes of restored areas and gather
enough training sets that have lacking areas with various
sizes.

5.3 Evaluation in Natural Scenes

We show resultant images of the methods for other datasets
that have multi-exposure images without ground-truth fused
images. The Karaduzovic-Hadziabdic dataset [39] and the
Tursun dataset [40], which are taken in natural scenes and

widely used for the evaluation of artifact removal, are used.
Unfortunately, since they only have input images, this ex-
periment skips quantitative evaluation.

Figure 7 and Fig. 8 show results for the Karaduzovic-
Hadziabdic and the Tursun dataset, respectively, where (a)
and (b)–(d) show input images and ones fused by each
method. In Fig. 7, the bottom row shows enlarged images
of each resultant image. Since the Karaduzovic-Hadziabdic
dataset has very complex motions, unfortunately, Fig. 7 (b)
shows the visual artifact that looks like a shadow of the slide
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Fig. 8 Results of multi-exposure image fusion for a set of the Tursun dataset. (a) Input images, and
(b)–(d) fused results by [12], [15], and Prop.+ [6], respectively, where in (b)–(d), the middle and bottom
row shows enlarged images at red and green frames in the top row, respectively.

Fig. 9 Results of multi-exposure image fusion for a set of the Kalantari dataset. (a) Input images, and
(b)–(g) fused results by [9], Prop.+ [9], [13], Prop.+ [12], [13], and Prop.+ [12], respectively, where in
(b)–(g), the bottom row shows enlarged images at red frames in the top row.

and Fig. 7 (c) also shows several artifacts on the slide. How-
ever, Fig. 7 (d) shows no visual artifacts on that region. In
Fig. 8, the middle and lower rows are enlarged resultant im-

ages. Several artifacts are observed in Fig. 8 (b) and (c), but
(d) shows reducing them. It is observed from Figs. 7 and
8 that the proposed method contributes to visually reduce
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Fig. 10 Results of multi-exposure image fusion for a set of the Karaduzovic-Hadziabdic dataset. (a)
Input images, and (b)–(g) fused results by [9], Prop.+ [9], [13], Prop.+ [12], [13], and Prop.+ [12],
respectively, where in (b)–(g), the bottom row shows enlarged images at red frames in the top row.

artifacts, compare with state-of-the-art methods.

5.4 Evaluation as Pre-Processing for Fusion Methods

This evaluation shows the efficacy of the proposed method
as pre-processing for conventional fusion methods. Conven-
tional methods used in this section are proposed by Liu and
Wang [9], and Li et al. [13], and Ma et al. [12]. They are
typical fusion methods, and some of them tackle the ghost-
ing artifact. The Kalantari dataset and the Karaduzovic-
Hadziabdic dataset [11], [39] are used.

Figure 9 and Fig. 10 show results for the Kalantari
dataset and the Karaduzovic-Hadziabdic dataset, respec-
tively, where (a) shows input images, (b)–(g) shows resul-
tant fused ones by each method without and with the pro-
posed method, and the lower row shows enlarged resultant
ones. Figure 9 (b), (d), and (f) show ghosting artifacts that
look a translucent hand on the building, and they are visually
reduced in Fig. 9 (b), (d), and (f) respectively. Figure 10 (b)
and (d) show ghosting artifacts that look a translucent per-
son, and (f) shows artifacts on the floor. It is observed from
Figs. 9 and 10 that the proposed method has the efficacy to
reduce artifacts as pre-processing for several fusion meth-
ods.

6. Conclusion

In this paper, we introduced the lacking areas and proposed
a method that adjusts objects and details in multi-exposure
images with adaptive inpainting based on CNN for tackling
them. The proposed method consists of three CNNs, warp-
ing and refining, detection, and inpainting networks. The
second and third networks detect and restore the lacking ar-
eas, respectively, and the proposed method provides a set of
multi-exposure images without object moving and missing

information. It is shown through experiment that a simple
fusion method with the proposed method objectively out-
performs state-of-the-art methods, which tackle the ghosting
artifact, and the proposed one is effective as pre-processing
in fusion of multi-exposure images. Thanks to the detection
and inpainting network, the proposed method estimates in-
formation of lacking areas, and reduces artifacts on the area.
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