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Reducing Stopband Peak Errors of R-Regular 4th-Band Linear
Phase FIR Filters by Superimposing

LinnAung PE†, Nonmember, Toshinori YOSHIKAWA††a), Yoshinori TAKEI††, Xi ZHANG†††,
and Yasunori SUGITA††, Members

SUMMARY R-regular Mth band filters are an important class of digital
filters and are used in constructing Mth-band wavelet filter banks, where the
regularity is essential. But this kind of filter has larger stopband peak errors
compared with a minimax filter of the same length. In this paper, peak
errors in stopband of R-regular 4th-band filters are reduced by means of
superimposing two filters with successive regularities. Then the stopband
peak errors in the resulting filters are compared with the original ones. The
results show that the stopband peak errors are reduced significantly in the
synthesized filter that has the same length as the longer one of the two
original filters, at the cost of regularity.
key words: linear phase FIR filters, R-regular Mth-band filters, superim-
posing

1. Introduction

Among the digital filters, R-regular Mth-band filters play
an important role in constructing Mth-band wavelet filter
banks, where the regularity is essential. FIR Mth-band fil-
ters have been studied well [1]–[6]. Among these methods,
a closed-form solution is given for the maxflat R-regular FIR
Mth-band filters with exact linear phase in [2]–[4], while the
minimax solution can be found in [1] and [5]. But R-regular
Mth band linear phase FIR filters have larger peak errors
than mini-max filters of the same length. Their stopband
peak errors should be known as a function of the regularity
R to control their stopband behavior or to determine their
sufficient degree to achieve a prescribed requirement for the
error bound. Also, it is desirable to develop a method that
reduces the stopband peak errors while keeping a reasonable
regularity for that filter length.

In this paper, we concentrate on Type I linear phase
low pass filters in the case where band number M is 4, and
propose a method to reduce the stopband peak errors of R-
regular 4th-band filters, at the small decrease in regularity.
In this method, two filters with different regularities and dif-
ferent signs of the stopband peak errors are superimposed so
that the resulting peak error is minimized.
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This paper is organized as follows: in Sect. 2, the am-
plitude response of an R-regular Mth-band lowpass filter is
presented. Peak errors in stopband of R-regular 4th-band
FIR filters are presented in Sect. 3. We also investigate the
relations between the regularity R and the sign of magnitude
response in stopband with the use of Taylor expansion. In
Sect. 4, we develop a method of superimposing the two fil-
ters with different regularity and also present the stopband
peak errors of the superimposed filters. Finally, we end this
paper with conclusions in Sect. 5.

2. Amplitude Response of R-Regular Mth-Band Low-
pass Filter

The transfer function H(z) of an FIR digital filter with filter
length N can be represented with the following equation:

H (z) =
N−1∑
i=0

h [i] z−i (1)

where h[i] is the impulse response and its amplitude re-
sponse for the case of type I linear phase FIR filter can be
calculated by using

A (ω) =
N−1∑
i=0

h [i] e− j(i− N−1
2 )ω. (2)

A filter H(z) is said to be a maxflat R-regular Mth-band low-
pass filter, if the amplitude response A(ω) of Eq. (2) satisfies
for the frequency index k and regularity index r the relations

∂rA(ω)
∂ωr

∣∣∣∣∣
ω= 2πk

M

=

{
1 if k = r = 0;
0 otherwise,

(3)

where the range of k and r are (0 ≤ k ≤ M) and (0 ≤ r < R),
respectively. The closed formula for the coefficients h[i] that
satisfy Eq. (3) has been given in [2]–[4], as shown in

h[Mi + n] =

(−1)i
R−1∏
s=0
s�i

(
Ms + n − (N − 1)

2

)

MRi!(R − i − 1)!
(0 ≤ i < R, 0 ≤ n ≤ M − 1). (4)

These filters have the regularity R at every M division fre-
quency point and they are not optimized with respect to
stopband errors. However, it will be necessary for us to
know the stopband errors as a function of regularity.
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3. Peak Errors in Stopband of R-Regular 4th-Band
FIR Filters

In this section, we inspect the magnitude responses of R-
regular Mth-band linear phase FIR filters with the fixed band
number of M = 4. Then positive peak errors with even
regularity and negative peak errors with odd regularity in
stopband are observed.

With the specification of Eq. (3), type I maximally flat
4th-band lowpass filters are designed for different regulari-
ties. In Fig. 1, magnitude responses of lowpass filters with
regularities of R = 10, 30, 11 and 31 are presented. From
the figure, it can be found that all the magnitude responses
have a flat behavior at ω/2π = 0.0, 0.25 and 0.5. On the
other hand, near (but not exactly on) the midpoint of 0.25
and 0.5 in the stopband, namely at ω = 3π/4, the magni-
tude responses have peaks, that give the maximum error in
the stopband. We shall call them peak errors. Magnitude of
positive and negative peak errors are plotted as a function of

Fig. 1 Magnitude response of type I lowpass filters.

Fig. 2 Stopband peak errors vs. regularities (M = 4).

R in Fig. 2. It is found that the absolute value of the stop-
band peak error decreases as the regularity R increases in
both case of regularity R.

There are positive peak errors with even regularities
and negative peak errors with odd regularities in the stop-
band of the filters. Indeed, in terms of regularity R, the mag-
itude response has a Taylor expansion of the form A(ω) =
aR(ω − 2π/4)R + o((ω − 2π/4)R) where aR is a real number
and o(xR) denotes a function f (x) that f (x)/xR → 0 (x→ 0).
Then we have A(2π/4 + ξ)/A(2π/4 − ξ) → (−1)R (ξ → 0),
i.e., the magnitude response A(ω) does change its sign be-
tween ω/2π = 0.25 and 0.5 if and only if the regularity R is
odd.

4. Superimposing

As we have shown in Sect. 3, an even regularity results in
a positive peak error, while an odd regularity results in a
negative peak one. Also it was observed that the position of
the peak error is about ω = 3π/4, independently of R. By
these facts we can expect that superimposing two filters with
mutually different parities of regularities cancels negative
and positive peak errors and gives rise to a reduced error.

In this section, two filters of successive regularities R,
R+1 are superimposed and then stopband peak errors in the
resulting filter, to which we shall refer as a superimposed
filter, will be presented.

We restrict ourselves to the case of band number M =
4 because in this case it can be assumed that there is only
one positive peak error with even regularity and only one
negative peak error with odd regularity in the stopband of
the two filters which are going to be superimposed.

4.1 Method of Superimposing Two Filters

When the two filters are superimposed with different pari-
ties of regularities, let us call the filter with odd regularity
as Filter1 and the filter with even regularity as Filter2. Let
H1(z) and H2(z) be their transfer functions respectively. We
consider only the following cases: the regularity of H2(z)
which is either smaller or larger than H1(z) by one. The
reason why we consider only these case is that other choice
makes the resulting regularity after superposition small rela-
tive to the resulting filter length. The two filters have differ-
ent regularities and also different filter lengths. The formula
for filter length is given in the following equation as a spe-
cial case of Table 1 of [2]:

N =


4R + 1 (R is odd);

4R − 1 (R is even).
(5)

To coincide the center of the shorter filter impulse response
with that of the longer impulse, the shorter filter should be
delayed with an appropriate delay d which is determined by
the length of two filters. With the use of two filter’s transfer
function, transfer function of new superimposed filter can be
calculated by using the following equation:
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H3(z) =



αH1(z) + βz−dH2(z)

(if H1(z) is longer);

αz−dH1(z) + βH2(z)

(if H2(z) is longer),

(6)

where α and β are weights satisfying α + β = 1, which are
determined so that the positive and negative peak errors of
the resulting filter are balanced, i.e., have the same magni-
tude. And the weights are calculated numerically by an ap-
plication of the bisection method whose initial value is set
as the ratio of the magnitudes of the positive and negative
peak errors of Filter1 and Filter2, respectively.

4.2 Magnitude Responses of Superimposed Filters

In superimposing H1(z) with odd regularity and H2(z) with
even regularity, there are two cases. They are

1. R1 > R2 and
2. R1 < R2.

As we mentioned above, we only consider the cases R2 =

R1 ± 1. For the first case filter length difference is 6 and for
the second case the difference is only 2.

4.2.1 Pairs of Odd Regularity R1 and Even Regularity R2

(R1 > R2)

In the first case, odd regularity R1 of Filter1 is greater than
even regularity R2 of Filter2 by one. The length N1 of Filter1
is longer than Filter2 and this case correspond to the first
case of Eq. (6). Namely,

H3(z) = αH1(z) + (1 − α)z−d1 H2(z), (7)

where

d1 =
N1 − N2

2
(8)

=
((4R1 + 1) − (4R2 − 1))

2
= 6. (9)

In Fig. 3, magnitude responses of the superimposed fil-
ter and the two original filters (R1 = 11,R2 = 10) are pre-
sented. The superimposed filter has the regularity R2 =

min(R1,R2), which can be easily concluded by considering
the Taylor expansion of A(ω) at a 4-division point in the
stopband and has the filter length N3 = max (N1,N2).

Figure 4(a) shows the enlarged part of the peak error in
stopband of the superimposed filter and (b) shows the zero
location of that filter. Although there are only one positive
and one negative peak errors in the original two filters, there
are two positive peak errors and one negative peak error in
the stopband of the superimposed filter. But peak errors in
the stopband of the superimposed filter are much smaller
than the peak errors in original two filters. The filter lengths,
positive and negative peak errors of Filter1, Filter2 and su-
perimposed Filter3 are summarized in Table 1. By compar-
ing the peak errors of Filter1 and Filter3 which are of the
same length, we can conclude that our method can reduce
the peak errors in stopband of the filter effectively (nearly
95%) at only one decrease of the regularity.

Fig. 3 Magnitude responses of two original filters and the superimposed
filter (case 1).

(a) Peak error.

(b) Zero location.

Fig. 4 Peak error in stopband and zero location of the superimposed filter
(case 1).
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Table 1 Peak errors in new and original filters (case 1).

Filter length Positive Negative
M=4 N peak error peak error

−0.0311
R1=11 N1 = 45 — (−30.1 [dB])

0.0320
R2=10 N2 = 39 (−29.9 [dB]) —

0.0016 −0.0016
R3=10 N3 = 45 (−55.9 [dB]) (−55.9 [dB])

Errors reduced in % 95.00% 94.86%

Fig. 5 Magnitude responses of two original filters and the superimposed
filter (case 2).

4.2.2 Pairs of Odd Regularity R1 and Even Regularity R2

(R1 < R2)

Filter1 with odd regularity R1 which is less than even regu-
larity R2 of Filter2 is used in the second case. In this case,

H3(z) = αz−d2 H1(z) + (1 − α)H2(z), (10)

where

d2 =
N2 − N1

2
(11)

=
((4R2 − 1) − (4R1 + 1))

2
= 2. (12)

Magnitude responses of Filter1(R1 = 11), Filter2 (R2 =

12) and superimposed Filter3 are shown in Fig. 5. The en-
larged part of the stopband peak errors in Fig. 6(a) shows
that there are only one positive and one negative peak errors
in stopband of the superimposed filter. With the zero loca-
tion of the superimposed filter in Fig. 6(b), we also confirm
that there is only one zero location in the stopband of the
superimposed filter.

Table 2 gives summary of three filters. As was the case
in 4.2.1, the superimposition reduces peak errors consider-
ably at the cost of one regularity, compared with Filter1 of
the same length.

(a) Peak error.

(b) Zero location.

Fig. 6 Peak error in stopband and zero location of the superimposed filter
(case 2).

Table 2 Peak errors in new and original filters (case 2).

Filter length Positive Negative
M=4 N peak error peak error

−0.0311
R1=11 N1 = 45 — (−30.1 [dB])

0.0291
R2=12 N2 = 47 (−30.7 [dB]) —

0.0014 −0.0014
R3=11 N3 = 47 (−57.1 [dB]) (−57.1 [dB])

Errors reduced in % 95.19% 95.49%

5. Concluding Remarks

Peak errors in stopband of R-regular 4th-band linear phase
Type I low pass FIR filters have been reduced by superim-
posing two filters of successive regularities. We have pre-
sented the two cases depending on the pairs of regulari-
ties while maintaining the zero-crossing at every four points
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from the center in the impulse responses. Compared with
the longer filter of the two filters that are superimposed, the
resulting filter has the same length as that filter, the regular-
ity smaller by one, and much smaller stopband peak error
than those of the two original filters.
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