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PAPER
A New Class of Hilbert Pairs of Almost Symmetric Orthogonal
Wavelet Bases

Daiwei WANG†a), Nonmember and Xi ZHANG†b), Senior Member

SUMMARY This paper proposes a new class of Hilbert pairs of al-
most symmetric orthogonal wavelet bases. For two wavelet bases to form a
Hilbert pair, the corresponding scaling lowpass filters are required to satisfy
the half-sample delay condition. In this paper, we design simultaneously
two scaling lowpass filters with the arbitrarily specified flat group delay
responses at ω = 0, which satisfy the half-sample delay condition. In
addition to specifying the number of vanishing moments, we apply the Re-
mez exchange algorithm to minimize the difference of frequency responses
between two scaling lowpass filters, in order to improve the analyticity of
complex wavelets. The equiripple behavior of the error function can be ob-
tained through a few iterations. Therefore, the resulting complex wavelets
are orthogonal and almost symmetric, and have the improved analyticity.
Finally, some examples are presented to demonstrate the effectiveness of
the proposed design method.
key words: DTCWT, Hilbert transform pair, almost symmetric orthogonal
wavelets, FIR filter, Remez exchange algorithm

1. Introduction

The Dual-Tree Complex Wavelet Transform (DTCWT) was
originally introduced by Kingsbury [6], and has been found
to be successful in many applications of signal and image
processing [6]–[16]. The DTCWT can provide the signif-
icant improvement over the conventional discrete wavelet
transform (DWT) proposed in [1], e.g., it is of approximate
shift invariance, has an enhanced directional selectivity for
multidimensional signals, and gives the explicit phase in-
formation [14]. The DTCWT is generally constructed by
an approximate Hilbert transform pair of wavelets. It has
been shown in [11], [13]–[17] that the necessary and suffi-
cient condition for two wavelet bases to be a pair of Hilbert
transform is that the two corresponding lowpass filters must
satisfy the half-sample delay condition.

Several design procedures for constructing Hilbert pairs
of orthogonal wavelets had been proposed in [6]–[24]. In
[11], Selesnick had proposed the common-factor design
technique based on the maximally-flat allpass filter. This
method was simple and effective, because the approxima-
tion accuracy of the half-sample delay is controlled only by
the allpass filter. The common-factor method had been gen-
eralized by using IIR filters with numerator and denominator
of different degree to obtain a new class of IIR orthogonal
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solutions in [23]. However, the wavelet filters obtained by
the common-factor method have non-linear phase responses,
resulting in asymmetric wavelet bases. To obtain symmetric
wavelet bases, the Q-shift filter was proposed by Kings-
bury in [8], [9], [12]. In [8], two scaling lowpass filters
were selected to be the time-reversed version of each other.
Therefore, the group delay of lowpass filter is required to
be 1/4 (quarter) or 3/4-sample from the half-sample de-
lay condition, and thus the filter was called Q-shift filter.
Some design methods for Q-shift filters had been proposed
in [9], [12], [19], [21] to improve the vanishing moments,
symmetry and so on. In addition, SSH (symmetric self-
Hilbertian) filter had been proposed by Tay in [17] and its
design had been discussed in [18], [20], [22]. In princi-
ple, the SSH filter is the same as the Q-shift filter and then
must have a group delay of 1/4-sample. Moreover, a class
of almost symmetric orthogonal Hilbert pair of wavelets
had been also proposed in [24], where AOS (Almost-Odd-
Symmetric)/AES (Almost-Even-Symmetric) filters were de-
signed by approximating the symmetric impulse responses
instead of group delay. However, the group delay is fixed
to whole-sample or half-sample, since the center of sym-
metry is set to half the filter degree. The purpose of this
paper is to propose a design method for the Hilbert pairs
of wavelets with the group delay arbitrarily specified by the
user, including 1/4, half and whole-sample delay.

In many applications of signal processing, digital fil-
ters with the specified (fractional or integer) group delay are
often needed [3]. For the conventional DWTs, nearly sym-
metric orthogonal wavelets, e.g., coiflets, had been proposed
in [1, chapter 8.2], and the original coiflets had been also
generalized by varying the group delay atω = 0, where non-
integer group delay was used to obtain a rich class of new
wavelets [4], [5]. The DTCWT was proposed to improve the
drawbacks of DWT, e.g., lack of shift invariance. Similarly,
we can obtain a rich class of new DTCWTs by varying the
group delay.

In this paper, we propose a design method for a
new class of Hilbert pairs of almost symmetric orthogonal
wavelets. We specify the degree of flatness of group delay at
ω = 0 and the number of vanishing moments, and then apply
the Remez exchange algorithm to minimize the difference be-
tween two scaling lowpass filters in the frequency domain, in
order to improve the analyticity of complex wavelets. More-
over, two scaling lowpass filters are obtained simultaneously
by iteratively solving a set of equations. Therefore, the opti-
mal solution is attained through a few iterations. As a result,
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the complex wavelets are orthogonal and almost symmetric,
and have the improved analyticity. Differently from the Q-
shift and AOS/AES filters, the group delay of the filter can be
arbitrarily specified by the user. Finally, some examples are
presented to demonstrate the effectiveness of the proposed
method.

This paper is organized as follows. Section 2 briefly
reviews Hilbert transform pair of symmetric orthogonal
wavelets and the half-sample delay condition. In Sect. 3, the
design method of almost symmetric orthogonal wavelet fil-
ters with specified group delay responses is proposed. A new
design procedure for improving the analyticity of complex
wavelets is given by using the Remez exchange algorithm in
Sect. 4. In Sect. 5, the proposed filter banks are applied to
signal denoising to prove the effectiveness. Finally, Sect. 6
contains a conclusion.

2. Hilbert Pair of Symmetric Orthogonal Wavelets

It is known in [6] that the DTCWT employs two real DWTs,
where the first DWT generates the real part of DTCWT and
the other one is its imaginary part.

Let {ϕi (t), ψi (t)} be the scaling and wavelet functions of
two DWTs, where i = 1, 2. It had been proven in [11], [13]–
[17] that two wavelet functions ψi (t) are a Hilbert transform
pair;

ψ2(t) = H{ψ1(t)}, (1)

that is,

Ψ2(ω) =

− jΨ1(ω) (ω > 0)

jΨ1(ω) (ω < 0)
(2)

if and only if the corresponding scaling lowpass filters H1(z)
and H2(z) satisfy

H2(e jω) = H1(e jω)e−j (2M+
1
2 )ω (|ω | < π), (3)

where Ψ1(ω),Ψ2(ω) are the Fourier transform of
ψ1(t), ψ2(t), respectively, and M is an integer. Equation (3)
is the generalized half-sample delay condition†. Specifically,
the scaling lowpass filters should be offset from another one
by a half sample. It is seen in Eq. (3) that H2(e jω) needs
to be approximated to H1(e jω)e−j (2M+

1
2 )ω . Therefore, we

define the error function E(ω) as

E(ω) = H2(e jω) − H1(e jω)e−j (2M+
1
2 )ω . (4)

If two wavelet functions are an ideal pair of Hilbert
transform, the complex wavelet ψc (t) = ψ1(t) + jψ2(t) is
analytic, i.e., the spectrum is one-sided;

Ψc (ω) = Ψ1(ω) + jΨ2(ω) =


2Ψ1(ω) (ω > 0)

0 (ω < 0)
(5)

†In this paper, M = 0 is used in all design examples.

which is ideally 0 in the negative frequency domain. How-
ever, it is impossible to achieve the ideal Hilbert transform
with realizable filters. To evaluate the analyticity of complex
wavelets, we use the p-norm of the spectrumΨc (ω) to define
an objective measure of quality as

Ep =
| |Ψc (ω) | |p,(−∞,0)

| |Ψc (ω) | |p, (0,∞)
, (6)

where

| |Ψc (ω) | |p,Ω =
(∫
Ω

|Ψc (ω) |pdω
) 1

p

. (7)

If p = ∞, E∞ = lim
p→∞

Ep evaluates the peak error in the
negative frequency domain with respect to that in the positive
frequency domain. If p = 2, E2 evaluates the square root
of the negative frequency energy with respect to that in the
positive frequency domain. In this paper, we will use E∞
and E2 to evaluate the analyticity of the complex wavelets.

In two channel filter banks, the scaling lowpass filter
Hi (z) is used as lowpass filter in analysis filter bank, then
Gi (z) = z−N Hi (−z−1) is highpass filter of analysis filter
bank. In synthesis filter bank, H̃i (z) = z−N Hi (z−1) is low-
pass and G̃i (z) = Hi (−z) is highpass filter, where N is the
filter degree and must be an odd number. Therefore, the scal-
ing lowpass filter has to satisfy the condition of orthogonality
to generate the orthonormal wavelet bases;

Hi (z)Hi (z−1) + Hi (−z)Hi (−z−1) = 2. (8)

Moreover, two scaling lowpass filters are required to have
linear phase responses for wavelet bases to be symmetric.
That is, the desired phase response θdi (ω) of Hi (z) is

θdi (ω) = −τiω. (9)

From the half-sample delay condition, τ2 = τ1 +2M +1/2 is
required. Since the group delay τ1 can be arbitrarily given,
the almost symmetric scaling functions with the arbitrarily
specified center of symmetry can be obtained.

3. Design of Almost Symmetric Orthogonal Wavelet
Filters

In this section, we discuss the design of scaling lowpass
filters Hi (z) with the specified flat group delay and the spec-
ified number of vanishing moments. Many criterions can
be used to approximate the group delay, e.g., the maximally
flat, the weighted least square, the equiripple approximation,
and so on. To obtain a number of vanishing moments on
scaling functions [1], [5], we consider the flatness condition
of group delay.

The transfer functions Hi (z) of FIR filters are given by

Hi (z) =
N∑
n=0

hi (n)z−n, (10)

where hi (n) are real filter coefficients. Let θi (ω) be the phase
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response of Hi (z), the difference θei (ω) between θi (ω) and
θdi (ω) is given by

θei (ω) = θi (ω) − θdi (ω) = tan−1 Ni (ω)
Di (ω)

, (11)

where


Ni (ω) =

N∑
n=0

hi (n) sin{(τi − n)ω}

Di (ω) =
N∑
n=0

hi (n) cos{(τi − n)ω}
(12)

The group delay response τi (ω) is required to be flat with
the specified degree of flatness at ω = 0;


τi (0) = τi

∂2rτi (ω)

∂ω2r

�����ω=0
= 0 (r = 1, 2, · · · , L − 1)

(13)

where L (> 0) is a parameter that controls the degree of
flatness. Since τi (ω) = − ∂θi (ω)

∂ω , Eq. (13) is equivalent to

∂2r+1θei (ω)

∂ω2r+1

������ω=0

= 0 (r = 0, 1, · · · , L − 1). (14)

By using Eq. (11), Eq. (14) can be reduced to

∂2r+1Ni (ω)
∂ω2r+1

�����ω=0
= 0 (r = 0, 1, · · · , L − 1). (15)

We substitute Ni (ω) in Eq. (12) into Eq. (15), and then derive
a set of linear equations;

N∑
n=0

(τi − n)2r+1hi (n) = 0 (r = 0, 1, · · · , L − 1). (16)

It is clear that there are L equations in Eq. (16) with respect
to (N + 1) unknown coefficients hi (n).

In addition to the phase condition, the wavelets are also
required to have the specified number of vanishing moments
and satisfy the condition of orthonormality. From the view-
point of regularity, Hi (z) must have K zeros at z = −1;

Hi (z) = Q(z)(1 + z−1)K, (17)

which is equivalent to

∂r Hi (e jω)
∂ωr

�����ω=π = 0 (r = 0, 1, · · · , K − 1). (18)

By substituting Hi (e jω) in Eq. (10) into Eq. (18), we obtain
a set of linear equations as follows;

N∑
n=0

(−1)nnr hi (n) = 0 (r = 0, 1, · · · , K − 1), (19)

where there are K equations with respect to hi (n).
Moreover, we rewrite the orthonormal condition in

Eq. (8) as

N−2n∑
k=0

hi (2n + k)hi (k) = δ(n) =


1 (n = 0)

0 (n > 0)
(20)

It is clear that there exist (N + 1)/2 equations in Eq. (20).
If K + L = (N + 1)/2, the number of equations becomes
K + L + (N + 1)/2 = N + 1 in Eqs. (16), (19) and (20) with
respect to (N + 1) unknown coefficients hi (n). By solving
Eqs. (16), (19) and (20), hi (n) can be obtained for i = 1, 2, as
proposed in [19]. It should be noted that the orthogonality
condition in Eq. (20) is a set of quadratic constraints on the
coefficients hi (n), which is generally difficult to solve. In this
paper, we linearize Eq. (20) and use an iterative procedure to
solve it (see Appendix).

4. Design of Almost Symmetric Orthogonal Wavelets
with Improved Analyticity

In this section, we consider the case of L + K < (N + 1)/2.
The remaining degree of freedom is I = (N + 1)/2− K − L.
We use the remaining degree of freedom to improve the
analyticity.

Let ω̂k (0 < ω̂0 < ω̂1 < · · · < ω̂I−1 < π) be the
frequency points at which we want to make the error to be
zero;

E(ω̂k ) = H2(e jω̂k ) − H1(e jω̂k )e−j (2M+
1
2 )ω̂k = 0, (21)

which is separated into real and imaginary parts to get a set
of linear equations as follows;



N∑
n=0

h2(n) cos(nω̂k ) − h1(n) cos
(
n+2M+

1
2

)
ω̂k = 0

N∑
n=0

h2(n) sin(nω̂k ) − h1(n) sin
(
n+2M+

1
2

)
ω̂k = 0

(22)

for k = 0, 1, · · · , I − 1. There are totally 2K + 2L + N + 1 +
2I = 2(N + 1) equations in Eqs. (16), (19), (20) and (22)
with respect to 2(N + 1) unknown coefficients h1(n), h2(n).
Therefore, we can obtain h1(n) and h2(n) simultaneously by
solving Eqs. (16), (19), (20) and (22).

Next, we propose a new design procedure to improve the
analyticity of complex wavelet, where the Remez exchange
algorithm in [2] is used to minimize the magnitude of the
error function E(ω). The error function E(ω) has I +1 peak
points from the coefficients obtained by solving Eqs. (16),
(19), (20) and (22). Therefore, we want to make it to be
equiripple. In this paper, we apply the Remez exchange
algorithm to obtain the equiripple behavior of E(ω).

Let ωi (0 < ω0 < ω1 < · · · < ωI < π) be the fre-
quencies of the peak points of E(ω), which are computed by
using the obtained filter coefficients. Then we formulate the
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error function E(ω) as follows;

E(ωi) = H2(e jωi ) − H1(e jωi )e−j (2M+
1
2 )ωi = δe j (θe (ωi )+∆θ)

(23)

where δ is a magnitude error and ∆θ is a phase error. The
phase θe (ωi) is computed by using the obtained coefficients.
Since δe j∆θ = δ cos(∆θ) + jδ sin(∆θ) = δc + jδs , Eq. (23)
becomes



N∑
n=0
{h2(n) cos(nωi) − h1(n) cos

(
n + 2M +

1
2

)
ωi }

−δc cos(θe (ωi)) + δs sin(θe (ωi)) = 0

N∑
n=0
{h2(n) sin(nωi) − h1(n) sin

(
n + 2M +

1
2

)
ωi }

−δc sin(θe (ωi)) − δs cos(θe (ωi)) = 0
(24)

for i = 0, 1, · · · , I. It should be noted that Eqs. (16), (19),
(20) from both of scaling lowpass filters and Eq. (24) have
2K+2L+N+1+2(I+1) = 2N+4 equations with respect to
2N + 2 coefficients hi (n) plus δc and δs . Therefore, we can
solve this set of equations to obtain a set of filter coefficients
h1(n) and h2(n) simultaneously. Furthermore, we make use
of an iterative procedure to obtain the equiripple magnitude
of E(ω). Thus, the optimal filter coefficients can be easily
obtained through a few iterations. The design algorithm is
given in detail as follows.

Design Algorithm {Design of Hilbert Pairs of Almost Sym-
metric Orthogonal Wavelets}

Begin

1. Read N , K , L and τ1.
2. Select initial frequency points ω̂k (0 < ω̂0 < ω̂1 <
· · · < ω̂I−1 < π) equally spaced in (0, π).

3. Solve Eqs. (16), (19), (20) and (22) to obtain a set of
initial coefficients h1(n), h2(n).

4. Compute E(ω) to find the peak frequency points
Ωi (0 < Ω0 < Ω1 < · · · < ΩI < π) of |E(ω) |.

Repeat

5) Set ωi = Ωi (i = 0, 1, · · · , I).
6) Solve Eqs. (16), (19), (20) and (24) to obtain a set of

filter coefficients h1(n), h2(n).
7) Compute E(ω) to find the peak frequency points
Ωi (0 < Ω0 < Ω1 < · · · < ΩI < π) of |E(ω) |.

Until
Satisfy the following condition for a prescribed small

constant ϵ (e.g., ϵ = 10−10);

I∑
i=0
|ωi −Ωi | < ϵ

End.

Fig. 1 Magnitude responses of H1 (z) in Example 1.

Fig. 2 Magnitude responses of H2 (z) in Example 1.

Fig. 3 Group delay responses of H1 (z) and H2 (z) in Example 1.

Example 1: We have used the proposed method to de-
sign H1(z) and H2(z) with N = 15, K = 4, and τ1 = 9.0,
τ2 = 9.5. We choose {L, I} = {3, 1}, {2, 2}, {1, 3}, respec-
tively. The magnitude responses of three scaling lowpass
filters are given in Figs. 1 and 2, respectively. Their group
delay responses are shown in Fig. 3, where the half-sample
delay condition is approximately achieved. Moreover, the
magnitudes of E(ω) are shown in Fig. 4. It is clear that the
euqiripple magnitudes of E(ω) have been obtained, and the
maximum value of |E(ω) | has been effectively minimized
by applying the Remez exchange algorithm. Furthermore,
the complex wavelet spectrum Ψc (ω) are given in Fig. 5,
which are close to one-sided spectrum. Finally, the analytic-
ity measures of E∞ and E2 are summarized in Table 1, where
the analyticity of complex wavelets has been improved.

Example 2: We have designed H1(z) and H2(z) with
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Fig. 4 Magnitude responses of E (ω) in Example 1.

Fig. 5 Magnitude responses of Ψc (ω) in Example 1.

Table 1 Analyticity measures E∞ and E2 in Example 1.

L I E∞ (%) E2 (%)
3 1 1.146 1.360
2 2 0.671 0.569
1 3 0.638 0.665

N = 21, K = 6, L = 3 and I = 2. The group delay τ1 is
selected as τ1 = 9.3, then τ2 = 9.8 from the half-sample
delay condition. The magnitude responses of the scaling
lowpass filters Hi (z) are shown in Figs. 6 and 7. For com-
parison, the magnitude responses of other two filters with
τ1 = 8.1, τ2 = 8.6 and τ1 = 11.0, τ2 = 11.5 are shown also
in Figs. 6 and 7. The corresponding group delay responses
are shown in Fig. 8. Moreover, the magnitudes of E(ω) are
shown in Fig. 9, and are equiripple. It is seen that the maxi-
mum value of |E(ω) | depends on the group delay τi too. In
addition, the scaling functions ϕi (t) and wavelet functions
ψi (t) are given in Fig. 10, respectively. In Fig. 10, the scal-
ing functions have different center of symmetry, while the
center of symmetry of wavelet functions remain unchanged.
However, the scaling and wavelet functions have different
behaviors depending on the group delays. Furthermore, the
complex wavelet spectrum Ψc (ω) are given in Fig. 11, and
the analyticity measures of E∞ and E2 are summarized in
Table 2. It is clear that a proper group delay can improve the
analyticity.

Example 3: We have designed H1(z) and H2(z) with
N = 15, K = 2, L = 3 and I = 3. We set τ1 = 7.25 and
τ2 = 7.75. For comparison, the Q-shift filter in [12] was also

Fig. 6 Magnitude responses of H1 (z) in Example 2.

Fig. 7 Magnitude responses of H2 (z) in Example 2.

Fig. 8 Group delay responses of H1 (z) and H2 (z) in Example 2.

Fig. 9 Magnitude responses of E (ω) in Example 2.

designed, where N = 15, K = 1, τ1 = 7.25, τ2 = 7.75, and
AOS/AES filter in [24] where N = 15, K = 4, τ1 = 7.00, τ2 =
7.50. The magnitude responses of the scaling lowpass filters
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Table 2 Analyticity measures E∞ and E2 in Example 2.

τ1 τ2 E∞ (%) E2 (%)
8.1 8.6 0.380 0.372
9.3 9.8 1.251 1.092
11.0 11.5 0.740 0.634

Fig. 10 Scaling functions ϕi (t) and wavelet functions ψi (t) in Example
2.

Fig. 11 Magnitude responses of Ψc (ω) in Example 2.

Hi (z) are shown in Figs. 12 and 13, respectively. It is seen
that the Q-shift filter has the sharpest magnitude response,
but has only one zero at z = −1, and AOS/AES filter has four
zeros at z = −1, then is more flat. In Figs. 12 and 13, the
magnitude response of the filter with {τ1 = 6.50, τ2 = 7.00}
is also shown. Their group delay responses are shown in
Fig. 14, which are consistent with the specified group delays
atω = 0 and more flat than the Q-shift and AOS/AES filters.
Moreover, the magnitudes of E(ω) are shown in Fig. 15,
and are smaller than the Q-shift and AOS/AES filters. The
complex wavelet spectrum Ψc (ω) are shown in Fig. 16 and
the analyticity measures of E∞ and E2 are summarized in
Table 3. It is clear that the analyticity of the proposed filters
are better, compared with the Q-shift and AOS/AES filters.

Fig. 12 Magnitude responses of H1 (z) in Example 3.

Fig. 13 Magnitude responses of H2 (z) in Example 3.

Fig. 14 Group delay responses of H1 (z) and H2 (z) in Example 3.

5. Application to Signal Denoising

One of successful applications of wavelets is signal denois-
ing [7]. In this section, we use the proposed filter banks
in application of signal denoising to prove its effectiveness.
The test signals used in this experiment are Blocks, Bumps,
Doppler and Heavy Sine in [7]. The original signal is cor-
rupted by some additive zero-mean white Gaussian noise
with variance σ2. We have generated the noisy signals with
σ = 0.4.

Wavelet thresholding denoising consists of three steps:
1) transform the noisy signal into the wavelet domain to ob-
tain wavelet coefficients, 2) suppress the wavelet coefficients
smaller than the given threshold λ, 3) take the inverse trans-
form to reconstruct the denoised signal. In this paper, we
have used the hard-thresholding operator, that is, the wavelet
coefficient is discarded if its absolute value is smaller than
λ. It is shown in [14] that the DTCWT is more efficient
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Fig. 15 Magnitude responses of E (ω) in Example 3.

Fig. 16 Magnitude responses of Ψc (ω) in Example 3.

than DWT for denoising, since the DTCWT is nearly shift-
invariant, while DWT is lack of shift invariance. We have
used the decomposition scheme proposed in [8] and [9]. For
the first level of decomposition, the same filter bank of length
8 proposed in [10] was adopted with one sample delay differ-
ence. For the rest of levels, we used the proposed filter banks
with τ1 = 7.25 and τ1 = 6.50 in Example 3, the Q-shift filter
with τ1 = 7.25 and AOS/AES filter with τ1 = 7.00 for com-
parison. We have chosen the best threshold λ to obtain the
highest SNR. The SNR are shown in Table 4, where the best
results are highlighted. It is clear that the filter bank pro-
posed in this paper can achieve a better performance (higher
SNR) than the Q-shift and AOS/AES filters. It is because
the proposed filter has the improved analyticity.

6. Conclusion

In this paper, we have proposed a new class of Hilbert pairs
of almost symmetric orthogonal wavelets. We have specified
the degree of flatness of group delay at ω = 0 and the num-
ber of vanishing moments, then applied the Remez exchange
algorithm to minimize the magnitude of the error function,
resulting in the improved analyticity of complex wavelets.
Moreover, two scaling lowpass filters can be obtained simul-
taneously by iteratively solving a set of equations. Therefore,
the optimal solution is easily attained through a few itera-
tions. Since the group delay of scaling lowpass filters can
be specified arbitrarily, the resulting scaling functions are
almost symmetric with an arbitrary center of symmetry.

Table 3 Analyticity measures E∞ and E2 in Example 3.

L I K τ1 τ2 E∞ (%) E2 (%)
Q-shift filter 1 7.25 7.75 1.139 1.338
AOS/AES 4 7.00 7.50 1.310 1.093

3 3 2 6.50 7.00 0.150 0.175
3 3 2 7.25 7.75 0.429 0.441

Table 4 Comparison of SNR (dB) for signal denoising.

Signal Q-shift filter AOS/AES τ1 = 7.25 τ1 = 6.50
Blocks 19.79 19.86 19.95 20.00
Bumps 23.14 23.10 23.30 23.11
Doppler 22.48 22.31 22.06 22.49

Heavy Sine 29.54 29.66 30.00 31.12
Average 23.74 23.73 23.83 24.18
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Appendix: Linearization of Orthogonality Condition

In the design method proposed in this paper, we need to
solve a set of nonlinear equations, where only the orthogo-
nality condition in Eq. (20) is a set of quadratic constraints
on the filter coefficients hi (n). In general, it is difficult to
solve this nonlinear problem, particularly if the filter is of
higher degree, although some nonlinear optimization tools
are available, such as Matlab optimization toolbox. In this
paper, we linearize the nonlinear equation in Eq. (20), and
then use an iterative procedure to obtain a set of filter coef-
ficients, as proposed in [12].

Let h(m)
i (n) be the filter coefficients at mth iteration,

which is given by

h(m)
i (n) = h(m−1)

i (n) + ∆h(m)
i (n). (A· 1)

Then Eq. (20) becomes

N−2n∑
k=0

h(m−1)
i (k + 2n)h(m−1)

i (k) + h(m−1)
i (k + 2n)∆h(m)

i (k)

+h(m−1)
i (k)∆h(m)

i (k+2n)+∆h(m)
i (k)∆h(m)

i (k+2n)=δ(n).
(A· 2)

Assuming ∆h(m)
i (n) becomes small enough as m increases,

the term∆h(m)
i (k)∆h(m)

i (k+2n) can be neglected. Eq. (A· 2)
becomes

N∑
k=0
{h(m−1)

i (k + 2n) + h(m−1)
i (k − 2n)}∆h(m)

i (k)

= δ(n) −
N−2n∑
k=0

h(m−1)
i (k + 2n)h(m−1)

i (k),

(A· 3)

where h(m−1)
i (n) = 0 for n < 0 and n > N . It is clear

that Eq. (A· 3) is a set of linear equations with respect to
∆h(m)

i (n), if h(m−1)
i (n) is known. Therefore, we can ob-

tain ∆h(m)
i (n) by solving the set of linear equations in

Eqs. (16), (19), (A· 3), and (22) or (24). The filter coeffi-
cients h(m)

i (n) are subsequently updated by ∆h(m)
i (n) as in

Eq. (A· 1). Therefore, if a proper set of initial coefficients
h(0)
i (n) is given, it will converge in the optimal solution (see

[19]).

Daiwei Wang received the B.E. degree
in information and communication engineering
from the Harbin Engineering University (HEU),
Harbin, China, in 2009, and the M.E. degree
in communication engineering and informat-
ics from University of Electro-Communications
(UEC), Tokyo, Japan, in 2011. He is currently
pursuing the Ph.D. degree in the Department
of Communication Engineering and Informat-
ics under the supervision of Prof. Xi Zhang, spe-
cialising in digital signal processing, filter design

theory, filter banks and wavelets.

Xi Zhang received the B.E. degree in elec-
tronic engineering from the Nanjing University
of Aeronautics and Astronautics (NUAA), Nan-
jing, China, in 1984, and the M.E. and Ph.D.
degrees in communication engineering from the
University of Electro-Communications (UEC),
Tokyo, Japan, in 1990 and 1993, respectively.
He was with the Department of Electronic Engi-
neering at NUAA from 1984 to 1987, and with
the Department of Communications and Systems
at UEC from 1993 to 1996, all as an Assistant

Professor. He was with the Department of Electrical Engineering at Na-
gaoka University of Technology (NUT), Niigata, Japan, as an Associate
Professor, from 1996 to 2004. Currently, he is with the Department of
Communication Engineering and Informatics at UEC, as a full Professor.
He was a Visiting Scientist of the MEXT of Japan with the Massachusetts
Institute of Technology (MIT), Cambridge, from 2000 to 2001. His research
interests are in the areas of digital signal processing, filter design theory,
filter banks and wavelets, and its applications to image and video coding.
Dr. Zhang is a senior member of the IEEE. He received the third prize
of the Science and Technology Progress Award of China in 1987, and the
challenge prize of Fourth LSI IP Design Award of Japan in 2002. He served
as an Associate Editor for the IEEE SIGNAL PROCESSING LETTERS
from 2002 to 2004.

http://dx.doi.org/10.1109/tsp.2005.859261
http://dx.doi.org/10.1109/tsp.2005.859261
http://dx.doi.org/10.1109/tsp.2005.859261
http://dx.doi.org/10.1109/tip.2006.875178
http://dx.doi.org/10.1109/tip.2006.875178
http://dx.doi.org/10.1109/tip.2006.875178
http://dx.doi.org/10.1109/lsp.2006.874453
http://dx.doi.org/10.1109/lsp.2006.874453
http://dx.doi.org/10.1109/lsp.2006.874453
http://dx.doi.org/10.1109/lsp.2006.874453
http://dx.doi.org/10.1109/lsp.2007.913609
http://dx.doi.org/10.1109/lsp.2007.913609
http://dx.doi.org/10.1109/lsp.2007.913609
http://dx.doi.org/10.1109/lsp.2007.913609
http://dx.doi.org/10.1109/icip.2011.6116180
http://dx.doi.org/10.1109/icip.2011.6116180
http://dx.doi.org/10.1109/icip.2011.6116180
http://dx.doi.org/10.1016/j.sigpro.2011.08.004
http://dx.doi.org/10.1016/j.sigpro.2011.08.004
http://dx.doi.org/10.1109/iscas.2012.6271764
http://dx.doi.org/10.1109/iscas.2012.6271764
http://dx.doi.org/10.1109/iscas.2012.6271764
http://dx.doi.org/10.1109/lsp.2012.2196692
http://dx.doi.org/10.1109/lsp.2012.2196692
http://dx.doi.org/10.1109/lsp.2012.2196692
http://dx.doi.org/10.1109/tsp.2012.2212893
http://dx.doi.org/10.1109/tsp.2012.2212893
http://dx.doi.org/10.1109/tsp.2012.2212893
http://dx.doi.org/10.1016/j.sigpro.2013.08.016
http://dx.doi.org/10.1016/j.sigpro.2013.08.016
http://dx.doi.org/10.1016/j.sigpro.2013.08.016

