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A new method for designing zero phase IIR Nyquist filters with
zero intersymbol interference is presented. The proposed method
is based on the eigenvalue problem by using the Remez exchange
algorithm in the stopband, and the optimal filter coefficients can
be easily obtained by computing the absolute minimum
eigenvector and applying an iteration procedure.

Introduction: Nyquist filters play an important role in designing
data transmission systems and filter banks. Nyquist filters are
required to band-limit data spectrum and to minimise intersymbol
interference simultaneously. FIR Nyquist filters that have been
exhaustively studied in [1 — 3] have an exact linear phase, but gen-
erally need high-order filters to meet stringent magnitude specifi-
cations. IIR Nyquist filters [4] can obtain better magnitude
responses than FIR filters. However, the proposed design proce-
dure is time-consuming.

In this Letter, we present a new method for designing zero
phase ITR Nyquist filters with zero intersymbol interference. First,
we show that zero phase ITR Nyquist filters with zero intersymbol
interference have a property where the magnitude in the passband
is mainly decided by a stopband error. Therefore, the design prob-
lem will become the minimisation of magnitude error in the stop-
band. By applying the Remez exchange algorithm in the stopband,
we formulate the design problem in the form of an eigenvalue
problem [5]. Then the optimal filter coefficients with an equiripple
stopband response can then be easily obtained after solving the
eigenvalue problem and using an iteration procedure.

Property of IIR Nyquist filters: To minimise intersymbol interfer-
ence, the Nyquist filter H(2) is required to have an exact zero-cross
mmpulse response except for one point, i.e.
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where K, M are integers. H(z) is also required to be lowpass with
passband and stopband cutoff frequencies ®, = (1-p)w/M, o, =
(1+p)n/M, where p is a rolloff rate. It is known in [4] that the
transfer function of IIR Nyquist filters that satisfy eqn. I can be
expressed in the form
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where the filter coefficients a,, b, are real, and N,, N, are integers.
To obtain zero phase, we set K = 0 and the filter coefficients to be

symmetric, i.e.
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Note that eqn. 3 is noncausal, and must be decomposed into
causal and anticausal parts to be implemented. The anticausal part
can be realised by using time reversal for finite length inputs, or
using the time reversed section technique [6] for infinite length
inputs. The magnitude response of H{z) is given by
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It 1s well-known that the cosine function satisfies
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Therefore, we obtain
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which means that the sum of the magnitudes at the frequency
points o+2mm/M (m = 0, 1, ..., M-1) keep unity regardless of
what the values of the coefficients ¢; and d, are. Since H{e/*™®))
H{(e’®), eqn. 7 can be rewritten as

M—1
H(ed) =1~ Z H{ewr)
k=1

where @, = L{k+1}/22/M + (1), and Lx] denotes the integer
part of x. It is clear that if the magnitude response is 0 in the stop-
band, then the passband response must be 1. Therefore, the pass-
band ripple is mainly decided by the stopband ripple. Let 8, be the
maximum error in the stopband, the maximum error in the pass-
band is in the worst case §, = (M-1)5,. Usually, §, is much smaller
than this upper limit in practical designs. Since 6, is guaranteed to
be relatively small for a small value of 3, the filter design can con-
centrate on approximating the stopband response. It can also be
explained according to the pole-zero locations. H(z) has 2(N,+N, -
LN,/M]) independent zeros which must be located on the unit cir-
cle to provide the desired stopband response. The poles and the
remaining zeros off the unit circle are used for satisfying the time-
domain condition so that the passband response is naturally
formed. In the following, we will directly apply the Remez
exchange algorithm in the stopband to design zero phase IIR
Nyquist filters with zero intersymbol interference.

O<wo<wp)  (7)

Design of IIR Nygquist filters: It is known that the time-domain
condition of eqn. | has been satisfied by using the transfer func-
tion of eqn. 3. Then the time-domain optimisation is not required,
and we only need to optimise the magnitude response of eqn. 4 in
the stopband. Since 2(N,+N L Ln/MJ) independent zeros of H(z)
have to locate on the unit circle to minimise the stopband error,
we can select (N, +NLLw/M|+1) extremal frequencies @ in the
stopband. By using the Remez exchange algorithm, we formulate
the magnitude response of eqn. 4 as

W (@) H(e™) = (-1)"""0 (®)

where W) is a weighting function, and & is the error to be mini-
mised. Substituting eqn. 4 into eqn. 8 we can rewrite eqn. 8 in the
matrix form as

PC =6QC (9)

where C = ¢, ¢y ooy CM_y, Copats ooy Ciiny &y, Ay .., dug]”, and the ele-
ments of the matrices P, Q are given by
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It should be noted that eqn. 9 is a generalised eigenvalue problem,
1e., 8 is an eigenvalue and C is a corresponding eigenvector.
Therefore, we can obtain a solution by solving the eigenvalue
problem of eqn. 9. To minimise the stopband error, we compute
the absolute minimum eigenvalue, then its corresponding eigenvec-
tor gives a set of filter coefficients. Since the extremal frequencies
mitially selected may not be the current peak frequencies, we must
apply an iteration procedure to obtain the optimal solution with
an equiripple stopband response. The design algorithm is shown
as follows.

Design algorithm:
procedure {design algorithm of IIR Nyquist filters}

begin
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(i) Read N,, N, M, p, and weighting function #{w)
(ii) Select initial external frequencies Q, (fori=1,2, ..., N+N, -
LN,,/MJH) equally spaced in stopband

repeat

() Set @, = Q,fori=1,2, .., N+NAN/MI+1).
(iv) Compute P, Q by using eqns. 10 and 11, and find the absolute
minimum eigenvalue to obtain a set of filter coefficients ¢; and
d
(v) Search the peak frequencies Q, of H(¢*) in the stopband
until Satisfy the following condition for the prescribed small con-
stant e:

{|Q¢—G)¢| S\f <f0ri=1,2,...,Nn+Nd* \‘%J +1>}

end.
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Fig. 1 Magnitude responses of zero phase IIR Nyquist filters
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Design example: The aim is to design a zero phase ITR Nyquist fil-
ter with N, = 24, N, = 2, M = 7 and p = 0.05. The weighting func-
tion is set to MAw) = 1 in the stopband. The magnitude response
of the filter designed by using the proposed method is shown in
Fig. 1 with the solid line. The passband and stopband attenuations
are 0.0363 and 52.67dB, respectively. We also designed a Nyquist
filter with N, = 20 and N, = 3, and the passband and stopband
attenuations are 0.0722 and 52.96dB, respectively.

Conclusion: A new method for designing zero phase IIR Nyquist
filters with zero intersymbol interference has been proposed. It has
been shown that the passband ripple of IIR Nyquist filters with
zero intersymbol interference is mainly decided by stopband rip-
ple. Therefore, the design problem can be formulated in the form
of an eigenvalue problem by using the Remez exchange algorithm
only in the stopband, and the optimal filter coefficients with an
equiripple stopband response can be easily obtained by computing
the absolute minimum eigenvalue and applying an iteration proce-
dure.
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Fast M-band orthogonal wavelet transform
algorithm when base length equals 2/

Sang-keun Kwon, Young-seok Oh and Dong Shin Seo

Indexing terms: Wavelet transforms, Digital filters

The fast implementation algorithm of AM-band orthogonal wavelet
filter bank (OWFB) with length L equal to 2M is proposed by
using the lossless matrix factorisation method. The computational
complexity of the proposed algorithm becomes lower than that of
the direct filtering method (DFM): (M? + M + 1) multiplications
and M? + 2M - 1) additions against 2M2 and (QM> — M),
respectively.

Introduction: Before the wavelet transform (WT) was formally
introduced, the M-band QMF (quadrature mirror filter) bank had
already been used in sub-band coding (SBC). The main differences
between the QMF bank and OWFB are that the lowpass filter
(LPE) of the OWFB has regularity and normalisation conditions
[1]- So by including these conditions into the LPF of the OWFB, it
is possible to design the M-band OWFB using a lossless system
used to design the M-band QMF bank [3, 4]. Based on this con-
cept, the design methods of an M-band OWFB were completely
generalised with M having any positive integer [3, 4].

In this Letter, we propose a fast algorithm which can decom-
pose the signal into M-band signals by OWFB when the length L
of the OWFB is equal to 2M. Since M-band OWFB design is
based on a lossless matrix, we implement the fast algorithm by
factorising the lossless matrix proposed by Vaidyanathan [2].

The proposed algorithm has lower computational complexity
than that of the DFM: (M? + M + 1) multiplications and (M? +
2M — 1) additions against 2M? and (23* — M), respectively. The
OWEFB can be implemented with lower computational complexity
since unitary matrices such as DCT, WUT etc.. which have a fast
algorithm, can be used to design the OWFB for M = 2~.

Design of generalised M-band OWFB: Consider the maximally
decimated M-band QMF bank system. Let E(z) be the M-compo-
nent polyphase matrix of the decomposing filter bank H(z) =
[Hy(z), H(2), ..., Hy(2)]. If E(2) satisfies eqn. 1, the QMF bank
system has perfect reconstruction (PR) [2] and we call it the parau-
nitary matrix:

E(:)E(z) =L 1)

where [ is the identity matrix and E(2) is the transpose-conjugate
of E(z).

Since the filter coefficients length L of H,(z) is 2M, E(z) can be
decomposed as

E(z) = Ay + Azt (2)
where
ho(MZ) ho(Mi+1) ho(Mi-i—M—l)

ho(M7)  hy(Mi+1) hy (Mi+M—1)
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