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ABSTRACT

This paper proposes a class of Hilbert transform pairs of orthonor-
mal wavelet bases with improved analyticity. To improve the ana-
lyticity of complex wavelet, a different allpass filter is used for the
half-sample delay approximation. We present a design method for
allpass filters with the specified degree of flatness at ω = 0 and
equiripple phase response in the approximation band. Remez ex-
change algorithm is applied in the approximation band, and then a
set of filter coefficients can be obtained easily by solving the eigen-
value problem. Therefore, the equiripple phase response is attained
through a few iterations. Furthermore, the corresponding filter banks
are constructed from the designed allpass filters by using the method
proposed in [7]. The resulting orthonormal wavelet bases possess
the maximum number of vanishing moments. Finally, one example
is presented to demonstrate the improvement of the analyticity.

Keywords: Orthonormal wavelet basis, Hilbert transform pair, FIR
filter, Allpass filter, Vanishing moment.

1. INTRODUCTION

Hilbert transform pairs of wavelet bases have been proposed and
found to be successful in many applications of signal processing and
image processing [3]∼[7], [10]. It has been proven in [6], [8] and [9]
that the half-sample delay condition between two scaling lowpass
filters is the necessary and sufficient condition for the correspond-
ing wavelet bases to form a Hilbert transform pair. Several design
procedures for Hilbert transform pairs of wavelet bases have been
presented in [3]∼[7], [11]. In [7], Selesnick had proposed a class of
Hilbert transform pairs of orthonormal wavelet bases, where the cor-
responding scaling lowpass filters are constructed by using an allpass
filter to meet the half-sample delay condition. If the allpass filter is
determined, the design is for the scaling lowpass filters to satisfy the
condition of orthonormality and to obtain the maximum number of
vanishing moments. Thus, this design method is simple and effec-
tive. In [7], Selesnick had used the maximally flat allpass filters.
However, the maximally flat allpass filters have a larger phase error
as ω increases. It will influence the analyticity of complex wevelet,
because the accuracy of the half-sample delay approximation is con-
trolled only by the allpass filter.

In this paper, we propose a class of Hilbert transform pairs of
orthonormal wavelet bases with improved analyticity. We present a
design method of allpass filters for the half-sample delay approxi-
mation, which have the specified degree of flatness at ω = 0 and
equiripple phase response in the approximation band. We apply Re-
mez exchange algorithm in the approximation band to minimize the

phase error. In the proposed method, a set of filter coefficients can
be obtained easily by solving the eigenvalue problem, and then the
equiripple phase response is attained through a few iterations. The
designed allpass filters are used to improve the analyticity of com-
plex wevelet. The corresponding scaling lowpass filters are con-
structed by using the method proposed in [7], thus, the resulting
orthonormal wavelet bases possess the maximum number of van-
ishing moments. Finally, one example is presented to demonstrate
the improvement of the analyticity.

2. HILBERT TRANSFORM PAIRS OF WAVELET BASES

It is well-known that orthonormal wavelet bases can be generated by
two-band orthogonal filter banks {Hi(z), Gi(z)}, where i = 1, 2.
Now we assume that Hi(z) and Gi(z) are lowpass and highpass
filters, respectively. The condition of orthonormality for Hi(z) and
Gi(z) is given by8>><

>>:
Hi(z)Hi(z

−1) +Hi(−z)Hi(−z−1) = 2

Gi(z)Gi(z
−1) +Gi(−z)Gi(−z−1) = 2

Hi(z)Gi(z
−1) +Hi(−z)Gi(−z−1) = 0

. (1)

Let φi(t), ψi(t) be the corresponding scaling and wavelet func-
tions, respectively. The dilation and wavelet equations give the scal-
ing and wavelet functions;8>><

>>:
φi(t) =

√
2

X
n

hi(n)φi(2t− n)

ψi(t) =
√

2
X

n

gi(n)φi(2t− n)
, (2)

where hi(n) and gi(n) are the impulse responses of Hi(z) and
Gi(z), respectively.

It has been proven in [6], [8] and [9] that two wavelet functions
ψ1(t) and ψ2(t) form a Hilbert transform pair;

ψ2(t) = H{ψ1(t)}, (3)

that is
Ψ2(ω) =

j−jΨ1(ω) (ω > 0)

jΨ1(ω) (ω < 0)
, (4)

if and only if two scaling lowpass filters satisfy

H2(e
jω) = H1(e

jω)e−j ω
2 (−π < ω < π), (5)

where Ψi(ω) are the Fourier transform of ψi(t). This is the so-
called half-sample delay condition between two scaling lowpass fil-
ters. Eq.(5) is the necessary and sufficient condition for two or-
thonormal wavelet bases to form a Hilbert transform pair.



3. HILBERT TRANSFORM PAIRS OF ORTHONORMAL
WAVELET BASES COMPOSED OF ALLPASS FILTERS

The transfer function of an allpass filter A(z) is defined by

A(z) = z−LD(z−1)

D(z)
, (6)

where
D(z) =

LX
n=0

d(n)z−n, (7)

L is the degree of A(z), d(n) are real coefficients and d(0) = 1.
In [7], Selesnick had proposed that the scaling lowpass filters

H1(z) and H2(z) have the following form;(
H1(z) = F (z)D(z)

H2(z) = F (z)z−LD(z−1)
, (8)

and Gi(z) = z−MHi(−z−1) for i = 1, 2, where M is the degree
of Hi(z) and is an odd number.

Since both of scaling lowpass filters have the same component
F (z), we have

H2(z) = H1(z)z
−LD(z−1)

D(z)
= H1(z)A(z). (9)

Therefore, if A(z) in Eq.(6) is an approximate half-sample delay;

A(ejω) ≈ e−j ω
2 (−π < ω < π), (10)

then the half-sample delay condition in Eq.(5) is achieved approxi-
mately. Thus, two wavelet bases form an approximate Hilbert trans-
form pair.

Once A(z) is determined, F (z) needs to be designed for H1(z)
and H2(z) to satisfy the condition of orthonormality and to have the
maximum number of vanishing moments.

To obtain wavelet bases with K vanishing moments, F (z) is
chosen as

F (z) = Q(z)(1 + z−1)K . (11)

Thus (
H1(z) = Q(z)(1 + z−1)KD(z)

H2(z) = Q(z)(1 + z−1)Kz−LD(z−1)
. (12)

It is clear that H1(z) and H2(z) have the same product filter P (z);

P (z) = H1(z)H1(z
−1) = H2(z)H2(z

−1)

= Q(z)Q(z−1)(1 + z)K(1 + z−1)KD(z)D(z−1)
. (13)

Defining

R(z) = Q(z)Q(z−1) =

NX
n=−N

r(n)z−n, (14)

S(z) = (z + 2 + z−1)KD(z)D(z−1) =

L+KX
n=−L−K

s(n)z−n, (15)

where r(n) = r(−n) for 1 ≤ n ≤ N and s(n) = s(−n) for
1 ≤ n ≤ L+K, then we have

P (z) = R(z)S(z). (16)

Note that P (z) is a halfband filter, thus, the degree ofHi(z) isM =
N + L+K and M is an odd number.

We can write the condition of orthonormality in Eq.(1) as

ImaxX
k=Imin

s(2n− k)r(k) =

j
1 (n = 0)

0 (n �= 0)
, (17)

where Imin = max{−N, 2n−L−K} and Imax = min{N, 2n+
L+K}. In Eq.(17), there are (M + 1)/2 equations with respect to
(N + 1) unknown coefficients r(n). Therefore, it is clear that we
can obtain the only solution if (M+1)/2 = N+1. GivenN and L,
the maximalK isKmax = N−L+1, then the obtained filters have
the maximally flat magnitude responses. That is, the corresponding
wavelet bases have the maximum number of vanishing moments. In
other words, the minimal degree of Q(z) is Nmin = L + K − 1
for given L and K, as shown in [7]. In addition, the scaling lowpass
filters with improved magnitude responses have been also proposed
by using Remez exchange algorithm in [11].

4. HILBERT TRANSFORM PAIRS OF WAVELET BASES
WITH IMPROVED ANALYTICITY

It is known that if two wavelet functions ψ1(t) and ψ2(t) are a pair
of Hilbert transform, the complex wavelet ψ1(t)+jψ2(t) is analytic,
i.e., its spectrum is one-sided: Ψ1(ω) + jΨ2(ω) = 0 for ω < 0.
However, it cannot be exact in practice, because the half-sample de-
lay condition in Eq.(5) can only be approximated with real filters. In
this section, we will discuss how to improve its analyticity.

It is seen in Eq.(5) that H2(e
jω) needs to be approximated to

H1(e
jω)e−j ω

2 . We define the error function E(ω) as

E(ω) = H2(e
jω) −H1(e

jω)e−j ω
2 . (18)

From Eq.(9), we have

E(ω) = H1(e
jω)[A(ejω) − e−j ω

2 ], (19)

thus |E(ω)| = 2|H1(e
jω)|| sin θ(ω) + ω

2

2
|, (20)

where θ(ω) is the phase response of A(z). It is clear from Eq.(20)
that |E(ω)| is dependent on both the magnitide response |H1(e

jω)|
and the phase error ofA(z). SinceH1(z) is a lowpass filter, we must
minimize the phase error not only in passband but also in transition
band to improve the analyticity of complex wevelet.

In [7], Selesnick had used the maximally flat allpass filters. Since
ω = 0 is chosen as the point of approximation, the phase error will
increase as ω goes away from ω = 0. Thus, |E(ω)| has a large error
in transition band (see Fig.2). There are many design methods for
allpass filters to approximate a fractional delay, e.g., maximally flat,
least square [1], equiripple approximation [2], and so on. It is known
that the wavelet function is defined by the infinite product formula.
Thus, it is necessary that A(z) has a certain degree of flatness at
ω = 0 to improve the analyticity. In the following, we present a
design method of allpass filters with the specified degree of flatness
at ω = 0 and equiripple phase response in the approximation band.

Let θd(ω) = − 1
2
ω be the desired phase response. The differ-

ence θe(ω) between θ(ω) and θd(ω) is

θe(ω) = θ(ω) − θd(ω) = 2 tan−1 NL(ω)

DL(ω)
, (21)

where 8>>>><
>>>>:

NL(ω) =
LX

n=0

d(n) sin{(n− L

2
+

1

4
)ω}

DL(ω) =

LX
n=0

d(n) cos{(n− L

2
+

1

4
)ω}

. (22)
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Fig. 1. Magnitude responses of scaling lowpass filters Hi(z).

Therefore, the design problem is to satisfy the flatness condition and
to minimize the phase error θe(ω) in the approximation band.

Firstly, we consider the flatness condition of the phase response
at ω = 0. It is required that the derivatives of θ(ω) are equal to that
of θd(ω) at ω = 0;

∂2r+1θ(ω)

∂ω2r+1

˛̨̨
˛
ω=0

=
∂2r+1θd(ω)

∂ω2r+1

˛̨̨
˛
ω=0

(r = 0, 1, · · · , J − 1), (23)

where J is a parameter that controls the degree of flatness, and 0 ≤
J ≤ L. Eq.(23) is equivalent to

∂2r+1θe(ω)

∂ω2r+1

˛̨̨
˛
ω=0

= 0 (r = 0, 1, · · · , J − 1). (24)

By using Eq.(21), Eq. (24) can be reduced to

∂2r+1NL(ω)

∂ω2r+1

˛̨̨
˛
ω=0

= 0 (r = 0, 1, · · · , J − 1). (25)

By substituting NL(ω) in Eq.(22) into Eq.(25), we derive a system
of linear equations as follows;

LX
n=0

(n− L

2
+

1

4
)2r+1d(n) = 0 (r = 0, 1, · · · , J − 1). (26)

If J = L, we can solve the linear equations in Eq.(26) to obtain the
maximally flat allpass filters, due to d(0) = 1.

Next, we consider the case of J < L. We want to obtain an
equiripple phase response in the approximation band [0, ωc] by us-
ing the remaining degree of freedom. Let ωi (0 < ω0 < ω1 <
· · · < ωL−J = ωc) are the extremal frequencies in the approxima-
tion band. We apply the Remez exchange algorithm and formulate
θe(ω) as

tan
θe(ωi)

2
=

LX
n=0

d(n) sin{(n− L

2
+

1

4
)ωi}

LX
n=0

d(n) cos{(n− L

2
+

1

4
)ωi}

= (−1)iδ, (27)
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Fig. 2. Magnitude responses of E(ω).

where δ is an error. Then we rewrite Eqs.(26) and (27) in the matrix
form as

Px = δQx, (28)

where x = [d(0), d(1), · · · , d(L)]T , and the elements of the matri-
ces P and Q are given by

Pmn =

(
(n− L

2
+ 1

4
)(2m+1) (m = 0, 1, · · · , J − 1)

sin{(n− L
2

+ 1
4
)ω(m−J)} (m = J, J + 1, · · · , L)

(29)

Qmn =

8><
>:

0 (m = 0, 1, · · · , J − 1)

(−1)(m−J) cos{(n− L
2

+ 1
4
)ω(m−J)}

(m = J, J + 1, · · · , L)

(30)

Therefore, it should be noted that Eq.(28) corresponds to a gener-
alized eigenvalue problem, i.e., δ is an eigenvalue, and x is a cor-
responding eigenvector. To minimize δ, we must find the absolute
minimum eigenvalue by solving the eigenvalue problem, so that the
corresponding eigenvector gives a set of filter coefficients d(n). We
make use of an iteration procedure to obtain the equiripple phase re-
sponse. The design algorithm is shown as follows.

Procedure {Allpass Filter Design Algorithm}
Begin

1) Read L, J , and ωc.

2) Select initial extremal frequencies Ωi (0 < Ω0 < Ω1 <
· · · < ΩL−J = ωc) equally spaced in [0, ωc].

Repeat

3) Set ωi = Ωi (i = 0, 1, · · · , L− J).

4) Compute P and Q, then find the absolute minimum eigen-
value δ to obtain a set of filter coefficients d(n).

5) Search the peak frequencies Ωi (0 < Ω0 < Ω1 < · · · <
ΩL−J = ωc) of θe(ω) in [0, ωc].

Until
Satisfy the following condition for a prescribed small constant ε:

|ωi − Ωi| < ε (for all i)

End.
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Fig. 3. Magnitude responses of Ψi(ω).

5. DESIGN EXAMPLE

In this section, we present one example to demonstrate the improve-
ment of the analyticity. Firstly, we have designed an allpass filter
with L = 2, J = 1, ωc = 5

8
π, and used the method proposed in [7]

to construct the scaling lowpass filters Hi(z) with N = 5,K = 4.
Its magnitude response is shown in solid line in Fig.1. For com-
parison, the magnitude responses of Hi(z) using different allpass
filters with J = 0 and J = 2 are shown in Fig.1 also. Note that
J = 2 means the maximally flat allpass filter, while J = 0 is the
equiripple allpass filter without the flatness condition. These scaling
lowpass filters have the same degree (M = 11), and their wavelet
bases have the maximum number of vanishing moments. It is seen in
Fig.1 that the magnitude responses are almost same. However,E(ω)
are different, as shown in Fig.2. When J = 0, the maximum error
of E(ω) is minimum, while it is maximum when J = 2. More-
over, the spectrum Ψi(ω) of the resulting wavelet functions ψi(t)
are shown in Fig.3, and are almost same. The spectrum Ψ1(ω) +
jΨ2(ω) of the complex wavelet ψ1(t) + jψ2(t) are shown in Fig.4,
which approximate zero for ω < 0. We define the peak error as
E1 = maxω<0 |Ψ1(ω) + jΨ2(ω)|/maxω>0 |Ψ1(ω) + jΨ2(ω)|.
When J = 1, E1 = 0.00771 is minimum, while when J = 0, 2,
E1 = 0.00877, and E1 = 0.01590, respectively. It is clear that the
analyticity have been improved.

6. CONCLUSION

In this paper, we have proposed a class of Hilbert transform pairs
of orthonormal wavelet bases with improved analyticity. To im-
prove the analyticity of complex wevelet, we have presented a de-
sign method for allpass filters with the specified degree of flatness at
ω = 0 and equiripple phase response in the approximation band. We
have applied Remez exchange algorithm in the approximation band
to minimize the phase error. Therefore, a set of filter coefficients
can be obtained easily by solving the eigenvalue problem, and the
equiripple phase response is attained through a few iterations. The
resulting orthonormal wavelet bases possess the maximum number
of vanishing moments as proposed in the conventional methods. Fi-
nally, we have presented one example to demonstrate the improve-
ment of the analyticity.
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