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ABSTRACT In this paper, we propose a new class of 2D orthogonal sym-

. ) metric wavelet filters using 2D nonseparable allpass filters. We will
This paper proposes a new class of 2D orthogonal symmetric wavelg. ;s on two subsampling cases: quincunx and parallelogram. First

filters using 2D nonseparable allpass filters. The proposed wavelg? all, we generalize the 1D allpass-based orthogonal symmetric

filters are based on the parallel structure of allpass filters with realz o elet filters proposed in [9] to the 2D case by using 1D to 2D
valued coefficients, which can be implemented with a low compuyya55ing on the polyphase components of wavelet filters. Thus the
tational complexity and is robust to finite precision effects. The

: . i resulting 2D allpass-based wavelet filters are not only orthogonal,
resulting wavelet bases are not only orthogonal, including perfeqh+ 4o symmetric. Next, we show that the design problem of the
reconstruction (PR) condition, but also symmetric, whose analysig,,,sed wavelet filters can be reduced to the phase approximation
and synthesis fllter§ have exactly linear phase response. It is al$g the corresponding allpass filters. Therefore, it is easy to design
shown that the design problem of the proposed wavelet filters cayiq ¢jass of 2D allpass-based orthogonal symmetric wavelet filters
be reduced to the phase approximation of the corresponding allpagg \,qing the existing design methods of allpass filters in [7] and [8].

filters. Therefore, it is easy to design this class of orthogonal Symgin a1y “some examples are presented to demonstrate the effective-
metric wavelet filters by using the existing design methods of allpasgaqs of the proposed orthogonal symmetric wavelet filters.
filters. Finally, some examples are presented to demonstrate the ef-

fectiveness of the proposed orthogonal symmetric wavelet filters.
) ] 2. 1D ORTHOGONAL SYMMETRIC WAVELET FILTERS
Index Terms— Allpass filter, orthogonality, symmetry, wavelets. USING ALLPASS FILTERS

1. INTRODUCTION It is well-known [1]~[3] that 1D wavelet basis can be gener-
' ated by 1D two channel perfect reconstruction (PR) filter bank
Discrete wavelet transforms have been extensively used in digite{lH(z)v G(z)}, where H(z) is a lowpass filter and(z) is high-
signal processing applications. It is well-known {4B] that one ~ Pass. The orthogonality condition ¢f(z), G(z)} is given by
desirable property for wavelets is orthogonality, and another is sym- 1 1y
metry, which requires all analysis and synthesis filters to possess H(z)H(z"") + H(=2)H(-2z"") =1

exactly linear phase response. It had been proven in [1] that except G(Z)G(Zil) + G(,Z)G(fzfl) =1 (1)
the Haar wavelet, there is not any orthogonal symmetric wavelets . .
using one dimensional (1D) FIR filters, corresponding to compactly H(z)G(z )+ H(=2)G(-2"") =0

supported wavelets. To obtain orthogonal symmetric wavelets with . L . .
more regularity than the Haar wavelet, a class of 1D IIR wavelet fiI-'rr; Vm'gz :(r;ebeps crﬁrrrlg'::?dl}(hza)satr)fj%q(lzn)cmggtdﬁa:\f/: ;’\g\glletliggz'rs IS
ters had been proposed by using 1D allpass filters in [5], [9] and [10] hq Y y
which are based on the parallel structure of allpass filters. Thus th% ase responses. . .
allpass-based wavelet filters can be implemented with a low compu- In 9], a cla_ss of 1D ort_hogonal symm.etrlc wavelet filters has
tational complexity and are robust to finite precision effects [2]. proposed by using allpass filters as follows;

Two dimensional (2D) wavelet filters are often needed to decom- H(z) = L[A(G?) + 2 2K"14(272)]
pose 2D signals into directional components in image and video pro- 2
cessing applications, and have been discussed in [4], [6], [11], [12]. {
In [6], a class of two channel quincunx wavelet filters had been pre-
sented by mapping 1D biorthogonal wavelet filters to the 2D casewhereK is integer, andd(z) is 1D allpass filter of ordeN defined
but the resulting 2D quincunx wavelet filters are biorthogonal, nothy

@)

G(2) = HAR?) — 22K A=)

1
2

orthogonal. In [11] and [12], a class of two channel quincunx and N

parallelogram QMF banks had been proposed by using 2D nonsep- Z anz"

arable allpass filters. However, the proposed QMF banks did not A(z) = L~ n=0 3)
satisfy the perfect reconstruction (PR) condition, and an additional N ’

2D allpass filter was needed to compensate the phase distortion as a Z anz™ "

phase equalizer. Moreover, the phase responses of the analysis and n=0

synthesis filters of QMF banks are not exactly linear. wherea,, are a set of real-valued coefficients and= 1.



Assume that the phase responsel¢f) is 0(w), then we have 3. 2D ORTHOGONAL SYMMETRIC WAVELET FILTERS
USING ALLPASS FILTERS

N
Z an Sin nw In this section, we will generalize the 1D allpass-based orthogonal
0(w) = —Nw + 2tan”" n=0 ) @) symmetric wavelet filters discussed in the preceding section to the
N 2D case.
Z Gn COSTIW It is seen in Eq.(9) that the phase responsel ©f) is required
n=0

to be a fractional delay</2 + 1/4. Thus, the phase response of

A(z) is the same as that of ~z A(z~'). We first replace the 1D

Thus the frequency responseskfz) andG(z) can be given from
Y quencyresp (=) andGi(z) v allpass filterA(z) with the 2D allpass filter (=1, 2, ) that is defined

Eq.(2) by by
- p N 1 N M
H() = e J(E+3) cos{0(2w) + (K + 5)w} &) Z Z Anm21 25"
) ] . —N _—M n=0m=0
G(e™) = je D sinf0(2w) + (K + )w) Az, 22) = 21 V23 3 - 19

N

DD anmn "z

It is clear in Eq.(5) thatd (z) and G(z) have exactly linear phase n=0m=0

responses and satisfy the following power-complementary relationwherea,,.,, are a set of real-valued coefficlients ang = 1. Then

o o we replace: X =2 A(z7Y) with (z122) 572 A(27h, 2571).
[H(e”)]" + |G(e’)]” = 1. (6) Similarly to the 1D case, the phase responsd ©f; , z2) is also

o ) required to be the same as that(efz,) "X~ 2 A(z;, z;*). Thus,

~ As shown in Fig.1,H(z) andG(z) are a pair of lowpass and the desired phase responsedtt , z2) is given by

highpass filters, and then the desired magnitude resporfgg¢zgfis

given by K 1 —wip <wi <w
Oa(wr,we) = =(5 + Plwr +we) ( oy < 2 < comy ) '
ey =y b Osesw) ™ (1)
i€ 1o (ws <w < ) ’ wherew,,, andws,, are the cutoff frequencies far, andw-, respec-
- tively.
wherew, andw are the cutoff frequencies in passhand and stopband  In the simplest case, we can choose a 2D separable allpass fil-
of H(z), respectively, and, + w, = . ter asA(z1, z2) = A(z1)A(z2). Therefore, the desired phase re-

Therefore, it is clear from Eq.(5) that to get a pair of lowpassSPONSe of the 1D allpass filtet(z) is the same as in the 1D case

and highpass filters, the phase responsé (af) must satisfy (see_Eq.(9)), and then the existing de_sign methods of 1D allpe}ss fil-
ters in [7] and [8] can be used to design this class of wavelet filters.
. 0 (0 < w< wp) In fjhe follli)vlving, we will discuss two subsampling cases: quincunx

0(2w) + (K + 7)0‘) — (8) and parallelogram.

2 :I:g (ws <w <)

3.1. Quincunx Case

Due to the antisymmetry property of the phase response, the de-
sired phase response 4fz) can be reduced to In the quincunx subsampling case, the decimation/interpolation ma-

trix M is given by

Oa(w) = (o + - Jw O0<w<2w,). (9 M = { . ] (12)
Therefore, the design problem of the allpass-based orthogonal syrthen A(z1, zo)|tm = A(z122,2] *22) and (2122)4‘*% v =
metric wavelet filters shown in Fig.1 becomes the phase approxim&—;gK*l. Therefore, we have a pair of lowpass and highpass filters
tion of A(z) to the desired phase response in Eq.(9). H(z1, z2) andG(z1, z2) as follows;

There are many design methods for 1D allpass filters to approx-
imate the desired phase response, for example, the maximally flaf; H(z1,20) = %[A(zwz,zflzg) + 27K AT 2 2y )]
equiripple approximations, and so on44P]. Therefore, these ex-
isting design methods can be used to design the allpass-based dr- G(z1, 22) = 2 [A(z122, 2, '22) — 25 2K T A(2; 25 1 2125 )]
thogonal symmetric wavelet filters. (13)

Y
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Fig. 1. 1D allpass-based orthogonal symmetric wavelet filters. Fig. 2. 2D allpass-based orthogonal symmetric wavelet filters.



whose structure is shown in Fig.2 and whose frequency responséss clear in Eq.(18) that (z1, z2) andG(z1, z2) have exactly linear

are given by phase responses and satisfy the following power-complementary re-
) lation in Eq.(15). Similarly, we can obtain a lowpass filtéfz1, z2)
H(e'1,eMv2) = ¢ I (E+3)wz with the passban€w:| < wip, |w1 — 2ws| < wa,y) and stopband
cos{f(w1 + w2, w2 — w1) + (K + 3)wa} (Jw1] € wip, 27 — w2p < w1 — 2wy < 27 + wap,wz > —7) and
(14) (Jwr] € wip, =27 —wop < w1 — 2w2 < =27 + wap, we < ), @S
G(eﬂ'w,eﬂ'“ﬂ) = je*j(f”%)w x shown in Fig.3(b). Therefore, a class of 2D parallelogram orthogo-
sin{f(w1 + w2, w2 — w1) + (K + 3)wa} nal symmetric wavelet filters has been obtained.
Itis clear in Eq.(14) that (21, z2) andG(z1, z2) have exactly lin- 4. DESIGN EXAMPLES
ear phase responses and satisfy the following power-complementary
relation; In this section, we present two design examples to demonstrate the
o e o e effectiveness of the proposed 2D allpass-based orthogonal symmet-
[H(e, &2 +|G(e”, e/ * = 1. (15)  ric wavelet filters.

Example 1Firstly, we have designed an 1D allpass filtdr) of
N = 2 andK = 0 with the maximally flat phase response by using
tRe existing design method of allpass filters in [7]. We then consid-
ered the simplest case where 2D separable allpass filter is chosen as
w| < w2p)<and25topban(iw1 +°;2 2 2m— w>1p’w1 S mwz S W)>’ Az, 22) = S(zl)A(zQ). It should bepnoted thatp2D allpass filter is
g‘”j w2 = ; ™+ °J>1"_)’ w1 —d_ﬂ’fZ —<__7r2)’ (Wi —ws < separable in the decimated domain, but the corresponding analysis
T —wap,wi S Mywa 2 —7), ANA(wr —wp S =2m wap, w1 2 oy synthesis filters are nonseparable. In the quincunx subsampling
—m,wp < ), as shown in Fig.3(a). case, the magnitude responses of the resulting quincunx lowpass and
highpass filters are shown in Fig.4 and Fig.5, respectively. It is clear
3.2. Parallelogram Case in Fig.4 and Fig.5 that a pair of quincunx lowpass and highpass fil-
OWrs with the maximally flat magnitude responses has been obtained.
Example 2We have used the same allpass filtd) as in Ex-
ample 1, and considered the parallelogram subsampling case. Then
1 1 the resulting magnitude responses of the parallelogram lowpass and
M= [ 0 2 } ) (16) highpass filters are shown in Fig.6 and Fig.7, respectively. Itis seen
in Fig.6 and Fig.7 that the parallelogram lowpass and highpass filters

From the desired phase responseAdk:, z2) in Eqg.(11) and
the antisymmetry property of the phase response, we can obtain
lowpass filterH (z1, z2) with the passbanfwi + ws| < wip, |w1 —

In the parallelogram subsampling case, the decimation/interpolati
matrix M is given by

_ _1.9 _Kk_1 _ have the maximally flat magnitude responses and satisfy the power-
thfzr}(flle%zr]g)lT?Ar - At(fl’zl 22).r arfulj (2122) nd2 t|1T'Mh s fil.Somplementary relation in Eq.(15). Note that the phase responses
Z2 ) ereloré, we have a pal .o owpass a 19hpass My all lowpass and highpass filters are exactly linear, as shown in
tersH(z1, z2) andG(z1, z2) as follows; Eq.(18)

H(z1,22) = 5[A(21,21 '23) + 25 21 A2 2125 )

5. CONCLUSION

k]

G(a1,22) = 5[A(21, 271 23) — 23 T A(er Y 123 %)

D=

(17) In this paper, we have discussed two subsampling cases: quincunx
whose structure is the same as shown in Fig.2. Then we have tt@d parallelogram, and proposed a new class of 2D orthogonal sym-

frequency responses 6f(z1, z2) andG (21, z2) as metric wavelet filters using 2D nonseparable allpass filters, which
can be extended to other subsampling cases also. We have used 1D
H(e*1, e7%2) = eI (E+F)wa o to 2D mapping on the polyphase components of wavelet filters to

generalize the 1D allpass-based orthogonal symmetric wavelet filters
(18) in [9] to the 2D case. Thus the resulting 2D allpass-based wavelet
G(e7*1, el*2) = jefjuﬂ%)w % filterg arehnot only ?rthogogal, in;iluqinfg_I PR (;]ondition, blutl_also sytzn-
. _ 1 metric, whose analysis and synthesis filters have exactly linear phase
sin{f(wr, 2wz —wi) + (K + 3)we} response. Since the proposed wavelet filter is based on the parallel
structure of allpass filters, it can be implemented with a low com-
w, w, putational complexity and is robust to finite precision effects. It is
T also shown that the design of the proposed wavelet filters can be
NG reduced to the phase approximation of the corresponding allpass fil-
g ters. Therefore, it is easy to design this class of 2D allpass-based
Wyp orthogonal symmetric wavelet filters by using the existing design
LS 0 W IO, T _“)J_P%S oy, methods of allpass filters. Finally, some examples are presented to
/ demonstrate the effectiveness of the proposed 2D allpass-based or-
= thogonal symmetric wavelet filters.

cos{f(w1, 2wz — w1) + (K + 3)wa2}

-1 -T1
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Fig. 5. Magnitude response of quincunx highpass filter.
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