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ABSTRACT

In this paper, an effective implementation of the allpass-based
orthonormal symmetric wavelets is proposed for image compres-
sion. Since the orthonormal symmetric wavelets are used, it can be
expected to get better compression performance than biorthogonal
wavelets. Firstly, the implementation of irreversible real-to-real
wavelets is presented and its decomposition process is shown by
using allpass filters. Then, the realization of the reversible integer-
to-integer wavelets is given by utilizing the invertible implemen-
tation of allpass filters. Finally, the coding performance of the
orthonormal symmetric wavelets is evaluated and compared with
the D-9/7 and D-5/3 wavelets. It is shown from the experimental
results that the allpass-based orthonormal symmetric wavelets can
achieve better compression performance than the D-9/7 and D-5/3
wavelets.

Keywords: Orthonormal symmetric wavelet, Lossy to lossless
coding, Allpass filter, Invertible implementation.

1. INTRODUCTION

Wavelet-based image coding has been extensively studied in [1]–
[13] and adopted in the international standard JPEG2000 [4], [14].
In the wavelet-based image coding, two-band PR (perfect recon-
struction) filter banks play a very important role. The analysis and
synthesis filters are required to have exactly linear phase responses
(corresponding to symmetric wavelet bases), allowing us to use the
symmetric extension method to accurately handle the boundaries
of images. The wavelet filter banks should also be orthonormal
to avoid redundancy between the subband images. Unfortunately,
there are no nontrivial orthonormal symmetric wavelets with FIR
filters, except for the Haar wavelet. To achieve better compres-
sion performance, a reasonable regularity is necessary for wavelet
bases. Therefore, at least one of the above-mentioned conditions
has to be given up to get more regularity than the Haar wavelet.
For example, the D-9/7 and D-5/3 wavelets supported by the base-
line codec of JPEG2000 are biorthogonal. On the other hand, it
is known in [6] that IIR wavelet filters can simultaneously satisfy
both of the orthonormality and symmetry. A class of IIR orthonor-
mal symmetric wavelets has been proposed in [12] by using allpass
filters.

In this paper, we apply the allpass-based orthonormal sym-
metric wavelets to image compression, and propose an effective
implementation of the wavelet filter banks. Firstly, we present the
implementation of irreversible real-to-real wavelets and show its
decomposition process by using allpass filters. Then, we make
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use of the invertible implementation of allpass filters to realize
the reversible integer-to-integer wavelets. Finally, we investigate
the coding performance of the allpass-based orthonormal symmet-
ric wavelets by using the reference software of JPEG2000 pro-
vided in [14], and compare the performance with the D-9/7 and
D-5/3 wavelets. It is shown from the experimental results that the
allpass-based orthonormal symmetric wavelets can achieve better
compression performance than the D-9/7 and D-5/3 wavelets.

2. ORTHONORMAL SYMMETRIC WAVELETS

It is well-known [1]–[3] that wavelet bases can be generated by
two-band PR filter banks{H(z), G(z)}, whereH(z) is a lowpass
filter andG(z) is highpass. The orthonormal filter banksH(z)
andG(z) must satisfy

8
><
>:

H(z)H(z−1) + H(−z)H(−z−1) = 2

G(z)G(z−1) + G(−z)G(−z−1) = 2

H(z)G(z−1) + H(−z)G(−z−1) = 0

. (1)

If symmetric wavelets are needed,H(z) andG(z) must have ex-
actly linear phase responses also. In [6] and [12], a class of or-
thonormal symmetric wavelets have been proposed by using all-
pass filters, i.e.,
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H(z) =
1√
2
{z−2K−1A(z−2) + A(z2)}

G(z) =
1√
2
{z−2K−1A(z−2)−A(z2)}

, (2)

whereK is integer, andA(z) is an allpass filter of orderN and
defined by

A(z) = z−N

NX
n=0

anzn

NX
n=0

anz−n

, (3)

wherean is real anda0 = 1. It can be easily verified thatH(z)
andG(z) in Eq.(2) satisfy the orthonormality condition in Eq.(1).
Assume thatθ(ω) is the phase response ofA(z), that is,

θ(ω) = −Nω + 2 tan−1

NX
n=0

an sin nω

NX
n=0

an cos nω

, (4)
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Fig. 1. Allpass-based wavelet filter bank.

then the frequency responses ofH(z) andG(z) are8
><
>:

H(ejω) = e−j(K+ 1
2 )ω
√

2 cos{θ(2ω) + (K +
1

2
)ω}

G(ejω) = −je−j(K+ 1
2 )ω
√

2 sin{θ(2ω) + (K +
1

2
)ω}

,

(5)
which have exactly linear phase responses and satisfy the follow-
ing power-complementary relation;

|H(ejω)|2 + |G(ejω)|2 = 2. (6)

Therefore, the design problem becomes the phase approximation
of the allpass filterA(z), and has been discussed in [12]. It has also
been pointed out in [12] that ifK = 4k + 1 or 4k + 2 whenN is
even and ifK = 4k or 4k + 3 whenN is odd, then the magnitude
response has an undesired zero and bump nearbyω = π/2. To get
a pair of reasonable lowpass and highpass filters, we should choose
K = 4k or 4k + 3 whenN is even, andK = 4k + 1 or 4k + 2
whenN is odd, where−(2N +1) ≤ K ≤ 2N . See [12] in detail.

3. IMPLEMENTATION OF IRREVERSIBLE WAVELETS

In this section, we present an effective implementation of the irre-
versible real-to-real wavelets using allpass filters. Firstly, we as-
sume that input signal is of lengthM , andx(n) is a periodic signal
obtained by employing symmetric extension at the boundaries of
input signal, whosez transform isX(z). In the following, the cap-
ital letter denotes thez transform of the signal. The allpass-based
wavelet filter banks in Eq.(2) with a little modification can be real-
ized by using the polyphase structure shown in Fig.1. This modi-
fication ensures that the maximum magnitudes ofH(z) andG(z)
are1 and2 in the passbands respectively, which are the same as the
wavelet transforms supported by the baseline codec of JPEG2000,
to avoid the dynamic range growth of the transform coefficients in
successive lowpass decomposition [4], [14]. It is seen thatx(n)
will be filtered by two allpass filtersA(z) andA(z−1) after deci-
mation. In the following, we will demonstrate the decomposition
process with an example ofM = 8 andK = 0. x(n) is obtained
by doubling the boundary points of input signal and its period is
2M , as shown in Fig.2. Firstly,x(n) is decimated to getu0(n)
andu1(n). It is seen in Fig.2 thatu0(n) andu1(n) are periodic
with periodM and satisfy the following symmetric relation;

u0(n) = u1(M − 1− n), (7)
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Fig. 2. Decomposition process.

that is,
U0(z) = z−M+1U1(z

−1). (8)

It should be noted that whenK 6= 0, the symmetric relation still
holds, although the symmetric point is different.u0(n) andu1(n)
are then filtered byA(z) andA(z−1) to getv0(n) andv1(n) re-
spectively; (

V0(z) = U0(z)A(z)

V1(z) = U1(z)A(z−1)
. (9)

It follows from Eqs.(8) and (9) thatv0(n) andv1(n) satisfy the
symmetric relation also;

V0(z) = z−M+1V1(z
−1), (10)

that is,
v0(n) = v1(M − 1− n). (11)

Thus, the subband signalsy0(n) andy1(n) can be obtained by8
<
:

y0(n) =
1

2
[v0(n) + v1(n)] =

1

2
[v0(n) + v0(M − 1− n)]

y1(n) = v1(n)− v0(n) = v0(M − 1− n)− v0(n)

,

(12)
wherey0(n) andy1(n) are symmetric and antisymmetric respec-
tively. Therefore, onlyM samples ofv0(n) are needed to getM/2
samples ofy0(n) andy1(n). To sum up, the decomposition pro-
cess is composed of arranging the input signal in odd- and even-
index order to getu0(n) as shown in Fig.2, filtering it withA(z)
to outputv0(n), and then adding or subtractingv0(n) to obtain
y0(n) andy1(n) as shown in Eq.(12). The reconstruction can be
done in the reversed order, and it is omitted here.

In general,A(z) has its poles inside and outside the unit circle,
and then can be divided into the causal partAc(z) and anti-causal
partAa(z), that is,

A(z) = Ac(z)Aa(z), (13)
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Fig. 3. Reversible realization.

whereAc(z) andAa(z) have the poles only inside and outside the
unit circle respectively. For the causal partAc(z) of orderN1 with
inputx(n) and outputy(n), sincea0 = 1, its input-output relation
is given by

y(n) = x(n−N1) +

N1X
i=1

ai[x(n + i−N1)− y(n− i)], (14)

where onlyN1 multipliers are needed. Since the input signal is
periodic, some initial values are needed for starting the processing.
We use the method proposed in [13] to calculate the initial values.
The anti-causal partAa(z) is realized by reversing the input signal,
filtering it with Aa(z−1) that has only the poles inside the unit
circle, and then re-reversing the output signal.

4. REALIZATION OF REVERSIBLE WAVELETS

In this section, we consider the realization of the reversible integer-
to-integer wavelets. In most of the cases,A(z) has floating point
coefficients. Since the input images are matrices of integer values,
the filtered output no longer consists of integers. For lossless com-
pression, it is necessary to make an invertible mapping from an
integer input to an integer wavelet coefficient. To obtain an integer
output, we revise Eq.(14) as follows;

y(n) = x(n−N1) + b
N1X
i=1

ai[x(n + i−N1)− y(n− i)] + 0.5c,
(15)

wherebxc denotes the largest integer not greater thanx. There-
fore, we can get an integer outputy(n) for n = 0, 1, · · · , M−1 by
using the initial values{y(−1), y(−2), · · · , y(−N1)} obtained
by the method in [13]. To recoverx(n) from y(n), we have from
Eq.(15)

x(n−N1) = y(n)−b
N1X
i=1

ai[x(n + i−N1)− y(n− i)] + 0.5c.
(16)

This means that if all ofy(n) and some ofx(n), e.g.,{x(M −
1), x(M − 2), · · · , x(M − N1)} are known a priori, we can ex-
actly reconstructx(n) for n = M−N1−1, M−N1−2, · · · , 0. In
lossless coding,y(n) is transmitted to the decoder without round-
ing error. However, it is generally difficult to recover{x(M −
1), x(M − 2), · · · , x(M −N1)} only fromy(n). Thus,{x(M −
1), x(M − 2), · · · , x(M − N1)} are also needed to transmit as
a side information. By using the transmitted side information, we

Table 1. Lossless coding results: Bit Rate (bpp)

D-5/3 N1-K1 N2-K3 N3-K1

Barbara 4.694 4.587 4.532 4.511
Boat 4.438 4.438 4.423 4.464

Crowd 4.234 4.254 4.218 4.320
Lena 4.348 4.349 4.330 4.358

Mandrill 6.149 6.130 6.124 6.125
Pepper 4.653 4.661 4.653 4.690
Woman 3.345 3.366 3.347 3.453
Zelda 4.019 3.992 3.966 3.994

Average 4.485 4.473 4.449 4.489

can realize an invertible allpass filter with Eqs.(15) and (16). The
amount of the side information is relatively small since allpass fil-
ters used in image coding are of low order. Moreover, we can cal-
culate the prediction values of{x(M−1), x(M−2), · · · , x(M−
N1)} from y(n) by using the method for calculating the initial
value proposed in [13], then only the difference between the pre-
diction and actual values needs to be transmitted. After the in-
vertible allpass filtering, we can get an integer outputy1(n) from
Eq.(12), buty0(n) is no longer integer since divided by two. We
rewrite Eq.(12) as

y0(n) =
1

2
[v0(n) + v1(n)] = v0(n) +

y1(n)

2
. (17)

Therefore, the allpass-based wavelet filter bank shown in Fig.1 is
modified to get the structure shown in Fig.3, which corresponds to
the well-known lifting scheme proposed in [8], [9]. By quantizing
output of the multiplier1/2, we obtain an integer outputy0(n);

y0(n) = v0(n) + by1(n)

2
c. (18)

The inverse operation is straightforward as shown in Fig.3.

5. IMAGE CODING APPLICATION

In this section, we investigate the compression performance of
three allpass-based orthonormal symmetric wavelets with{N =
1, K = 1}, {N = 2, K = 3} and{N = 3, K = 1}. Two
wavelet filter banks with{N = 1, K = 1} and{N = 2, K =
3} have all poles inside the unit circle, thus need not be divided
into the causal and anti-causal parts. The reference software of
JPEG2000 provided in [14] has been used to evaluate the coding
performance. Eight images (Barbara, Boat, Crowd, Lena, Man-
drill, Pepper, Woman and Zelda) of size512×512, 8 bpp are used
as test images, and the decomposition level of the wavelet trans-
form is set to6.

5.1. Lossy coding performance

We examine the lossy coding performance of three irreversible
real-to-real wavelets. The distortion is measured by the peak sig-
nal to noise ratio (PSNR) between the original and reconstructed
images. The lossy coding results for images Barbara and Lena are
given in Fig.4 and Fig.5, respectively. It is seen in Fig.4 that the
allpass-based orthonormal symmetric wavelets have better lossy
coding performance than the D-9/7 wavelet for image Barbara,
while almost same results are gotten for image Lena, as shown
in Fig.5.
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Fig. 4. Lossy coding results of irreversible wavelets for Barbara.

5.2. Lossless coding performance

we investigate the lossless coding performance of three reversible
integer-to-integer wavelets. The lossless coding results with the
comparison with the D-5/3 wavelet are given in Table 1. For each
image, the best result has been highlighted. It is seen in Table 1
that the allpass-based orthonormal symmetric wavelets have better
average lossless coding performance than the D-5/3 wavelet, and
the wavelet of{N = 2, K = 3} is the best, although there are two
images getting the best results for the D-5/3 wavelet.

6. CONCLUSION

In this paper, we have proposed an effective implementation of the
allpass-based orthonormal symmetric wavelets for lossy to lossless
image compression. Firstly, we have discussed the implementation
of irreversible real-to-real wavelets and shown its decomposition
process by using allpass filters. Then, we have presented the in-
vertible implementation of allpass filters to realize the reversible
integer-to-integer wavelets. Finally, we have investigated the com-
pression performance of the allpass-based orthonormal symmetric
wavelets by using the reference software of JPEG2000, and com-
pared the performance with the D-9/7 and D-5/3 wavelets. It have
been shown from the experimental results that the allpass-based
orthonormal symmetric wavelets can achieve better compression
performance than the D-9/7 and D-5/3 wavelets.
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