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ABSTRACT

In this paper, a reversible integer-to-integer wavelet transform
based on non-separable 2D allpass filters is proposed for lossless
image coding. The number of rounding operations included in the
reversible wavelet transform is reduced by using non-separable 2D
allpass filters, thus it is expected to get better coding performance.
The lossless coding performance of the proposed reversible wavelet
transform is evaluated and compared with the conventional separa-
ble wavelet transforms. It is shown from the experimental results
that the proposed non-separable 2D reversible wavelet tranform
can achieve better lossless coding performance than the conven-
tional separable wavelet transforms, including the D-5/3 wavelet
tranform in the JPEG 2000.

Keywords: Reversible wavelet transform, Lossless compression,
Orthonormal symmetric wavelet, Allpass filter.

1. INTRODUCTION

Wavelet-based image coding has been extensively studied in [1]—
[16] and adopted in the international standard JPEG 2000 [4], [16].
In the wavelet-based image coding, two-band wavelet filter banks
play a very important role, which are required to be orthonor-
mal and symmetric. For example, the D-9/7 and D-5/3 wavelet
transforms in the JPEG 2000 are symmetric and near orthogonal
(biorthogonal). It is known in [6] and [12] that both the orthonor-
mality and symmetry of wavelets can be simultaneously satisfied
by using allpass filters. It has been shown in [13] and [14] that this
class of allpass-based orthonormal symmetric wavelet filters have
better lossy and lossless coding performance than the D-9/7 and
D-5/3 wavelet transforms.

In the image coding, 1D wavelet transform is typically applied
to images horizontally and vertically to realize 2D transform. This
is separable 2D wavelet transform. It has been shown in [15] that
by using non-separable 2D wavelet filter banks, the number of
rounding operations included in the reversible wavelet transform
and the error due to the rounding operations can be reduced, then
the coding performance can be improved also.

In this paper, we extend the allpass-based 1D orthonormal
symmetric wavelet transform to non-separable 2D case, and pro-
pose a reversible integer-to-integer wavelet transform based on
non-separable 2D allpass filters. We show that the number of
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rounding operations can be reduced by using non-separable 2D all-
pass filters. Also, we investigate the lossless coding performance
of the proposed reversible wavelet transform by using the reference
software of JPEG 2000 provided in [16], and compare the coding
performance with the conventional separable wavelet transforms.
It is shown from the experimental results that the proposed non-
separable reversible wavelet tranform can achieve better lossless
coding performance than the conventional separable wavelet trans-
forms, including the D-5/3 wavelet transform in the JPEG 2000.

2. ORTHONORMAL SYMMETRIC WAVELETS

It is well-known [1]-[3] that wavelet bases can be generated by
two-band filter banks { H(z), G(z)}, where H (z) is a lowpass fil-
ter and G(z) is highpass. The orthonormal filter banks H(z) and
G(z) must satisty

H(z)H(z ")+ H(-2)H(—z ") =2

G(2)G(z ) +G(=2)G(-z =2 . (1)
H(z)G(z ")+ H(-2)G(-z ") =0

S

If symmetric wavelets are needed, H(z) and G(z) must have
exactly linear phase responses also. In [6] and [12], a class of or-
thonormal symmetric wavelet filters have been proposed by using
allpass filters, i.e.,
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G(z) = —{z"2 "1 A(x"%) — A(z)}
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where K is integer, and A(z) is an allpass filter of order NV and
defined by
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where a,, is real and ap = 1. It can be easily verified that H(z)
and G(z) in Eq.(2) satisfy the orthonormality condition in Eq.(1).
Note that since A(z) and A(z~") are used in Eq.(2), H(z) and
G(z) are not causal, which is not a problem in image processing.
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Fig. 1. Allpass-based 1D reversible wavelet filters.

Assume that §(w) is the phase response of A(z), that is,
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then the frequency responses of H(z) and G(z) are

H(e™) = e 7B+ /3 cos{0(2w) + (K + %)w}

)
G(e?) = —je I B ginth(2w) + (K + %)w}
&)
which have exactly linear phase responses. Therefore, the design
problem can be reduced to the phase approximation of the allpass
filter A(z), and has been discussed in [12]. It has also been pointed
out in [12] that if K = 4k + 1 or 4k + 2 when N is even and if
K = 4k or 4k+3 when N is odd, then the magnitude response has
an undesired zero and bump nearby w = 7 /2. Therefore, to get a
pair of reasonable lowpass and highpass filters, we should choose
K = 4k or 4k + 3 when N is even, and K = 4k + 1 or 4k + 2
when N is odd, where —(2N +1) < K < 2N. See [12] in detail.

3. 1D REVERSIBLE WAVELET TRANSFORM

In this section, we describe the realization of 1D reversible integer-
to-integer wavelet transform by using allpass filters. To avoid the
dynamic range growth of the transform coefficients in successive
lowpass decomposition, the maximum magnitudes of lowpass and
highpass filters are required to be 1 and 2 in the passbands, respec-
tively, which are the same as the wavelet transforms supported by
JPEG2000. Therefore, we revise Eq.(2) as follows;
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wherti, H(z) = 5H(z)and G(z) = V2G(z). Note that H(z)
and G(z) have the maximum passband gains of 1 and 2, respec-

tively. It is known that
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which corresponds to the well-known lifting scheme proposed in
[8] and [9]. Therefore, we can obtain output of integer values by
adding a rounding operation after the multiplier with the coeffi-
cient 1/2 as shown in Fig.1. The inverse transform is straightfor-
ward.

Next, we consider the invertible realization of the allpass filter
A(z). In most of the cases, A(z) has floating point coefficients.
Although the input images are matrices of integer values, the out-
put filtered with A(z) no longer consists of integers. In lossless
coding, it is necessary to make an invertible mapping from an in-
teger input to an integer wavelet coefficient. For a causal stable
A(z) with input 2(n) and output y(n), we insert a rounding oper-
ation in the filtering process and give its input-output relationship
as follows;

N
y(m) = a(n—N) + |3 aifwln +i— N) — y(n — )] +0.5]

- (n=0,1,---,L-1), )
where L is the length of z(n), and | 2| denotes the largest integer
not greater than z. It should be noted in Eq.(8) that some initial
values y(—1),--- ,y(—N) are needed, and can be calculated by
using the method proposed in [13], while z(—1),--- ,z(—N) is
obtained by using the symmetric extension. Therefore, we can
get an integer output y(n) by using Eq.(8). To recover z(n) from
y(n), we have from Eq.(8)

N
z(n—N)=y(n) = |y ailz(n+i—N) = y(n —i)] +0.5]
= (n=L-1,L-2,,N), 9
which is an invertible realization of A(z~'), and must be pro-
cessed in reverse order of n, since A(z~") is anti-causal stable.
It is seen in Eq.(9) that if all of y(n) and some of z(n), for exam-
ple, z(L —1),--- ,z(L — N) are known a priori, we can exactly
reconstruct z(n) by using Eq.(9). In lossless coding, y(n) is trans-
mitted to the decoder without any error. Thus, some of z:(n) also
need to be transmitted as a side information. In stead of z(n),
we firstly calculate some prediction values of z(n) from y(n) by
using the method calculating the initial values in [13], and then
transmit the difference between the prediction and actual values of
some xz(n), for example, z(L — 1),--- ,z(L — N). Compared
with the transmission of (L — 1), --- ,z(L — N), the amount of
the side information of its difference is relatively small. Therefore,
by making use of the transmitted side information, we can realize
the invertible allpass filter with Egs.(8) and (9). See [14] in detail.

4. 2D REVERSIBLE WAVELET TRANSFORM

In this section, we propose a non-separable 2D reversible integer-
to-integer wavelet transform. The conventional 2D wavelet trans-
form is generally realized by applying 1D transform horizontally
and vertically to images, as shown in Fig.2, where M[; = [ (2) (1] ]
[ 1 0

0 2
Hrr(z1,22), Heu(21,22), Hur(z1, 22), Har (21, z2) in Fig.2
are given by

and Mz = ]- The transfer functions of four 2D filters

HLL((Zl,ZQ)): I?((Zl)) ~EZZ;
Hru(z1,22) = H(21)G(22
Hpup(z1,22) = Q(Z1)I;I(Z2) ’ (4o
Huwu(z,22) = G(21)G(22)



Fig. 2. Separable 2D reversible wavelet filters.

which are separable 2D wavelet filters. It is clear in Fig.2 that the
separable 2D wavelet filters based on 1D allpass filters have a to-
tal of 9 rounding operations, including ones inserted in 1D allpass
filters. It has been proposed in [15] that the number of rounding
operations can be reduced by using non-separable 2D wavelet fil-
ters, thus the coding performance improvement is confirmed by
applying the D-5/3 wavelet transform. In the following, we de-
scribe a realization of non-separable 2D wavelet filters by using
non-separable 2D allpass filters.

By using the polyphase representation, we have

Hpr(z1,22) 1 1
Hru(z1,22) zg T
' =CA| 2,k 11
HHL(Zh 2) 2z, 2K—1 ) ( )
HHH(21722) Z1—2K—1Z2—2K—1
where
1 1 11
5 S S G
C=1|_t 1 1 1|,
2 2 2 2
1 -1 -1 1
A(23,23) 0 0 0
0 A(2E, 27%) 0 0
A= 2
0 0 A(z77%,23) 0
0 0 0 A(27%,257)
and A(z1, z») is defined by’
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A(z1,22) = A1) A(m) = 27 Vg ¥ 2 :
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where @mn = aman and agp = ai = 1. It is known in [8] and
[9] that the matrix C can be decomposed into the lifting scheme.
There exist many kinds of decompositions. To minimize the num-
ber of rounding operations, we propose the following decomposi-

It is possible for A(z1, #22) to have a more general form and different
degrees of z1 and z2.
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Fig. 3. Non-separable 2D reversible wavelet filters.

tion;
I % 1 000 1 0 00
C= 0 1 0 P 0 1 0 O -1 1 0 0
~ 10 0 1 5 -1 0 1 0 0 0 1 0
0 0 0 1 0-1 0 1 0 0-1 1
(13)
Thus, C can be realized by using the lifting structure and is shown
inFig.3,whereM:M1M2:[(2) 2].

Next, we consider the direct implementation of 2D allpass fil-
ter A(z1, z2), in stead of the cascade structure of 1D allpass filters.
For the causal stable A(z1,2z2) with input z(n1,n2) and output
y(n1,n2), we insert a rounding operation in the 2D filtering pro-
cess, similarly to the case of 1D allpass filters. Its input-output
relationship is given as follows;

y(ni,n2) = x(ni—N,na—N (ni+i—N,na+j—N)

L3l

i,j=0
i¢0uj¢0

—y(n1 —i,n2 — j)] +0.5]

(n1:0,1,---,L1—1, n2=0,1,---,L2—1), (14)

where the size of image is Li X L». Therefore, an integer out-
put y(n1, n2) can be obtained by Eq.(14). It is clear that only one
rounding operation is needed in Eq.(14), whereas if the cascade
structure of 1D filters is used, then the number of rounding opera-
tions is two. Its inverse operation, that is, the invertible realization
of A(z;*, z51) is given by

z(n1—N,n>—N) = y(ni, n2)—

Zau

(ni+i—N,n2+j—N)

i#007%0
—y(n1 —i,n2 — j)] + 0.5

(mi=L —1,L1 —2,--- ,N,na =Ly —1,Ly —2,--- ,N).
(15)

Therefore, a non-separable 2D reversible wavelet transform is re-
alized, as shown in Fig.3. It is clear in Fig.3 that the number of
rounding operations needed in the proposed non-separable 2D re-
versible wavelet filters is 6, while the separable 2D wavelet filters
in Fig.2 have 9 rounding operations, thus it is reduced by 1/3.



Table 1. Lossless coding results: Bit Rate (bpp)
|| Image || Fls | Fln | Fzs | FQn |D—5/3

Barbara || 4.588 | 4.581 | 4.501 | 4.486 | 4.691
Boat 4436 | 4.423 | 4.418 | 4.403 | 4434
Crowd 4242 | 4229 | 4207 | 4.188 | 4.229
Goldhill || 4.888 | 4.881 | 4.877 | 4.870 | 4.868
Lena 4343 | 4.336 | 4.321 | 4.312 | 4344
Man 4739 | 4.731 | 4.725 | 4.715 | 4.726
Mandrill || 6.142 | 6.135 | 6.122 | 6.118 | 6.145
Pepper 4.654 | 4.647 | 4.654 | 4.639 | 4.649
Woman || 3.362 | 3.336 | 3.337 | 3.305 | 3.342
Zelda 3.990 | 3.974 | 3.959 | 3.943 | 4.015

[ Average [[ 4.538 | 4.527 [ 4.512 | 4.498 | 4.544

5. LOSSLESS CODING PERFORMANCE

In this section, we investigate the lossless coding performance of
the proposed non-separable 2D reversible wavelet transform, and
compare it with the conventional separable 2D wavelet transform
and the D-5/3 wavelet in the JPEG 2000. The reference soft-
ware of JPEG2000 provided in [16] has been used to evaluate the
lossless coding performance. Ten images (Barbara, Boat, Crowd,
Goldhill, Lena, Man, Mandrill, Pepper, Woman and Zelda) of size
512 x 512, 8 bpp have been used as test images, and the decompo-
sition level of the wavelet transform is set to 4. The lossless cod-
ing results with the comparison with the D-5/3 wavelet are given
in Table 1. For each image, the best result has been highlighted.
In Table 1, Fivs and Fn,, denote the separable and non-separable
2D reversible wavelet filters with the allpass filter A(z) of order
N, respectively. Two allpass filters with {N = 1, K = 1} and
{N = 2,K = 3} proposed in [13] and [14] have been used,
which are causal stable. It is seen in Table 1 that the proposed
non-separable 2D reversible wavelet filters Fiv,, have better loss-
less coding performance than the separable filters Fiv s, and an im-
provement of about 0.01 bpp is obtained, where N = 1 or 2.
Moreover, the proposed wavelet filter F»,, has the best lossless
coding performance, although there is one image (Goldhill) get-
ting the best result for the D-5/3 wavelet.

6. CONCLUSION

In this paper, we have proposed a non-separable 2D reversible
integer-to-integer wavelet transform by using non-separable 2D
allpass filters. By extending the allpass-based 1D orthonormal
symmetric wavelet transform to non-separable 2D case, the num-
ber of rounding operations included in the reversible wavelet trans-
form and the error due to the rounding operations can be reduced.
Also, we have investigated the lossless coding performance of the
proposed non-separable reversible wavelet filters, and compared it
with the conventional separable wavelet transforms. It is shown
that the proposed non-separable 2D reversible wavelet filters have
better lossless coding performance than the conventional separable
transforms and the D-5/3 wavelet in the JPEG 2000. Furthermore,
a theoretical analysis will be done in the near future.
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