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ABSTRACT

This paper proposes a new method for designing Hilbert transform
pairs of orthonormal wavelet bases proposed by Selesnick in [9].
The conventional method located as many zeros as possible at z =
—1 to obtain the maximum number of vanishing moments. In this
paper, we specify the number of zeros at z = —1, and then use the
remaining degree of freedom to get the best possible frequency se-
lectivity. The Remez exchange algorithm is applied in the stopband
to approximate the equiripple magnitude response. Therefore, a set
of filter coefficients can be obtained easily by solving a system of lin-
ear equations. Furthermore, the optimal solution is attained through
a few iterations. Since the number of zeros at z = —1 can be speci-
fied arbitrarily, a new class of Hilbert transform pairs of orthonormal
wavelet bases with the specified number of vanishing moments can
be generated.

Keywords: Orthonormal wavelet basis, Hilbert transform pair, FIR
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1. INTRODUCTION

Hilbert transform pairs of wavelet bases have been proposed and
found to be successful in many applications of signal processing
and image processing [5]~[9], [12]. It has been proven in [8], [10]
and [11] that the half-sample delay condition between two scaling
lowpass filters is the necessary and sufficient condition for the cor-
responding wavelet bases to form a Hilbert transform pair. Sev-
eral design procedures for the Hilbert transform pairs of wavelet
bases have been presented in [5]~[9] by using FIR filters, which
are corresponding to the compactly supported wavelets. In [9], Se-
lesnick has proposed a class of Hilbert transform pairs of orthonor-
mal wavelet bases, where the corresponding scaling lowpass filters
are constructed by using an allpass filter to meet the half-sample de-
lay condition. This design method is simple and effective. The ap-
proximation accuracy of the half-sample delay is controlled only by
the allpass filter. Thus, the design is for the scaling lowpass filters to
satisfy the orthonormality condition and the regularity of wavelets.
In [9], Selesnick has used the maximally flat allpass filter, and then
located as many zeros of the scaling lowpass filters as possible at
z = —1 to obtain the maximum number of vanishing moments,
which results in the maximally flat magnitude response. It is well-
known that frequency selectivity is a useful property for many ap-
plications of signal processing. However, the maximally flat filters
have poor frequency selectivity [1]. For this reason, we will specify
the number of zeros at z = —1, then use the remaining degree of
freedom to get the best possible frequency selectivity.
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In this paper, we propose a new design method for Hilbert trans-
form pairs of orthonormal wavelet bases proposed by Selesnick in
[9]. Since the scaling lowpass filters have satisfied the half-sample
delay condition by using the allpass filter, only the orthonormality
condition, regularity of wavelets, and frequency selectivity need to
be considered. First, we locate the specified number of zeros at
z = —1 from the viewpoint of regularity, and then derive a system
of linear equations from the orthonormality condition. Next, we use
the remaining degree of freedom to get the best possible frequency
selectivity. We apply the Remez exchange algorithm in the stopband
to obtain the equiripple magnitude response [2]. Therefore, a set
of filter coefficients can be obtained easily by solving a system of
linear equations, and the optimal solution is attained through a few
iterations. Since the number of zeros at z = —1 can be specified
arbitrarily, we can produce a new class of Hilbert transform pairs of
orthonormal wavelet bases with the specified number of vanishing
moments.

2. HILBERT TRANSFORM PAIRS OF WAVELET BASES

It is well-known that orthonormal wavelet bases can be generated by
two-band orthogonal filter banks {H;(z), G;(z)}, where i = 1,2.
We assume that H;(z) are lowpass filter, and G;(z) are highpass.
The orthonormality condition of H;(z) and G;(z) is given by

Hi(2)Hi(z™ ") + Hi(—2)Hi(—2" ') =2
Gi(Z)Gi(zil) + Gi(—z)Gi(—zil) =2. ()
Hi(2)Gi(z ') + Hi(—2)Gi(—2z" ') =0

Let ¢:(t), vi(t) be the corresponding scaling and wavelet func-

tions, respectively. The dilation and wavelet equations give the scal-
ing and wavelet functions;

$i(t) = V2)_ hi(n)i(2t — n)

, (2)
Gi(t) = V2 gi(n)gi(2t —n)

where h;(n) and g;(n) are the impulse responses of H;(z) and
G;(z), respectively.

It has been proven in [8], [10] and [11] that two wavelet func-
tions ¢1(¢) and 2 (¢) form a Hilbert transform pair;

P2 (t) = H{vn (1)}, ©)
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that is

— ¥ (w w>0
\Ifz(w)z{ i) (=0 (4)
jP1(w) (w<0)
if and only if two scaling lowpass filters satisfy
Hs(e’) = Hy(e’*)e™ 2 (-7 <w < ), (5)

where WU, (w) are the Fourier transform of 4);(¢). This is the so-
called half-sample delay condition between two scaling lowpass fil-
ters. Equivalently, the scaling lowpass filters should be offset from
one another by a half sample. Eq.(5) is the necessary and sufficient
condition for two orthonormal wavelet bases to form a Hilbert trans-
form pair.

3. HILBERT TRANSFORM PAIRS OF ORTHONORMAL
WAVELET BASES COMPOSED OF ALLPASS FILTER

Tt is known that the transfer function of an allpass filter A(z) is de-
fined by

_ _—L D(Z_l)
Az =2 " (©)
where
L
D(z)=1+ Zd(n)zin, @)
n=1

where L is the degree of A(z) and d(n) are real filter coefficients.
Then, the phase response 6(w) of A(z) is given by

Z d(n) sin(nw)

6(w) = —Lw + 2tan” ' —2=1 . (8)

In [9], Selesnick has proposed that the scaling lowpass filters
Hy(z) and H,(z) have the following form;

{Hl(z) = F(2)D(z) ©
Hy(z) = F(2)z "D(z"")’

and G;(z) = —2z M H;(—2z7") fori = 1,2, where M is the degree
of H;(z) and is an odd number.

Since Hi(z) and H(z) have the common divisor F(z), we
have
- L D(Zil)

- = Hi(2)A(2). (10)

Hy(z) = Hi(2)z D)

Therefore, if A(2) in Eq.(6) is an approximate half-sample delay;

Ae) me % (-7 <w < ), (11)
then the half-sample delay condition in Eq.(5) is achieved approxi-
mately. Thus, two wavelet bases form an approximate Hilbert trans-
form pair.

There exist many design methods for allpass filters to approx-
imate a fractional delay response, for example, the maximally flat,
least squares [3], equiripple approximations [4], and so on. In [9],
the maximally flat fractional delay allpass filter was adapted, and

w = 0 was chosen for the point of approximation. However, the
approximation error will increase as w goes away from the point of
approximation in the maximally flat approximation. Thus, it will be
better if the minimax (Chebyshev) phase approximation of allpass
filters is used, e.g., [4].

Once A(z) is determined, we need to design F'(z) for Hi(z)
and H>(z). To obtain wavelet bases with K vanishing moments, we
have

F(z)=Q(z)(14z H¥. (12)
Thus

{Hl(Z) =Q(=)(1+2"1)"D(2) (13)

Hy(z) = Q()(1+2" ) 2 D(z"")
It is clear that H,(z) and H»(z) have the same product filter P(z);

P(z) = Hy(2)Hy (2~ ") = Ha(2)Ha(z")

1 K 1IWK 1 (14)
=Q(=)Q(")(1+2)"(1+2")"D(z)D(z")
Defining
R(z)=Q()Q:")= Y r(n:", (15)
L+ K
S()=(z+2+2 ) DEDE") = 3 s, (16

where r(n) = r(—n) for1 < n < N and s(n) = s(—n) for
1 < n < L+ K, we can write the orthonormality condition in
Eq.(1) as

mz s(2n — k)r(k) = {(1] E:;E; a7

where I,,; = max{—N,2n— L — K} and I,na> = min{N, 2n +
L + K}. Note that P(z) is a halfband filter, thus N + L + K = M
is an odd number, where the degree of H;(2)is M = N + L + K.
In Eq.(17), there are (M + 1)/2 equations with respect to (N + 1)
unknown coefficients r(n). Therefore, it is clear that we can obtain
the only solution if (M + 1)/2 = N + 1, which is corresponding to
the maximal K (Koo = N — L+ 1= (M +1)/2 — L for given
N and L), having the maximum number of vanishing moments. In
[9], Selesnick had chosen N = L + K — 1 and obtained the filter
of minimal degree for given L and K. Both are equivalent and have
the maximally flat magnitude response. However, it is known in [1]
that the maximally flat filters have poor frequency selectivity. In the
following, we will consider how to design R(z) with an improved
frequency selectivity.

4. HILBERT TRANSFORM PAIRS OF WAVELET BASES
WITH IMPROVED FREQUENCY SELECTIVITY

It is well-known that frequency selectivity is a useful property for
many applications of signal processing. In this section, we firstly
specify the number of zeros of H;(z) at z = —1 from the viewpoint
of regularity, and then use the remaining degree of freedom to get
the best possible frequency selectivity. We consider the case of K <
(M + 1)/2 — L. Besides satisfying the orthonormality condition
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Fig. 1. Magnitude responses of scaling lowpass filters H;(z).

in Eq.(17), we want to obtain an equiripple magnitude response of

P(z) in the stopband by using the remaining degree of freedom.

The remaining degree of freedom is (M + 1)/2 — L — K. Since

zeros on the unit circle except z = +1 are complex-conjugate pair,

(M+1)/2—L— K should be even, i.e., (M +1)/2— L— K = 2m.
From Egs.(14), (15) and (16), we have

P(e’*) = R(e7*)S(e’*), (18)
where
R(“) =r(0) +2 Z r(n) cos(nw)
ST
S(e?) = s(0) + 2 Z s(n) cos(nw)

We apply the Remez exchange algorithm in the stopband [ws, 7],
where ws (7/2 < ws < ) is the cut-off frequency of the stopband
of Hi(z). Letws = wo < w1 < -+ < wam < 7 be the extremal
frequencies in the stopband, we formulate P(e’*) as

P(e.iwi) — R(ej“’i)s(ej“’i) =(1+ (—1)’7)6, (20)

where § > 0 is an error. Note that we force P(e/*) > 0 to permit
spectral factorization of R(z). We rewrite Eq.(20) as

fwin 14 (1) .
Jwiy _ — -
R(e’“) = SEe) (¢=0,1,---,2m). 21
By substituting Eq.(19) into Eq.(21), we have
N i
r(0) +2 ; r(n) cos(nw;) — %6 =0, (22)

fori = 0,1,--- ,2m. It should noted that Eqs.(17) and (22) have
(M +1)/2+42m + 1= N + 2 equations with respect to (N + 1)
filter coefficients r(n) plus one error §. Therefore, we can solve the
system of linear equations in Egs.(17) and (22) to obtain a set of filter
coefficients r(n). Furthermore, we make use of an iteration proce-
dure to obtain the equiripple magnitude response of P(z). Thus the
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Fig. 2. Magnitude responses of Hj (e’“)e ™% — Hy(e’®).

optimal filter coefficients r(n) can be easily obtained through a few
iterations. Similar to the way proposed in [9], we can obtain Q(z)
from R(z) by using a spectral factorization approach, where Q(z)
is not unique. The design algorithm is shown as follows.

5. DESIGN ALGORITHM

Procedure {Design of Hilbert Transform Pairs of Orthonormal
Wavelet Bases with Improved Frequency Selectivity}
Begin
1) Read N, K, L, and w;.
2) Design A(z) to get d(n), and use Eq.(16) to compute s(n).
3) Select initial extremal frequencies €; (ws = Qo < Q1 <
<o < Qo < m) equally spaced in the stopband.
Repeat
4) Setw; =Q; fori =0,1,--- ,2m.
5) Solve Egs.(17) and (22) to obtain a set of filter coefficients
r(n).
6) Search the peak frequencies Q; (ws = Q20 < 1 < -+ <
Q2. < ) of P(e’*) in the stopband.
Until

Satisfy the following condition for a prescribed small constant e
(e.g.e=10"%);

2m
Z |wi — Qz| <€
i=1
7) Factorize R(z) to get Q(z), and use Eq.(13) to construct
H1 (Z) and HQ(Z)
End.

6. DESIGN EXAMPLE

In this section, we present one example to demonstrate the effec-
tiveness of the design method proposed in this paper. First, we have
designed a Hilbert transform pair of orthonormal wavelet bases with
the maximum number of vanishing moments as proposed in [9]. The
magnitude response of the scaling lowpass filters H;(z) with M =
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Fig. 3. Magnitude responses of ¥; (w).

11 is shown in dash line in Fig.1, where N = 5, K = 4,L = 2.
Next, we considered the design of H;(z) with the same degree, i.e.,
M = 11. Weset K = 2 and N = 7, thus the remaining degree
of freedom is 2m = (M + 1)/2 — L — K = 2. The stopband
of H;(z) is set to [ws = 0.7, w]. We have obtained the equirip-
ple magnitude response of P(z) by using the design algorithm pro-
posed in the preceding section. The resulting magnitude response
of H;(z) is shown also in solid line in Fig.1. It is seen in Fig.1
that it is more sharp than the maximally flat filter. The magnitude
responses of Hi(e’“)e 7% — Hy(e’*) are shown in Fig.2. It is
clear in Fig.2 that the maximum error of the proposed filter pair is
smaller than one proposed in [9]. Moreover, the spectrum ¥;(w)
of the obtained wavelet functions ;(¢) are shown in Fig.3, while
the spectrum ¥y (w) + jWa(w) of ¢1(t) + jibo(t) in Fig.4, which
approximate zero for w < 0.

7. CONCLUSION

In this paper, we have proposed a new design method for Hilbert
transform pairs of orthonormal wavelet bases. First, we have located
the specified number of zeros at z = —1 for the scaling lowpass fil-
ters, and then derived a system of linear equations from the orthonor-
mality condition. Next, we have applied the Remez exchange algo-
rithm in the stopband to obtain the equiripple magnitude response.
Therefore, a set of filter coefficients can be obtained easily by solv-
ing a system of linear equations, and the optimal solution is attained
through a few iterations. The proposed design procedure is compu-
tationally efficient because it retains the speed inherent in the Re-
mez exchange algorithm. Since the number of zeros at z = —1
can be specified arbitrarily, a new class of Hilbert transform pairs of
orthonormal wavelet bases with the specified number of vanishing
moments can be generated.
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