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ABSTRACT
Q-shift filters have been used in the Dual Tree Complex Wavelet
Transform (DTCWT), and are required to have a well-controlled
group delay. This paper proposes a new method for designing Q-
shift filters with improved vanishing moments. The proposed design
method allows the flatness condition of the group delay response to
be included along with the vanishing moments and orthogonality of
wavelets. Therefore, the resulting Q-shift filters possess flat group
delay responses. Moreover, the number of vanishing moments can
be arbitrarily specified by locating the desired number of zeros at
z = −1. Finally, one example is presented to demonstrate the effec-
tiveness of the proposed design method.
Keywords: DTCWT, Orthogonal wavelet, Hilbert transform pair,
Q-shift filter, FIR filter, Flat frequency response, Vanishing moment.

1. INTRODUCTION

The Dual Tree Complex Wavelet Transform (DTCWT) was origi-
nally proposed by Kingsbury in [2], and has been found to be suc-
cessful in many applications of signal processing and image process-
ing [2]∼[10]. DTCWT has the following significant properties over
DWT (Discrete Wavelet Transform): approximate shift invariance,
and good directional selectivity for multidimensional signals. It has
been shown in [5] that two scaling lowpass filters are required to sat-
isfy the half-sample delay condition, thus the corresponding wavelet
bases form a Hilbert transform pair.

Several design procedures for DTCWT had been presented in
[2]∼[7]. In [6], Selesnick had proposed a design technique using
the maximally flat allpass filters. This method is simple and effec-
tive, but the resulting filters have a non-linear phase response. In
[3] and [4], Kingsbury introduced Q-shift filters in order to provide
the improved orthogonality and symmetry properties. Q-shift fil-
ters are required to have a linear phase response. The design tech-
nique proposed in [3] and [4] was based on the optimization of a set
of rotations θi in the polyphase structure, but this is a highly non-
linear problem and only works well for relatively short filters. In [7],
Kingsbury had proposed an alternative technique for optimizing Q-
shift filters, which works effectively for filters of lengths up to 50 or
more taps. This method was based on the minimization of energy of
HL2(z) in [π

3
, π], instead of the direct approximation of group delay

for H0(z).
In this paper, we propose a new method for designing Q-shift

filters with improved vanishing moments. Differently from the tech-
nique proposed in [7], we consider the direct approximation of group
delay response for Q-shift filters. We specify the degree of flatness
for the group delay response at ω = 0, and then derive a set of lin-
ear equations from this flatness condition. Moreover, we locate the

specified number of zeros at z = −1 from the viewpoint of vanish-
ing moment. Therefore, the resulting Q-shift filters have a flat group
delay response and the specified number of vanishing moments. In
the proposed method, the filter coefficients can be obtained easily
by iteratively solving a set of linear equations only. Finally, one ex-
ample is presented to demonstrate the effectiveness of the proposed
design method.

2. Q-SHIFT FILTERS FOR DTCWT

It is known that DTCWT employs two real DWTs; the first DWT
gives the real part of DTCWT and the second DWT is the imaginary
part. The second wavelet basis is required to be the Hilbert transform
of the first wavelet basis.

Let φH(t), φG(t) and ψH(t), ψG(t) be the scaling and wavelet
functions of two DWTs, respectively. It has been proven in [5], [8]
and [9] that two wavelet functions ψH(t) and ψG(t) form a Hilbert
transform pair;

ψG(t) = H{ψH(t)}, (1)

that is

ΨG(ω) =

{−jΨH(ω) (ω > 0)

jΨH(ω) (ω < 0)
, (2)

if and only if two scaling lowpass filters satisfy

G(ejω) = H(ejω)e−j
ω
2 (−π < ω < π), (3)

where ΨH(ω),ΨG(ω) are the Fourier transform of ψH(t), ψG(t),
respectively. This is the so-called half-sample delay condition be-
tween two scaling lowpass filters H(z) and G(z), which has been
generalized in [11]. Equivalently, the scaling lowpass filters should
be offset from one another by a half sample. Eq.(3) is the neces-
sary and sufficient condition for two wavelet bases to form a Hilbert
transform pair [9].

In [3] and [4], Kingsbury had proposed Q-shift filters in order to
provide the improved orthogonality and symmetry properties. One
scaling lowpass filter is chosen to be the time reverse of another fil-
ter;

G(z) = z−NH(z−1), (4)

where H(z) is FIR filter of degree N . Its transfer function is given
by

H(z) =

N∑

n=0

h(n)z−n, (5)

where h(n) are real filter coefficients and N is an odd number.
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Q-shift filters are required to have a linear phase response. That
is, the desired phase response of H(z) is

θd(ω) = −(
N

2
− 1

4
)ω. (6)

Therefore, the phase response ofG(z) will be−(N
2

+ 1
4
)ω, thus two

scaling lowpass filters safisfy the half-sample delay condition.

3. DESIGN OF Q-SHIFT FILTERS

In this section, we discuss the design of Q-shift filters. From Eq.(5),
the phase response of H(z) is given by

θ(ω) = − tan−1

N∑

n=0

h(n) sin(nω)

N∑

n=0

h(n) cos(nω)

. (7)

Thus, the difference θe(ω) between θ(ω) and θd(ω) is

θe(ω) = θ(ω)− θd(ω) = 2 tan−1 N(ω)

D(ω)
, (8)

where





N(ω) =

N∑

n=0

h(n) sin((
N

2
− n− 1

4
)ω)

D(ω) =

N∑

n=0

h(n) cos((
N

2
− n− 1

4
)ω)

. (9)

There are many criterions in the group delay approximation,
e.g., maximally flat, least square, equiripple approximation, and so
on [1]. In this paper, we consider the maximally flat approximation.
H(z) is required to have the specified degree of flatness at ω = 0
for the group delay response, that is,






τ(0) =
N

2
− 1

4

∂2rτ(ω)

∂ω2r

∣∣∣∣
ω=0

= 0 (r = 1, 2, · · · , L− 1)

, (10)

where L (> 0) is a parameter that controls the degree of flatness.
Since τ(ω) = − ∂θ(ω)

∂ω
, Eq.(10) is equivalent to

∂2r+1θe(ω)

∂ω2r+1

∣∣∣∣
ω=0

= 0 (r = 0, 1, · · · , L− 1). (11)

By using Eq.(8), Eq.(11) can be reduced to

∂2r+1N(ω)

∂ω2r+1

∣∣∣∣
ω=0

= 0 (r = 0, 1, · · · , L− 1). (12)

By substituting N(ω) in Eq.(9) into Eq.(12), we can derive a set of
linear equations as follows;

N∑

n=0

(
N

2
− n− 1

4
)2r+1h(n) = 0 (r = 0, 1, · · · , L− 1). (13)

It is clear that there areL equations in Eq.(13) with respect to (N+1)
unknown coefficients h(n).

In addition to the phase condition given in Eq.(13), H(z) is
required to satisfy the condition of orthonormality and to have the
maximum number of vanishing moments.

To obtain orthonormal wavelet bases, H(z) must satisfy

H(z)H(z−1) +H(−z)H(−z−1) = 2. (14)

We rewrite the condition of orthonormality in Eq.(14) as

N−2n∑

k=0

h(k + 2n)h(k) = δ(n) =

{
1 (n = 0)

0 (n > 0)
, (15)

where there are (N + 1)/2 equations with respect to h(n).
Moreover,H(z) must haveK zeros at z = −1 to get the desired

number of vanishing moments;

H(z) = Q(z)(1 + z−1)K . (16)

Therefore, we have

∂rH(ejω)

∂ωr

∣∣∣∣
ω=π

= 0 (r = 0, 1, · · · ,K − 1). (17)

By substituting H(ejω) in Eq.(5) into Eq.(17), we derive a set of
linear equations as follows;

N∑

n=0

(−1)nnrh(n) = 0 (r = 0, 1, · · · ,K − 1), (18)

where there are K equations with respect to h(n). If K + L =
(N + 1)/2, then there are K +L+ (N + 1)/2 = N + 1 equations
in Eq.(13), Eq.(15) and Eq.(18) with respect to (N + 1) unknowns
h(n). Therefore, we can obtain the filter coefficients h(n) by solving
Eq.(13), Eq.(15) and Eq.(18).

For example, we discuss the case of N = 3. Since K + L =
(N + 1)/2 = 2 and K > 0, L > 0, we can choose K = L = 1
only. Thus, from Eq.(15), Eq.(18) and Eq.(13), we have






h(0)2 + h(1)2 + h(2)2 + h(3)2 = 1

h(0)h(2) + h(1)h(3) = 0

h(0)− h(1) + h(2)− h(3) = 0

5

4
h(0) +

1

4
h(1)− 3

4
h(2)− 7

4
h(3) = 0

. (19)

It is clear that there are four solutions in Eq.(19). If h(n) is one
solution, then −h(n) is a solution too. Assuming H(1) > 0, thus,
we have two solutions;

H1(z) = 0.0996151398 + 0.7842683367z−1

+0.6074916414z−2 − 0.0771615555z−3,

H2(z) = 0.7842683367 + 0.0996151398z−1

−0.0771615555z−2 + 0.6074916414z−3.

The magnitude responses of two filters H1(z) and H2(z) are shown
in Fig.1, and the group delay responses are shown in Fig.2 also. It
is clear that H1(z) and H2(z) have different frequency responses,
regardless both satisfy the condition in Eq.(19). H1(z) has a better
magnitude response and more flat group delay response than H2(z).
Therefore, we should choose H1(z) as the optimal solution. The ro-
tations are θ = {1.8391,−0.8391}π/4 in the polyphase structure.

2011 18th IEEE International Conference on Image Processing

258



0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

NORMALIZED FREQUENCY

M
A

G
N

IT
U

D
E

 R
E

S
P

O
N

S
E

H2(z)

H1(z)

Fig. 1. Magnitude responses of Q-shift filters with N = 3.

4. AN ITERATIVE PROCEDURE FOR Q-SHIFT FILTERS

It is difficult to solve the non-linear problem in Eq.(13), Eq.(15) and
Eq.(18), particularly if the filter degree N is large, because Eq.(15)
is a set of quadratic constraints on the filter coefficients h(n). In this
section, we linearize the problem and use an iterative procedure to
compute a set of filter coefficients h(n), similarly to the technique
proposed by Kingsbury in [7].

Let h(i)(n) be the filter coefficients at ith iteration, and is given
by

h(i)(n) = h(i−1)(n) + ∆h(i)(n). (20)

Therefore, Eq.(15) becomes
N−2n∑

k=0

[h(i−1)(k + 2n)h(i−1)(k) + h(i−1)(k + 2n)∆h(i)(k)

+h(i−1)(k)∆h(i)(k + 2n) + ∆h(i)(k)∆h(i)(k + 2n)] = δ(n)

(21)

If ∆h(i)(k) is assumed to become small as i increases, the term
∆h(i)(k)∆h(i)(k + 2n) can be neglected. Thus we have

N∑

k=0

[h(i−1)(k + 2n) + h(i−1)(k − 2n)]∆h(i)(k)

= δ(n)−
N−2n∑

k=0

h(i−1)(k + 2n)h(i−1)(k)

(22)

where h(i−1)(k) = 0 for k < 0, k > N . Moreover, Eq.(13) and
Eq.(18) become
N∑

n=0

(
N

2
− n− 1

4
)2r+1∆h(i)(n) =

N∑

n=0

(n+
1

4
− N

2
)2r+1h(i−1)(n)

(23)
N∑

n=0

(−1)nnr∆h(i)(n) =

N∑

n=0

(−1)(n+1)nrh(i−1)(n). (24)

Therefore, we can get ∆h(i)(n) by solving the set of linear equations
in Eq.(22), Eq.(23) and Eq.(24), if h(i−1)(n) are known. The filter
coefficients h(i)(n) are updated by ∆h(i)(n) in Eq.(20).
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Fig. 2. Group delay responses of Q-shift filters with N = 3.

To converge to the optimal solution, a set of good initial coeffi-
cients h(0)(n) are needed. It is known that P (z) = H(z)H(z−1)
is a linear phase half-band filter. We firstly design P (z) as the max-
imally flat half-band filter, and choose the magnitude response of
H(z) as |H(ejω)| = |P (ejω)|

1
2 . We set its phase response as

−(k + 1
4
)ω. That is, H(ejω) = |P (ejω)|

1
2 e−j(k+

1
4 )ω . Then, a

set of initial coefficients h(0)(n) are computed by taking (N + 1)-
point IDFT. As mentioned in the preceding section, there are more
than one solutions. We choose k from 0 to N to get different initial
coefficients h(0)(n). Thus, we can obtain more than one solutions
and choose the optimal filter coefficients from these solutions.

5. DESIGN EXAMPLE

In this section, we present one example to demonstrate the effective-
ness of the proposed design method. We have designed Q-shift filters
with N = 9 by using the proposed method. Firstly, K = 4, L = 1
was chosen, and the resulting rotations are θ = {−0.5717, 1.6618,
1.5555,−1.3458,−0.2998}π/4. Its magnitude and group delay re-
sponses are shown in solid line in Fig.3 and Fig.4, respectively. For
comparison, the magnitude and group delay responses of the filters
with K = 1, L = 4 (θ = {−1.5404,−1.7338,−1.6680, 1.9822,
−0.0400}π/4), K = 2, L = 3 (θ = {−1.5356, 0.7675,−1.9492,
−0.4892, 0.2066}π/4), and designed by Kingsbury are shown also.
It is seen in Fig.3 that the magnitude response becomes more sharp
as K increases. It is noted that Q-shift filter designed by Kingsbury
has a sharp magnitude response, but only one zero at z = −1, which
means only one vanishing moment. It is clear in Fig.4 that the group
delay responses become more flat as L increases, and it is better than
the filter designed by Kingsbury.

It is clear in Eq.(3) that G(ejω) needs to be approximated to
H(ejω)e−j

ω
2 . For the purpose of comparison, we define the error

function E(ω) as

E(ω) = G(ejω)−H(ejω)e−j
ω
2 . (25)

The magnitude responses of E(ω) of four Q-shift filters are shown
in Fig.5. It is seen in Fig.5 that Q-shift filter with K = 1, L = 4 has
the minimum error. This means that it has an improved analyticity.
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Fig. 3. Magnitude responses of Q-shift filters with N = 9.
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Fig. 4. Group delay responses of Q-shift filters with N = 9.

6. CONCLUSION

In this paper, we have proposed a new iterative procedure for design-
ing Q-shift filters with improved vanishing moments in DTCWT.
We have firstly discussed the direct approximation of group delay
response for Q-shift filters. The degree of flatness can be specified
arbitrarily at ω = 0 for the group delay response, then a set of linear
equations have been derived from this flatness condition. Moreover,
we have located the specified number of zeros at z = −1 to obtain
the vanishing moment. Therefore, the resulting Q-shift filters have
a flat group delay response and the specified number of vanishing
moments. The filter coefficients can be computed easily by itera-
tively solving a set of linear equations only. Therefore, the proposed
design method is computationally efficient. Finally, one example
is presented to demonstrate the effectiveness of the design method
proposed in this paper.
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Fig. 5. Magnitude responses of E(ω).
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