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ABSTRACT

This paper proposes a novel method for designing compactly sup-
ported biorthogonal graph wavelet filter banks with flat spectral re-
sponses. We firstly construct a class of biorthogonal graph filter
banks by using the polynomial half-band kernels, and then present
a design method for the polynomial half-band kernel. The proposed
design method utilizes the PBP (Parametric Bernstein Polynomial),
which ensures that the half-band kernel has the specified zeros at
λ = 2, that is, the flatness constraints both in passband and stopband.
Therefore, the resulting graph filters have the flat spectral responses.
Furthermore, we apply the Remez exchange algorithm to minimize
the spectral error by using the remaining degree of freedom. Finally,
two design examples are given to demonstrate the effectiveness of
the design method proposed in this paper.

Index Terms— Graph signal processing, graph wavelets,
biorthogonal filter bank, polynomial half-band kernel.

1. INTRODUCTION

Signal processing on graphs has been found to be useful in numer-
ous applications such as biological, energy, social, sensor, and trans-
portation networks [7], [8]. Signal processing on graphs aims to
extend the classical signal processing concepts and methodologies
to signals defined on general graphs. Major challenges are how to
efficiently analyze, compress and process large amounts of signals.
It is well-known in [1]∼[3] that wavelet filter banks can provide a
sparse representation of signals as a widely used signal processing
tool. Recently, there are many works to extend the classical wavelet
transforms to signals on graphs, namely, graph wavelet transforms
[9]∼[20]. However, a drawback is that those transforms proposed
in [9]∼[11] and [14] are not critically sampled. Critical sampling is
important for compact representation of signals, e.g., compression.
Critically sampled graph wavelet filter banks have been proposed
in [12], [13], [15], [17], [19] and [20] also. Furthermore, the fil-
ters are required to be compactly supported in the graph, i.e., the
output at each vertex is computed exactly from the signal at that
vertex and its K-hop neighborhood. It can be achieved by a poly-
nomial approximation of the desired spectral kernel. The lifting-
based graph wavelet filter banks in [12], [13] are compactly sup-
ported, but not orthogonal. Two channel orthogonal graph wavelet
filter bank graph-QMF has been proposed in [15], [19] and [20],
but the perfect reconstruction and orthogonality cannot be exactly
achieved by using a polynomial approximation of the kernel filters.
Narang and Ortega have proposed a simple design technique based
on the Meyer’s wavelet construction to obtain near orthogonal graph
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wavelet filter banks in [15]. However, The reconstruction error can-
not be directly controlled and may be quite large. In [19], Tay and
Lin have proposed a constrained optimization method to minimize
the reconstruction error, which uses the PBP for generating the ini-
tial solution. In [20], graph-QMF with flatness constraints has been
discussed, where only one extra parameter is used to reduce the re-
construction error. In [17], Narang and Ortega have also proposed a
class of compactly supported biorthogonal graph wavelet filter banks
graphBior by relaxing the condition of orthogonality, and given a
design method based on the Cohen-Daubechies-Feauveau’s wavelet
construction of factorizing the maximally flat half-band filter. How-
ever, the resulting spectral responses are poor.

In this paper, we propose a novel design method of critically
sampled compactly supported biorthogonal graph wavelet filter
banks with flat spectral responses. Firstly, we use the polynomial
half-band kernels to construct a class of biorthogonal graph filter
banks, where the perfect reconstruction condition is structurally
satisfied. Then we present a design method of the polynomial half-
band kernel with the specified degree of flatness, in which the PBP is
utilized to ensure that the polynomial half-band kernel has the spec-
ified zeros at λ = 2. Furthermore, we apply the Remez exchange
algorithm to minimize the spectral error in stopband. It is well-
known that the Remez exchange algorithm is an efficient approach
for designing FIR linear phase filters with an equiripple magnitude
response. The Remez exchange algorithm has been also used to
design FIR linear phase half-band filters in [6]. In the proposed
method using the Remez exchange algorithm, a set of coefficients
is easily obtained only by solving a system of linear equations. The
optimal solution is attained through a few iterations. Therefore, the
proposed design algorithm is computationally efficient. Finally, two
design examples are shown to demonstrate the effectiveness of the
design method proposed in this paper.

2. PRELIMINARIES

We first give a brief review of signal processing on graphs in [7], [8]
and [15]. A graph is denoted as G = (V, E), where V is the set of
vertices (nodes) and E is the set of edges (links). The size of graph
N = |V| is the number of vertices. A is the adjacency matrix, whose
element A(i, j) represents the weight of the edge between vertex i
and j, andA(i, j) = 0 if there is no edge. D = diag(di) is the diag-
onal degree matrix, where di =

P
j A(i, j) is the sum of weights of

all edges connected to vertex i. The Laplacian matrix of the graph
is defined as L = D −A, and the normalized Laplacian matrix is
L = D−1/2LD−1/2 = I−D−1/2AD−1/2, where I is the iden-
tity matrix. Both L and L are symmetric positive semidefinite ma-
trices, and have a complete set of orthonormal eigenvectors. Now



we denote the eigenvectors of the normalized Laplacian matrix L by
ui = [ui(1), ui(2), · · · , ui(N)]T and the associated eigenvalues by
λi, where ui(n) is real-valued and 0 = λ1 < λ2 ≤ · · · ≤ λN ≤ 2.

A graph signal is a function defined on the graph and the
sample value f(n) at vertex n can be represented as a vector
f = [f(1), f(2), · · · , f(N)]T . The graph Fourier transform (GFT)
is defined as the projections of a signal f on the graph onto the
eigenvectors;

F (λi) = fTui =

NX
n=1

f(n)ui(n) (1)

and the inverse graph Fourier transform (IGFT) is given by

f(n) = FTU(n) =

NX
i=1

F (λi)ui(n) (2)

where F = [F (λ1), F (λ2), · · · , F (λN )]T and U(n) = [u1(n),
u2(n), · · · , uN (n)]T .

A filtering operation of a signal f in the vertex domain can be ex-
pressed in the matrix form as y = Hf , where y = [y(1), y(2), · · · ,
y(N)]T is output signal and H is the transform matrix of the filter
given by

H =

NX
i=1

H(λi)uiu
T
i (3)

where H(λ) is the spectral kernel of the filter.
By using GFT, we have in the spectral domain

Y (λi) = H(λi)F (λi) (4)

where Y (λi) is the GFT of output signal y.

3. GRAPH WAVELET FILTER BANKS

The two channel graph wavelet filter bank {Hk,Gk}k=0,1 proposed
in [15] is shown in Fig.1. The corresponding transform matrices are
given by 8

>>>><
>>>>:

Hk =

NX
i=1

Hk(λi)uiu
T
i

Gk =

NX
i=1

Gk(λi)uiu
T
i

(5)

whereHk(λ), Gk(λ) are the spectral kernels of analysis and synthe-
sis filters, respectively. H0,G0 act as lowpass filters and H1,G1

are highpass. The down-sampling operation βL discards the out-
put coefficients of lowpass channel in the set H , while βH dis-
cards the output coefficients of highpass channel in the set L, where
|H|+ |L| = N and H ∩L = 0. The overall transform matrix of the
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Fig. 1. Two channel graph wavelet filter bank.

filter bank is given by

T =
1

2
{G0(I + Jβ)H0 + G1(I− Jβ)H1}

=
1

2
{(G0H0 + G1H1) + (G0JβH0 −G1JβH1)}

(6)

where Jβ = diag(βi) is a diagonal matrix, and βi is a partition
function such that βi = 1 if vertex i ∈ L and βi = −1 if vertex
i ∈ H . Thus the down-and-up sampling operation βL in lowpass
channel can be expressed in the matrix form as 1

2
(I+Jβ), while βH

in highpass channel as 1
2
(I − Jβ). It is shown in [15] and [17] that

the perfect reconstruction (PR) condition of two channel filter bank
is given by

(
H0(λ)G0(λ) +H1(λ)G1(λ) = 2

H0(2− λ)G0(λ)−H1(2− λ)G1(λ) = 0
(7)

To cancel aliasing, synthesis kernels are chosen as
(

G0(λ) = H1(2− λ)

G1(λ) = H0(2− λ)
(8)

Therefore, the PR condition in Eq.(7) can be reduced to

H0(λ)H1(2− λ) +H0(2− λ)H1(λ) = 2 (9)

which leads to a biorthogonal filter bank.
Furthermore, defining the product filter P (λ) as

P (λ) = H0(λ)H1(2− λ) (10)

thus, Eq.(9) becomes

P (λ) + P (2− λ) = 2 (11)

It is known in [17] that P (λ) should be a half-band kernel and an
odd degree polynomial to satisfy Eq.(11). It is also a lowpass kernel
since H0(λ) and G0(λ) = H1(2− λ) are lowpass.

4. DESIGN OF BIORTHOGONAL GRAPH WAVELET
FILTER BANKS

It is known in [15] and [17] that if the spectral kernel is a polynomial
of degreeK, then the graph filter is exactlyK-hop localized and can
be implemented iteratively withK one-hop operations at each vertex
without any matrix diagonalization. In this paper, we will discuss the
polynomial approximation of the desired kernel.

4.1. Construction of Filter Bank

Firstly, we consider the design of H0(λ). H0(λ) is a lowpass kernel
and has a desired gain

√
2 in passband [0, λp] and 0 in stopband

[λs, 2]. We construct H0(λ) as

H0(λ) =
1√
2

(1 +Q0(λ)) (12)

and

Q0(λ) =

K0X

k=0

a0(k)(λ− 1)2k+1 (13)

where the degree of polynomial Q0(λ) is 2K0 + 1 and a0(k) are
real-valued coefficients.



Since Q0(λ) = −Q0(2− λ), we have

H0(λ) +H0(2− λ) =
√

2 (14)

which means that H0(λ) defined in Eq.(12) is a polynomial half-
band kernel.

We then construct the highpass kernel H1(λ) as

H1(λ) =
√

2−Q1(λ)H0(λ) (15)

and

Q1(λ) =

K1X

k=0

a1(k)(λ− 1)2k+1 (16)

where the degree of Q1(λ) is 2K1 + 1 and a1(k) are real-valued.
Therefore, we have

P (λ) = H0(λ)H1(2− λ)

= 1 +Q0(λ) +
1

2
Q1(λ)− 1

2
Q2

0(λ)Q1(λ) (17)

It is clear that the PR condition in Eq.(11) is satisfied regardless of
what the coefficients of Q0(λ) and Q1(λ) are. That is, the PR con-
dition is structurally satisfied.

For H0(λ) in Eq.(12) to be lowpass, we must have

Q0(λ) =

(
1 (0 ≤ λ ≤ λp)
−1 (λs ≤ λ ≤ 2)

(18)

where λp + λs = 2. Due to the antisymmetry of Q0(λ), its desired
spectral is

Qd0(λ) = 1 (0 ≤ λ ≤ λp). (19)

Further, H1(λ) in Eq.(15) should be highpass, that is, H1(λ) =

0 in [0, λp] and H1(λ) =
√

2 in [λs, 2]. In [λs, 2], H0(λ) = 0,
thus we have H1(λ) =

√
2. On the other hand, since H0(λ) =

√
2

in [0, λp] ideally, then the desired spectral of Q1(λ) is the same as
Q0(λ);

Qd1(λ) = 1 (0 ≤ λ ≤ λp). (20)

However, H0(λ) has some errors in practice. Thus we have from
Eq.(15)

Qd1(λ) =

√
2

H0(λ)
(0 ≤ λ ≤ λp). (21)

That is, the actual response of H0(λ) should be considered in the
design of H1(λ). In the following, we will discuss the design of
Q0(λ) and Q1(λ) (that is, H0(λ) and H1(λ)).

4.2. Approximation of Half-band Kernel

The PBP (Parametric Bernstein Polynomial) was first introduced in
[4], and expressed in [20] and [6] as

B(x) = K(x)−
(Nb−1)/2X
i=L

αiKi(x) (22)

and

K(x) =

(Nb−1)/2X
i=0

 
Nb
i

!
xi(1− x)Nb−i (23)

Ki(x) =

 
Nb
i

!
{xi(1− x)Nb−i − xNb−i(1− x)i} (24)

where the coefficients αi are real, the degree Nb is odd, and L is
integer and 0 ≤ L < (Nb + 1)/2. It is clear that B(x) is a halfband
polynomial since B(x) + B(1 − x) = 1, and B(x) has L zeros
at x = 1. If αi = 0 for all i, then the maximally flat response is
obtained, that is, Lmax = (Nb + 1)/2.

By using the PBP B(x), we define

H0(λ) =
√

2B(
λ

2
) =
√

2{K(
λ

2
)−

K0X
i=L0

αiKi(
λ

2
)} (25)

where N0 = 2K0 + 1 and thus H0(λ) has L0 zeros at λ = 2.
Therefore, we have from Eq.(12)

Q0(λ) = 2B(
λ

2
)− 1 = 2{K(

λ

2
)−

K0X
i=L0

αiKi(
λ

2
)} − 1 (26)

Next, we use the method in [6] to design H0(λ). To obtain a
sharper spectral , we use the remaining degree of freedom for B(λ

2
)

to satisfy

1− δ ≤ B(
λ

2
) ≤ 1 + δ (0 ≤ λ ≤ λp) (27)

and
−δ ≤ B(

λ

2
) ≤ δ (λs ≤ λ ≤ 2) (28)

where δ is a tolerance error. From Eq.(26), Eqs.(27) and (28) can be
reduced to

1− 2δ ≤ Q0(λ) ≤ 1 + 2δ (0 ≤ λ ≤ λp). (29)

By applying the Remez exchange algorithm, we select (M0 +1)
extremal points λm as λp = λ0 > λ1 > · · · > λM0 > 0, where
M0 = K0 − L0 + 1, and then formulate Q0(λ) as

Q0(λm) = 1− (−1)m2δ. (30)

By substituting Q0(λ) in Eq.(26) into Eq.(30), we derive a sys-
tem of linear equations as follows;

K0X
i=L0

αiKi(
λm
2

)− (−1)mδ = K(
λm
2

)− 1 (31)

for m = 0, 1, · · · ,M0. It is clear that there are (M0 + 1) equations
with respect to M0 = K0 − L0 + 1 unknown coefficients αi plus
one error δ. Therefore, we can solve Eq.(31) to obtain a set of coef-
ficients αi. Since the extremal points λm are unknown a priori, we
initially select λm equally spaced in [0, λp], and then utilize an iter-
ation procedure to obtain the equiripple spectral. Since it only needs
to solve a system of linear equations iteratively, the proposed design
algorithm is computationally efficient.

On the other hand, since the desired spectral of Q1(λ) is depen-
dent on H0(λ) as shown in Eq.(21), it is needed to satisfy
√

2− δ ≤ H0(λ)Q1(λ) ≤
√

2 + δ (0 ≤ λ ≤ λp). (32)

Similarly, we apply the Remez exchange algorithm in [0, λp] and
formulate Q1(λ) as

H0(λm)Q1(λm) =
√

2− (−1)mδ. (33)

Therefore, we can obtain
K1X
i=L1

αiKi(
λm
2

)− (−1)m

2H0(λm)
δ = K(

λm
2

)− 1

2
− 1√

2H0(λm)

(34)
where the stopband error ofH1(λ) is minimized regarding the actual
response of H0(λ).



5. DESIGN EXAMPLES

In this section, we present two design examples to demonstrate the
effectiveness of the proposed design method.

Example 1: We have designed the proposed biorthogonal graph
wavelet filter banks with the maximally flat half-band spectral ker-
nels. We have chosen {K0,K1} = {8, 6}, {12, 6}, {16, 6}. The
degree of H0(λ) and H1(λ) are 2K0 + 1 and 2(K0 + K1) + 2 re-
spectively. The obtained spectral responses of H0(λ) andH1(λ) are
shown in Fig. 2. For comparison, the spectral responses of biorthog-
onal graph wavelet filter bank graphBior(8, 8) proposed in [17] by
Narang and Ortega have also been shown in Fig. 2, where the degree
of H0(λ) and H1(λ) are 16 and 15 respectively. It is seen that the
spectral responses of the proposed filter banks are flatter at λ = 0
and λ = 2 than the graphBior, and become sharper nearby λ = 1
with an increasing K0.

Example 2: We have designed the proposed biorthogonal graph
wavelet filter bank with K0 = K1 = 10, and λp = 0.8, λs = 1.2.
We have chosen L0 = 11, 9, 7 and designed H0(λ). The spectral
responses of H0(λ) with L0 = 11, 9, 7 are shown in Fig. 3. Note
that L0 = 11 means the maximally flat half-band spectral kernel.
It is seen that the spectral error of H0(λ) become smaller with an
decreasing L0. We then designed H1(λ) with L1 = 5, and the
spectral responses of H1(λ) are shown in Fig. 3 also. It is seen that
the equiripple spectral responses ofH1(λ) have been obtained in the
stopband by using the Remez exchange algorithm. However, H1(λ)
has an overshooting above λ = 1.

6. CONCLUSION

In this paper, we have proposed a new class of critically sampled
compactly supported biorthogonal graph wavelet filter banks with
flat spectral responses. We have used the polynomial half-band ker-
nels to construct biorthogonal graph filter banks, which structurally
safisfy the perfect reconstruction condition. We then have presented
a design method for the polynomial half-band kernel, in which the
PBP is utilized to ensure that the polynomial half-band kernel has
the specified zeros at λ = 2. Furthermore, we have applied the Re-
mez exchange algorithm to minimize the spectral error in stopband.
In the proposed method, a set of coefficients can be easily obtained
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Fig. 2. Spectral responses of H0(λ) and H1(λ) in Example 1.

only by solving a system of linear equations. The optimal solution
is attained through a few iterations. Therefore, the proposed design
algorithm is computationally efficient. Finally, two design exam-
ples have been shown to demonstrate the effectiveness of the design
method proposed in this paper.
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