
CLOSED-FORM DESIGN OF MAXIMALLY FLAT IIR HALF-BAND FILTERS

Xi Zhang† and Toshinori Yoshikawa

Department of Electrical Engineering
Nagaoka University of Technology
Nagaoka, Niigata, 940-2188 Japan
† E-mail : xiz@nagaokaut.ac.jp

ABSTRACT

In this paper, a new closed-form expression for the transfer func-
tion of the maximally flat (MF) IIR half-band (HB) filters is pre-
sented. The filter coefficients are directly obtained by solving a
linear system of Vandermonde equations that are derived from the
maximal flatness conditions. The proposed IIR half-band filters
are more general than the existing half-band filters, because they
include the conventional FIR half-band filters with exactly linear
phase, the generalized FIR half-band filters with approximately
linear phase, and the allpass-based IIR half-band filters, as special
cases. Furthermore, the IIR HB filters with exactly linear phase
and the causal stable IIR HB filters can be realized also. Finally,
some design examples are presented to demonstrate the effective-
ness of the proposed IIR HB filters.

1. INTRODUCTION

Half-band (HB) filters are of great importance and are often used in
multirate digital signal processing systems, filter banks and wavelets
[1]∼[5],[9]. In many applications such as the wavelet-based image
coding, HB filters are required to possess the maximally flat (MF)
frequency response in order to get better coding performance. Much
work has been done, which is mainly devoted to the design of FIR
HB filters. The closed-form solution for the MF FIR HB filters
with exactly linear phase can be found in [1]∼[3], while that for
the generalized MF FIR HB filters with approximately linear phase
is recently presented in [8]∼[10]. In contrast, there exists little
work regarding IIR HB filters. A class of IIR HB filters is given
in [2] and [5] by using the parallel structure of a pure delay sec-
tion and an allpass subfilter. It has been shown also in [5] that
the design of such allpass-based IIR HB filters can be reduced to
designing the corresponding all-pole filters. The closed-form so-
lution for the allpass-based MF IIR HB filters is given in [3],[5].

In this paper, we propose a class of more general IIR HB filters
than the existing HB filters. The proposed IIR HB filters include
not only the conventional FIR HB filters with exactly linear phase,
the generalized FIR HB filters with approximately linear phase,
and the allpass-based IIR HB filters as special cases, but also the
causal stable IIR HB filters and the IIR HB filters with exactly
linear phase. We then present a new closed-form expression for the
transfer function of the MF IIR HB filters. The filter coefficients
are directly obtained by solving a linear system of Vandermonde
equations that are derived from the maximal flatness conditions.
We also investigate the conditions for realizing the causal stable
IIR HB filters. Finally, some design examples are presented to
demonstrate the effectiveness of the proposed method.

2. IIR HB FILTERS

Let hn (n = 0, 1, · · · ) be the impulse response of an IIR HB filter.
It is well-known that the impulse responsehn should satisfy8<: hK =

1

2

hK+2k = 0 (k = ±1,±2, · · · )
, (1)

whereK is odd. Then the transfer functionH(z) of the IIR HB
filter can be given by

H(z) =
1

2
z−K + G(z2). (2)

If G(z) is a FIR filter, thenH(z) becomes a FIR HB filter. In this
paper, we assume thatG(z) is a general IIR filter with numerator
degreeN and denominator degreeM ;

G(z) =

NX
n=0

anz−n

MX
m=0

bmz−m

, (3)

wherean and bm are real coefficients, andb0 = 1. It is noted
that if M = 0, G(z) will degenerate into a FIR filter. ThenH(z)
becomes the generalized FIR HB filters proposed in [8]∼[10]. If
we further impose the constraints ofN = K andan = aN−n on
G(z), thenH(z) will be the conventional FIR HB filters with ex-
actly linear phase. In addition, ifN = M andbn = 2aN−n, then
G(z) will be allpass with gain1/2, andH(z) are the allpass-based
IIR HB filters presented in [5], which are based on the parallel
structure of a pure delay sectionz−K and an allpass subfilter. To
summarize, the IIR HB filters proposed in this paper include the
conventional FIR HB filters with exactly linear phase, the general-
ized FIR HB filters, and the allpass-based IIR HB filters as special
cases, and then are more general than the existing HB filters.

3. FILTER PROPERTIES

Let Ĥ(z) be the advanced version ofH(z), that is,

Ĥ(z) = zKH(z) =
1

2
+

NX
n=0

anzK−2n

MX
m=0

bmz−2m

, (4)



then there exist the following relations betweenH(z) andĤ(z);8>><>>:
|H(ejω)| = |Ĥ(ejω)|
θ(ω) = −Kω + θ̂(ω)

τ(ω) = K + τ̂(ω)

, (5)

whereθ(ω), θ̂(ω) and τ(ω), τ̂(ω) are the phase and group de-
lay responses ofH(z) andĤ(z), respectively. The frequency re-
sponse ofĤ(z) is given from Eq.(4) by

Ĥ(ejω) =
1

2
+

NX
n=0

anej(K−2n)ω

MX
m=0

bme−j2mω

, (6)

which satisfies

Ĥ(ejω) + Ĥ∗(ej(π−ω)) ≡ 1, (7)

wherex∗ denotes the complex conjugate ofx.
For the maximally flat (MF) design,H(z) is required to satisfy

the following flatness condition;

∂i|H(ejω)|
∂ωi

����
ω=π

= 0 (i = 0, 1, · · · , N + M). (8)

This means thatH(z) must haveN + M + 1 zeros located at
z = −1. Then we have

∂iĤ(ejω)

∂ωi

�����
ω=π

= 0 (i = 0, 1, · · · , N + M). (9)

It can be derived from Eq.(7) that̂H(z) satisfies also8>><>>:
Ĥ(1) = 1

∂iĤ(ejω)

∂ωi

�����
ω=0

= 0 (i = 1, 2, · · · , N + M)
, (10)

that is,8>><>>:
|Ĥ(1)| = 1

∂i|Ĥ(ejω)|
∂ωi

�����
ω=0

= 0 (i = 1, 2, · · · , N + M)
, (11)

and8>>>><>>>>:
∂iθ̂(ω)

∂ωi

�����
ω=0

= 0 (i = 0, 1, · · · , N + M)

∂iτ̂(ω)

∂ωi

����
ω=0

= 0 (i = 0, 1, · · · , N + M − 1)

. (12)

Therefore, we can get from Eq.(5)8><>:
|H(1)| = 1

∂i|H(ejω)|
∂ωi

����
ω=0

= 0 (i = 1, 2, · · · , N + M)
, (13)

and8><>:
τ(0) = K

∂iτ(ω)

∂ωi

����
ω=0

= 0 (i = 1, 2, · · · , N + M − 1)
. (14)

That is, both the magnitude and group delay responses ofH(z)
are maximally flat also atω = 0.

4. CLOSED-FORM SOLUTION

In this section, we give a new closed-form solution for the MF IIR
HB filters. We have from Eq.(6)

Ĥ(ejω) =
N(ω)

D(ω)
, (15)

where8>>>><>>>>:
N(ω) =

NX
n=0

anej(K−2n)ω +
1

2

MX
m=0

bme−j2mω

D(ω) =

MX
m=0

bme−j2mω

. (16)

SinceH(z) hasN + M + 1 zeros located atz = −1, the flatness
condition in Eq.(9) is equivalent to

∂iN(ω)

∂ωi

����
ω=π

= 0 (i = 0, 1, · · · , N + M). (17)

From Eq.(16), we have

∂iN(ω)

∂ωi

����
ω=π

=
1

2

MX
m=0

bm(−j2m)i −
NX

n=0

an(j(K − 2n))i.

(18)

Substituting Eq.(18) into Eq.(17), we get

2

NX
n=0

an(K − 2n)i −
MX

m=0

bm(−2m)i = 0. (19)

wherei = 0, 1, · · · , N + M . Sinceb0 = 1, we rewrite Eq.(19) in
matrix form as

V Da = u, (20)

wherea = [a0, a1, · · · , aN , b1, · · · , bM ]T , u = [1, 0, · · · , 0]T ,

V =

26664
1 1 · · · 1
K K − 2 · · · K − 2N
...

...
. . .

...
KN+M (K − 2)N+M · · · (K − 2N)N+M

1 · · · 1
−2 · · · −2M
...

. . .
...

(−2)N+M · · · (−2M)N+M

37775 , (21)



andD = diag[d0, d1, · · · , dN+M ],

di =

(
2 (0 ≤ i ≤ N)

−1 (N + 1 ≤ i ≤ N + M)
. (22)

It should be noted thatV is the Vandermonde matrix. Therefore,
there is always a unique solution and a closed-form solution can
be obtained by8>>>>>>>>>><>>>>>>>>>>:

an =
(−1)N−n

2

 
N

n

!
M !

N !

NY
i=0

(
K

2
− i)

MY
i=0

(
K

2
+ i− n)

bm =

 
M

m

!
mY

i=1

N + 1− K
2
− i

K
2

+ i

. (23)

5. RELATION WITH THE EXISTING HB FILTERS

In this section, we examine the relationship between the proposed
MF IIR HB filters and the existing MF HB filters, and present some
new MF IIR HB filters, such as the exactly linear phase IIR HB
filters and the causal stable IIR HB filters.

5.1. The generalized FIR HB filters

WhenM = 0, G(z) is a FIR filter, and thenH(z) becomes FIR
HB filter. In this case, the closed-form solution for the MF HB
filters can be obtained by substitutingM = 0 into Eq.(23), that is,

an =
(−1)n

(2n−K)

NY
i=0

(i− K

2
)

n!(N − n)!
, (24)

which is the same as that for the generalized MF FIR HB filters
presented in [8]∼[10]. If N = K (whereK is odd),

an =
(−1)(N+1)/2+n

(2n−N)

(N−1)/2Y
i=0

(i +
1

2
)2

n!(N − n)!
. (25)

It is easily verified that the condition ofan = aN−n is satisfied.
That is, the conventional MF FIR HB filters with exactly linear
phase are obtained.

5.2. The allpass-based IIR HB filters

If we assume thatN = M , then Eq.(23) becomes8>>>>><>>>>>:
an =

1

2

 
N

n

!
N−nY
i=1

N + 1− K
2
− i

K
2

+ i

bn =

 
N

n

!
nY

i=1

N + 1− K
2
− i

K
2

+ i

, (26)

which satisfy the condition ofbn = 2aN−n. Therefore,G(z) is
an allpass filter, andH(z) is the allpass-based IIR HB filter that is
the same as in [5]. As shown in [5] and [6], the allpass-based IIR

HB filters may be unstable depending onK. To get a causal stable
HB filter, K should be chosen to satisfy

K > 2(N − 1). (27)

This is because a causal stable allpass filter of orderN has a
monotonically decreasing phase response, and its phase is−Nπ
atω = π [6].

5.3. The exactly linear phase IIR HB filters

Assume thatN is odd andM is even. LetK = N −M , then8>>>>>>>>><>>>>>>>>>:
an =

(−1)n

2

M !

n!(N − n)!

NY
i=0

(
N

2
− i− M

2
)

MY
i=0

(i− M

2
+ n− N

2
)

bm = (−1)m

 
M

m

!
NY

i=0

N
2
− i− M

2
N
2
− i + m− M

2

, (28)

which satisfy the conditions ofan = aN−n andbm = bM−m.
That is, the exactly linear phase IIR HB filters are realized. It
is noted that such IIR HB filters are unstable, and have to be di-
vided into the causal stable and anticausal stable parts to imple-
ment. WhenM = 0, they will degenerate into the conventional
FIR HB filters with exactly linear phase.

5.4. The causal stable IIR HB filters

The proposed IIR HB filters may be unstable depending onK. To
guarantee the filters to be causal stable, we have to choose a larger
K. Like the allpass-based IIR HB filters, there existsKmin so
that whenK ≥ Kmin, the MF IIR HB filters are causal stable.
In general,Kmin is dependent onN andM . For example, when
M = 1, G(z) has a pole ofzp = K−2N

K+2
. To get a causal stable

G(z), the pole must be located inside the unit circle, that is,

|zp| = |K − 2N

K + 2
| < 1. (29)

To satisfy Eq.(29), we should have

K > N − 1. (30)

Then, Kmin = N if N is odd, andKmin = N + 1 if N is
even. ForM ≥ 2, it is more complicated to determineKmin, and
further investigation is needed.

6. DESIGN EXAMPLES

Many design examples of the conventional FIR HB filters with
exactly linear phase, the generalized FIR HB filters with approxi-
mately linear phase, and the allpass-based IIR HB filters have been
given in [1]∼[5], [8]∼[10]. In this paper, we present some exam-
ples of general MF IIR HB filters only. We consider the IIR HB
filters with N = 5 andM = 2. Firstly, we setK = 9 and obtain
a set of filter coefficients from Eq.(23). The impulse response of
the obtained MF IIR HB filter is shown in Fig.1. It is clear that
this filter is causal stable. The resulting magnitude and group de-
lay responses are shown by the solid line in Fig.2 and in Fig.3,
respctively. We have also designed other IIR HB filters with var-
iousK, and found thatKmin = 7. In addition, the IIR HB filter



with K = 3 has an exactly linear phase, whose magnitude and
group delay responses are shown in the dotted line in Fig.2 and
Fig.3 also.

7. CONCLUSIONS

In this paper, we have proposed a more general class of IIR HB
filters than the existing HB filters. The proposed IIR HB filters in-
clude not only the conventional FIR HB filters with exactly linear
phase, the generalized FIR HB filters with approximately linear
phase, and the allpass-based IIR HB filters as special cases, but
also the causal stable IIR HB filters and the IIR HB filters with
exactly linear phase. We have given a new closed-form expression
for the transfer function of the MF IIR HB filters. The filter coef-
ficients are directly obtained by solving a linear system of Vander-
monde equations from the maximal flatness conditions. We have
also investigated the conditions for realizing the causal stable IIR
HB filters and the IIR HB filters with exactly linear phase.
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Fig. 1. Impulse response ofH(z) with K = 9
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Fig. 2. Magnitude responses ofH(z)
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Fig. 3. Group delay responses ofH(z)


