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ABSTRACT

This paper proposes a novel method for designing two chan-
nel biorthogonal perfect reconstruction (PR) filter banks
with exact linear phase using IIR filters. Since the struc-
turally PR implementation is adopted, the proposed filter
banks are guaranteed to be PR even when all filter coeffi-
cients are quantized. From the viewpoint of wavelets, design
of IIR linear phase filter banks with an additional flatness
condition is considered. The proposed design method is
based on the formulation of a generalized eigenvalue prob-
lem by using Remez exchange algorithm. Therefore, the
filter coefficients can be obtained by solving the eigenvalue
problem, and the optimal solution with an equiriple mag-
nitude response is easily obtained through a few iterations.
The proposed procedure is computationally efficient, and
the flatness condition can be arbitrarily specified.

1. INTRODUCTION

Two channel PR filter banks have been used in different
applications of signal processing. The theory and design
of FIR PR filter banks have been well established in re-
cent years [1]. PR filter banks include two cases: orthonor-
mal and biorthogonal. For orthonormal case, FIR PR fil-
ter banks, except Haar function, cannot possess exact lin-
ear phase that is desired in image signal processing. Thus,
biorthogonal PR filter banks are proposed to obtain exact
linear phase. Design of biorthogonal FIR linear phase PR
filter banks has been also discussed in [1]. However, com-
pared with IIR filters, FIR filters generally require higher-
order filters for meeting the same specifications. In this
paper, we will consider design of 1IR linear phase PR fil-
ter banks. Although causal IR filters can possess approxi-
mately linear phase only, we can obtain exact linear phase

by using noncausal IIR filters, which are permissible in im-
age signal processing. In the most designs, the PR property
cannot be preserved generally when the filter coefficients are
quantized. In [4], an efficient structurally PR implementa-
tion is proposed, where for IIR case, causal allpass filters
are used.

In this paper, we propose a new method for designing
two channel biorthogonal linear phase PR filter banks using
noncausal IIR filters. We adopt the structurally PR imple-
mentation proposed in [4], thus the obtained IIR filter banks
still satisfy the PR condition even when all filter coefficients
are quantized. It is well-known [2], [3] that wavelet bases
can be generated from PR filter banks. From the regular-
ity of wavelets, a flatness constraint is required to impose
on the PR filter banks. In this paper. from the viewpoint
of wavelets, we consider design of (IR linear phase PR fil-
ter banks with an additional flatness condition. By using
Remez exchange algorithm, we formulate the design prob-
lem in the form of a generalized eigenvalue problem [5], [6].
Therefore, we can get a set of filter coefficients by solving
the eigenvalue problem. Then, the optimal solution with an
equiripple response is easily obtained through a few itera-
tions. The proposed procedure is computationally efficient,
and the flatness condition can be arbitrarily specified.

2. STRUCTURALLY PR FILTER BANKS

In two channel filter banks, assume that Hy(2), Hi(z) are
analysis filters, and Go(z), G1(z) are synthesis filters. It is
well-known that the PR condition is

Go(z) = Hi(—2)
Gi(z) = —Ho(-2)
Ho(2)Hi(—2) — Hi(2)Ho(—z) = 272K}

» (1)
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Fig.1 Structurally perfect reconstruction filter bank.
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where IV s integer. In [4], the analysis filters Ho(z) and
H,(z) are composed by
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where N and M are integers. Thus the PR condition of
Fq.(1) can be satisfied, and the structurally PR implemen-
tation is shown in Fig.1. In [4], both A(z) and B(z) are
allpass filters for 1R case. In this paper, we use general
IR filters to obtain exact lincar phase, 1.e.,
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where Ly, Ly, Lz, Ly are integers, and a,,b,, ¢,,d, are real
coefficients, by = dy = 1.

3. DESIGN OF IIR LINEAR PHASE PR
FILTER BANKS ‘

3.1. Desired Magnitude Responses

From Eqg.(2), we have

L=2N—1

Ho(z) = =

~—2N-1

A(z%) z
} = —
2

S—2N-1

{1+ {1+ A%}, (4)

where ./i(:) = :N+é,4(:). To obtain an exact linear phase,
the filter coefficients of A(z) must be symmetric, -that is,
a, =ap,—, and b, = by,_,. L, and L, must satisfy L, =
2hi4+1, Ly =21, and Ly — 1., = 2N +1, where [, and I, are
integers. Then A(z) becomes zero phase, and its frequency
response is given by I3

|
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Thercfore Ho(z) has exact linear phase, and its magnitude
response 1s

|Ho (7)) = %{1 + A(e™)). (6)

To make Ho(z) lowpass, the desired magnitude response of
A(z?) is . R
Ag(e?*) =1
Ag(e??) = -1
where w,, and w. are the passband and stopband edge fre-

quencies respectively, and w, + w, = 7. We can see from
Eq.(5) that

(0 <w < wp)
(7)
(we <w< )

A(,](Q’T—WJ) — _A(er)) (8)
thus the desired magnitude response is reduced to
Agle’)y =1 (0 < w < 2wp). 9
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"From Eq.(2), we have

_Hg(z)B(:z)

_ 14 /i(z2)
2—2M 2

} ="M B(z*)},
: (10)
where B(z) = zM‘N‘%B(z). Similarly, to force B(z) to be
zero phase, ¢; = cpy~,di =dp—i and Lz = 25+ 1,Ls =
214, Ly — Ly = 2(M — N) — 1 must be satisfied, where I3
and 14 are integers. Hence the frequency response of l}(z)
is-.given by I3

Hl:(:) =:7Mp

? Z(‘. cos(la — 1+ %)w
4 3 (, 0%y =0 -
B(e™) = o . (1)
% + Z d, cos(l4 — 1)w
=0

exﬁ<l then H,(z) has exact linear phase and its magnitude
response is [Hi ()] = 1 — |Hote*)| B(e'™). (12)
Since [Ho(¢?¥)] = 0 in [ws, 7], it is clear that |H,(e?¥)} = 1.
In{0,w,], due to [Ho(e?¥)] = 1, ideally, to make |H,(e’*)| =
0, the desired magnitude response of B(z) must be
Ba(e’*) =1 (13)

‘Therefore, the design problem becomes approximation of
‘A(z) and B(z) to Egs.(9) and (13).

(0 € w < 2wyp).

‘3.2. Design of Maximally Flat Filters

We consider design of Ho(z), i.e., A(z). First, we define an
error function E,(w) between the desired and actual mag-
nitude responses of A(z) as

Ea(w) = 1 — A(). (14)

The design purpose is to find a set of filter coeflicients a,
and b, to minimize Eq(w)in [0, 2w;]. It is well-known [1]~[3]
that wavelet bases can be generated from PR filter banks,
then synthesis of wavelet bases is reduced to design of PR fil-
ter banks. From the regularity of wavelets, PR filter banks
are required to satisfy certain flatness condition, that is,

akluo(e}w)l
—_— =0 k=0,1,---,2J, — 1 15
8 k w=m ( Y Y ' )’ ( )
where Ji is integer and 0 < J; < I1 + [2 + 1. When

Ji = I + I, + 1, Ho(z) is the maximally flat filter and
the corresponding wavelet function has maximum regular-
ity. From Egs.(6), (8) and (14), Eq.(15) is equivalent to

8* Ba(w) .
il bt A = =0,1,---.2J; — 1).
G| =0 k=oneahon.
Substituting FEgs.(5) and (14) into Eq.(16), we get
b Ip~1 I
I, _
IR S S
=0 =0
Ia=1 I | . (17)
DobL= = adh—it ) =0
=0 i=0
. (k=12,---, /i = 1)

When J, = I, + I; + 1, we can obtain the filter coefficients
of the maximally flat filters by solving (I, + I> + 1) linear
equations in Eq.(17).



3.3. Design of Filters with Given Flatness

It is well-known that the maximally flat filters are poorly
selective. Frequency selectivity is also thought of as a useful
property for many applications. However, frequency selec-
tivity and regularity somewhat contradict each other. For
this reason, we consider design of IIR filters that have the
best possible frequency selectivity for a given flatness. As-
sume that the flatness condition of Eq.(15) is required where
Ji < I1 + L. Our aim is to achieve an equiripple response
under the given flatness by using the remaining degree of
freedom. First, we select (I + I, — J; + 2) extremal fre-
quencies w; (2wp = Wo > W1 D>t > W 4Ia—Jd1+1) > 0)
in [0,2w,]). Then we use Remez exchange algorithm and
formulate Eq(w) as

Eo(wi) =1 - A(e) = (-1)*6 (18)
where é (> 0) is magnitude error, and the denominator

polynomial of E,(w) must satisfy

‘ Iz=1
bi, _ .
- + E bicos(l —i)w #0

i=0

(for allw).  (19)

Substituting Eq.(5) into Eq.(18), we rewrite Eqgs.(17) and
(18) in the matrix form-as : .

PA=6QA, (20)
where A = [ao,a1,---,ar,,bo,bi,---,br,]T. The elements
of the matrices P are, when: =0,1,---,J; — 1,

(h+L+1-35% (G=hL+1,,h+D)
(21)

{ _(11—]+%)2l (j=0111"'711)
P, =

wheni=J,, i +1,---, L + 1> +1,
{ —cos(li = j+ Bwg-sy  (G=0,1,+, 1)
P =

COS(Il + I +1- j)W("_J‘)

(22)
and when =1, + 1> + 1,
0 (i=12,---,/1—1)
P;= (23)
1
3 (else)

The elements of the matrices Q are, when 1 = J1,J; +
1, h+Lh+landj=hL +1,1 +2,---, + I,

Qi; = (—1)i—‘l1 COS(11 +L+1- j)W(.'_.Jl), (24)

andwheni:Jl,Jl+1,--',11+12+1andj=[1+12+l,v
i-gy 1 .

Qu=(-1)"""2, (25)

else Q;; = 0. It should be noted that Eq.(20) is a general-
ized eigenvalue problem, i.e., § is an eigenvalue, and A is a
corresponding eigenvector. It is known in [5] that to obtain
a solution that satisfies Eq.(19), we only need to find an
eigenvector corresponding to the positive minimum eigen-
value. Therefore, a set of filter coefficients can be easily
obtained. To achieve an equiripple response, we apply an
iteration procedure to get the optimal solution. The design
algorithm is shown as follows.

G=4L+1,--- 1+ 12)

3.4. Design Algorithm
Procedure {Design Algorithm of 1IR Linear Phase Filters}
Begin

1. Read Ly, Lz, J1, and wp.

2. Select initial extremal frequencies ; (: = 0,1,---, I+
I — Ji + 1) equally spaced in [0, 2wp).

Repeat

3. Set wi =Q; (1=0,1,--- i+ L — J1 +1).

4. Compute P, Q and find the positive minimum eigen-
value of Eq.(20) to obtain a; and b; that satisfies
Eq.(19).

5. Search the peak frequencies of E,(w) within [0, 2w,],
and store these frequencies into the corresponding €2;.

Until Satisfy the following condition for the prescribed
small constant ¢ :

Lh+I—J1+1
Y -wil<e

=0

End.

3.5. Design of Hy(z)

We consider design of Hi(z), i.e., B(z). B(z) can be sim-
ilarly designed by using the design algorithm proposed in
Section 3.4. It is seen from Eq.(12} that the magnitude re-
sponse of Hy(z) is dependent on both A(z) and B(z). Even
if both A(z) and B(z) have equiripple magnitude responses,
we cannot guarantee that the magnitude response of Hi(z)
must be equiripple. To achieve an equiripple magnitude
response of H,(z), we define an error function Ey(w) as

Ey(w) =1 — |Ho(e*/*)| B(e™), (26)
and use Remez exchange algorithm to formulate Fy(w) as
Bu(w) = 1 - [Ho(&* )| Be™) = (<1)'8,  (27)

where | H; (e’“/?)| can be considered to be a weighting func-
tion. Hence, Hi(z) will have an equiripple magnitude re-
sponse in stopband. Similarly, H;(z) is also required to
satisfy the given flatness condition, that is,

8% |H, (7))

8wk =0 (kzovlv"'12‘]2_1)’ (28)

w=0

where J; is integer. Since the flatness of H,(2) is decided by
the flatness-lower one between A(z) and B(z), then J2 < J;.-
It is seen from Eq.(12) that the flatness condition of Eq.(28) -
is equivalent to

B(e®)=1

3*B(e’v)
Swk

» (29)
=0 (k=1,2,--,202~1)

w=0
then we can get the similar linear equations as Eq.(17).
Therefore, we can formulate the design problem of B(z) in

the form of eigenvalue problem as shown in Section 3.3. The
design algorithm is the same as that shown in Section 3.4.
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4. DESIGN EXAMPLE

We consider design of an IR linear phase PR filter bank 1.2} S
with a given flatness. The design specification is J, = Jp =
5, wy, = 0.457 and w, = 0.557. The order of A(z) and B(z)
arc I, =7, I, =6 and L3 = 9, Ly = 6. The obtained
magnitude responses of A(z) and B(z) are shown in Fig.2,
and ones of Ho(z) and H,(z) are shown in Fig.3 in the
solid line. The stopband attenuations of Ho(z) and H;(z)
are 56.7dB and 68.0dB, respectively. It is clear that the
equiripple responses with given flatness have been obtained.
We have also designed another PR filter bank with J, =7
and J» = 5. The magnitude responses of A(z) and B(z)
are shown in Fig.2, and ones of Hg(z) and H,(z) are shown
in Iig.3 in the dotted line also. It is seen that Ho(z) is the
maximally flat filter.
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n this paper, we have proposed a new method for design-

ing two channel 1R linear phase PR filter banks. Since NORMALIZED FREQUENCY

we have adopted the structurally PR implementation pro- (a)

posed in [4], the PR condition is still satisfied even when
all filter coefficients are quantized. From the viewpoint of 1.004 T T T LI T T
wavelets, we have shown design of 1IR linear phase PR fil-
ter banks with an additional flatness condition. By using
Remez exchange algorithm, we have formulated the design
problem in the form of a generalized eigenvalue problem.
Therefore, by solving the eigenvalue problem to compute
the positive minimum eigenvalue, a set of filter coeflicients
can be getten as the corresponding eigenvector. The opti-
mal solution with an equiripple magnitude response is easily

1.002

MAGNITUDE

0.998 A(Z) — -

obtained through a few iterations. The proposed procedure 0.996 * 1 * . * 1 * -
is computationally efficient, and the flatness condition can 0 0.1 0.2 0.3 0.4
be arbitrarily specified. NORMALIZED FREQUENCY

(b)
Fig.2 Magnitude responses of A(z) and B(z).
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