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Abstract—This paper proposes a novel design method of two
channel compactly supported near orthogonal graph wavelet
filter banks. We firstly prove the necessary condition for the
orthogonality of filter banks where the kernel filter must have a
flat spectral in passband if having flat stopband, and then derive
the closed-form solution for the maximally flat filters. We also
give a filter function that ensures the specified degrees of flatness
at λ = 0 and λ = 2 by the maximally flat filters. Therefore, we
can use the remaining coefficients to minimize the reconstruction
error of filter banks, where the optimization tool in Matlab is
used to design the filter banks without any initial solution. Some
examples are designed by using the proposed method and the
spectral are compared with the conventional design methods.
It is shown from the experimental results that the graph filter
banks proposed in this paper outperform the conventional kernel
filters. Finally, the proposed graph wavelets are applied to the
Minnesota traffic graph to demonstrate the effectiveness of the
proposed design method.

I. INTRODUCTION

Signal processing on graphs has a wide range of appli-
cations such as social, sensor, biological, and transportation
networks [3], [4]. Graph signal processing aims to extend
the traditional signal processing theories and methodologies
to signals defined on graphs. Major challenges are how to
efficiently process and compress large amounts of signals on
general graphs. It has been shown in [1], [2] that wavelet
transforms provide a sparse representation of signals as a
widely used signal processing tool. Recently, many works
have been done to extend the traditional wavelet transform to
the graph signals, namely, graph wavelet transform [5]∼[14].
However, the graph wavelet transforms proposed in [5]∼[7]
and [10] are not critically sampled. It is known that critical
sampling is of importance for compact representation of
signals, e.g., compression. Critically sampled wavelet trans-
forms have been also proposed in [8], [9], [11], [12], [13]
and [14]. Furthermore, the graph wavelet filters are required
to be compact-supported, that is, the output signal at each
vertex is computed only from the signal at that vertex and
its K-hop neighborhoods. It is achieved by a polynomial
approximation of the spectral kernel of the filter. The wavelet
filter banks based on the lifting scheme proposed in [8] and
[9] and graphBior wavelet filter bank propose in [12] are
compact-supported, but not orthogonal. The critically sampled
orthogonal wavelet filter bank graph-QMF proposed in [11]
cannot achieve the perfect reconstruction (PR) exactly by
using the polynomial approximation. Narang and Ortega had
proposed a simple design method by using the Meyer’s wavelet

construction to get near orthogonal graph QMFs in [11].
However, The reconstruction error of graph QMFs cannot be
controlled directly and may be quite large. Tay and Lin had
proposed a constrained optimization method to minimize the
reconstruction error in [13], where the Bernstein polynomial
was used to generate the initial solution for the nonlinear
optimization. However, the resulting kernel filter has not a flat
spectral in passband. In [14], the design of graph QMFs with
flatness constraints has been discussed, where the flat spectral
response in passband was considered also, but only one filter
coefficient was used to reduce the reconstruction error.

This paper proposes a new method for designing two chan-
nel compact-supported near orthogonal graph wavelet filters
with a flat spectral both in passband and stopband. Firstly, we
prove the necessary condition for the orthogonality of graph
wavelet filter banks in which the kernel filter must have a flat
spectral also in passband if the stopband spectral is flat. We
then derive the closed-form solution for the maximally flat
filters having the specified degrees of flatness at λ = 0 and
λ = 2. According to the resulting maximally flat filters, we
give a kernel filter function that ensures the specified degrees
of flatness at λ = 0 and λ = 2 by the maximally flat filters.
Therefore, we can use the remaining coefficients to minimize
the reconstruction error of wavelet filter banks. By using this
kernel filter function, we can use the optimization tool in
Matlab to design the graph QMFs without generating any
initial solution, which is different from in [13]. The number
of unknown coefficients in the kernel filter function is smaller
than that in [13], thus the design method proposed in this paper
is more computationally efficient. Some examples are designed
by using the proposed method and compared with the method
in [13]. It is shown from the experimental results that the
proposed graph wavelet filters are better than the conventional
ones. Finally, the proposed graph wavelet filters are applied to
the Minnesota traffic graph in [10], [11] and the performance is
compared with the conventional graph wavelets to demonstrate
the effectiveness of the design method proposed in this paper.

II. PRELIMINARIES

First of all, we briefly review the fundamental of signal
processing on graphs in [3], [4] and [11]. A graph is denoted
as G = (V, E), where V is the set of vertices or nodes
and E is the set of edges or links. The size of graph is the
number of vertices: N = |V|. A is defined as the adjacency
matrix, whose element A(i, j) denotes the weight of the edge



between vertex i and j, and A(i, j) = 0 if there is no
edge. D = diag(di) is the diagonal degree matrix, where
di =

∑
j A(i, j) is the sum of weights of all edges connected

to vertex i. L = D − A defines the Laplacian matrix of
the graph, and L = D−1/2LD−1/2 = I−D−1/2AD−1/2

is the normalized Laplacian matrix, where I denotes the
identity matrix. Both of L and L are symmetric positive
semidefinite matrices, and have a complete set of orthonormal
eigenvectors. We represent the eigenvectors of the normalized
Laplacian matrix L by ui = [ui(1), ui(2), · · · , ui(N)]T and
the associated eigenvalues by λi, where ui(n) is real-valued
and 0 = λ1 < λ2 ≤ · · · ≤ λN ≤ 2.

A graph signal is a function defined on the graph and the
sample value f(n) at vertex n is represented as a vector f =
[f(1), f(2), · · · , f(N)]T . The GFT (graph Fourier transform)
is then defined as the projections of the graph signal f onto
the eigenvectors of L;

F (λi) = fTui =

N∑
n=1

f(n)ui(n), (1)

and thus the IGFT (inverse graph Fourier transform) is given
by

f(n) = FTU(n) =

N∑
i=1

F (λi)ui(n), (2)

where F = [F (λ1), F (λ2), · · · , F (λN )]T and U(n) =
[u1(n), u2(n), · · · , uN (n)]T .

A filtering operation of the graph signal f in the vertex
domain can be expressed in the matrix form as y = Hf , where
the output signal of the filter is y = [y(1), y(2), · · · , y(N)]T

and the transform matrix of the filter H is given by

H =

N∑
i=1

H(λi)uiu
T
i , (3)

where H(λ) is the spectral kernel of the filter.
By using the GFT in Eq.(1) , we have Eq.(4) in the spectral

domain;
Y (λi) = H(λi)F (λi), (4)

where Y (λi) is the GFT of output signal y.

III. GRAPH WAVELET FILTER BANKS

Two channel graph wavelet filter bank {Hk,Gk}k=0,1 pro-
posed in [11] is shown in Fig.1. The corresponding transform
matrices are given by

Hk =

N∑
i=1

Hk(λi)uiu
T
i

Gk =

N∑
i=1

Gk(λi)uiu
T
i

, (5)

where Hk(λ), Gk(λ) are the spectral kernels of analysis and
synthesis filters, respectively. H0,G0 act as lowpass filters
and H1,G1 are highpass. The down-sampling operation βL
discards the output coefficients of lowpass channel in the

Fig. 1. Two channel graph wavelet filter bank.

set H , while βH discards the output coefficients of highpass
channel in the set L, where |H| + |L| = N and H ∩ L = 0.
Therefore the overall transform matrix is given by

T =
1

2
{G0(I+ Jβ)H0 +G1(I− Jβ)H1}

=
1

2
{(G0H0 +G1H1) + (G0JβH0 −G1JβH1)}

, (6)

where Jβ = diag(βi) is the diagonal matrix, and βi is the
partition function such that βi = 1 if vertex i ∈ L and βi = −1
if vertex i ∈ H . The down-and-up sampling operation βL
in lowpass channel is then expressed in the matrix form as
1
2 (I+ Jβ), while βH in highpass channel as 1

2 (I− Jβ). It is
known in [11] and [12] that the PR condition of two channel
wavelet filter bank is{

H0(λ)G0(λ) +H1(λ)G1(λ) = 2

H0(2− λ)G0(λ)−H1(2− λ)G1(λ) = 0
. (7)

To cancel the aliasing, the synthesis filters must be chosen as{
G0(λ) = H1(2− λ)

G1(λ) = H0(2− λ)
, (8)

therefore the PR condition in Eq.(7) is reduced to

H0(λ)H1(2− λ) +H0(2− λ)H1(λ) = 2, (9)

which leads to biorthogonal wavelet filter banks.
In addition, from the orthogonality of graph wavelets, it is

required to satisfy

H1(λ) = H0(2− λ). (10)

Therefore, Eq.(9) becomes

H2
0 (λ) +H2

0 (2− λ) = 2. (11)

It is clear that only H0(λ) needs to be designed for the
orthogonal graph wavelet filter banks (graph QMFs).

IV. DESIGN OF GRAPH QMFS

In this section, we will consider the design of graph QMFs
with a polynomial of degree K. It is shown in [11] and [12]
that if H0(λ) is a polynomial of degree K, the graph filter is
K-hop localized exactly, thus it is capable of implementing
the filter iteratively with K one-hop operations at each vertex,
without any matrix diagonalization. Therefore, we will discuss
the approximation of the desired kernel of the filter with a
polynomial of degree K.



H0(λ) is a lowpass filter and has a desired gain
√
2 in

passband and 0 in stopband. To ensure H0(0) =
√
2, we define

H0(λ) as

H0(λ) =
√
2(1 +

K∑
k=1

akλ
k), (12)

where ak are real-valued coefficients.
If H0(λ) has p zeros at λ = 2, as in [12] and [13], it can

be also written as

H0(λ) =
√
2(1− λ

2
)p(1 +

K−p∑
k=1

bkλ
k), (13)

where bk are real-valued coefficients also. Thus we have

∂iH0(λ)

∂λi

∣∣∣∣
λ=2

= 0 (i = 0, 1, · · · , p− 1), (14)

which means that the filter has a flat spectral at λ = 2 and the
degree of flatness is p.

Theorem 1. If H0(λ) having p zeros at λ = 2 satisfies the
condition of orthogonality in Eq.(11), then the first (2p − 1)
filter coefficients in Eq.(12) vanish, i.e., ak = 0 for k =
1, 2, · · · , 2p− 1.

Proof. By differentiating Eq.(11), we have

∂H0(λ)

∂λ
= −H0(2− λ)

H0(λ)

∂H0(2− λ)
∂λ

. (15)

Since H0(λ) has p zeros at λ = 2, H0(2−λ) includes p zeros
at λ = 0, thus we have

∂H0(λ)

∂λ
= λ2p−1Q(λ), (16)

where Q(λ) does not include any zero at λ = 0, i.e., Q(0) 6= 0.
Therefore, we obtain

∂iH0(λ)

∂λi

∣∣∣∣
λ=0

= 0 (i = 1, 2, · · · , 2p− 1), (17)

which means that it has a flat spectral at λ = 0 too and
the degree of flatness is 2p. As a result, the first (2p − 1)
coefficients ak (k = 1, 2, · · · , 2p − 1) vanish, and Eq.(12) is
reduced to

H0(λ) =
√
2(1 +

K∑
k=2p

akλ
k). (18)

A. Maximally Flat Filter

It is proven in Theorem 1 that H0(λ) of graph QMFs is
required to have the flat spectral both in passband and stopband
if it possesses some zeros at λ = 2. Now we discuss the design
of maximally flat filters whose degrees of flatness are p1 and
p at λ = 0 and λ = 2 respectively.

Since it has p zeros at λ = 2, we have from Eq.(13)

H0(λ) =
√
2(1 +

p∑
n=1

(
p

n

)
(−1

2
)nλn)(1 +

K−p∑
k=1

bkλ
k). (19)

In addition, the degree of flatness is p1 with respect to λ = 0,
then ak = 0 (k = 1, 2, · · · , p1 − 1) in Eq.(12). Therefore the
minimum degree of the filter is K = p+ p1 − 1.

By expanding Eq.(19), we have from the condition of
flatness at λ = 0

a1 = b1 −
p

2
= 0 =⇒ b1 =

p

2
, (20)

a2 = b2 −
p

2
b1 +

p(p− 1)

8
= 0 =⇒ b2 =

p(p+ 1)

8
, (21)

...

ak = bk +

min(k,p)∑
i=1

(
p

i

)
(−1

2
)ibk−i = 0 (k < p1)

=⇒ bk = −
min(k,p)∑
i=1

(
p

i

)
(−1

2
)ibk−i. (22)

where b0 = 1. Therefore, the closed-form solution of the max-
imally flat filter is obtained whose degree is K = p+ p1 − 1.
The filter coefficients ak (k = p1, p1 + 1, · · · ,K) can be also
calculated by

ak =

p1−1∑
i=max(0,k−p)

(
p

k − i

)
(−1

2
)k−ibi. (23)

B. Optimization
It is clear from Theorem 1 that it is required to choose

p1 = 2p for the condition of orthogonality. However, it
cannot be guaranteed that the maximally flat filters only with
p1 = 2p satisfy the condition of orthogonality. It is because the
condition of flatness in Eq.(17) is only the necessary condition
for the orthogonality in Theorem 1. It is insufficient to use only
the condition of flatness in the design of H0(λ). It is known in
[11] and [12] that the polynomial approximation of the desired
kernel cannot be exactly orthogonal without any reconstruction
error. Therefore, it is necessary to minimize the reconstruction
error of graph QMFs. We define the reconstruction error
function E(λ) as

E(λ) = H2
0 (λ) +H2

0 (2− λ)− 2. (24)

The goal is to minimize the maximum of |E(λ)| within 0 ≤
λ ≤ 2 by increasing the polynomial degree of the kernel filter.

Theorem 2. If H0(λ) of degree K ≥ p + p1 has the form
in Eq.(13) and the first (p1 − 1) coefficients bk are given
in Eqs.(20)∼(22), then the filter has a flat spectral with the
degrees of flatness p1 and p at λ = 0 and λ = 2 respectively,
regardless of what the remaining coefficients bk (k ≥ p1) are.

Proof. The proof is straightforward. Since H0(λ) has the
form in Eq.(13), it has p zeros at λ = 2 and satisfies
the condition of flatness in Eq.(14). Furthermore, the first
(p1 − 1) coefficients bk are given in Eqs.(20)∼(22), then the
first (p1−1) filter coefficients ak in Eq.(12) vanish, i.e., ak = 0
for k = 1, 2, · · · , p1 − 1. Thus, the condition of flatness at
λ = 0 with the degree of flatness p1 is satisfied.



Fig. 2. Spectral responses of H0(λ) in Example 1.

Fig. 3. Reconstruction error E(λ) in Example 1.

It is known from Theorem 2 that the coefficients bk (k =
1, 2, · · · , p1−1) in Eq.(13) can be obtained from the maximally
flat filters by using Eqs.(20)∼(22), which guarantees the flat
spectral of H0(λ) both in passband and stopband. Therefore,
we can use the remaining coefficients bk (p1 ≤ k ≤ K − p)
to optimize H0(λ), without any influence on the degree of
flatness at λ = 0 and λ = 2. In this paper, we want to minimize
the reconstruction error E(λ) by using the remaining degree of
freedom. A simplest example is the filter of degree K = p+p1.
The only remaining coefficient is bp1 that is used to ensure
H0(1) = 1. Thus we have from Eq.(13)

bp1 = 2p−
1
2 − 1−

p1−1∑
k=1

bk. (25)

Example 1: We have designed H0(λ) of degree K = p +
p1 = 18 with {p, p1} = {6, 12}, {7, 11}, {8, 10}, {9, 9}. The
resulting spectral responses of H0(λ) are shown in Fig. 2, and
the reconstruction errors E(λ) in Fig. 3. It is seen in Fig. 2
that the spectral responses are monotonously decreasing except
p = 6. The reconstruction error is 0 at λ = 1 and varies with
a different choice of {p, p1}, as shown in Fig. 3. It is found
that if p ≤ p1 ≤ 2p is chosen, we can obtain a reasonable
reconstruction error. In this example, the filter of p = 8 has
the minimum reconstruction error.

It is seen in Example 1 that we used the only remaining
degree of freedom to reduce the reconstruction error. However,
the error is still large. To reduce further the reconstruction
error, it is necessary to increase the filter degree, that is, K >
p + p1. In [14], Tay and Lin had also discussed the design
of graph QMFs with the flatness constraints in passband and
stopband, where only one coefficient was used to reduce the
reconstruction error in addition to H0(1) = 1, that is, the filter
degree is fixed to K = p+ p1 + 1.

In the following, we discuss how to minimize the recon-
struction error of graph QMFs by using the remaining degrees
of freedom bk (p1 ≤ k ≤ K − p) in Eq.(13), i.e.,

min
b
{ max
0≤λi≤2

|E(λi)|}, (26)

where b = [bp1 , bp1+1, · · · , bK−p]. Note that the filter degree
K can be arbitrarily chosen in this paper.

Let δ be the maximum error, then we have

−δ < E(λi) = H2
0 (λi) +H2

0 (2− λi)− 2 < δ. (27)

Therefore, the optimization problem is stated as

min
b
δ

subject to

{
H2

0 (λi) +H2
0 (2− λi)− δ − 2 < 0

−H2
0 (λi)−H2

0 (2− λi)− δ + 2 < 0

(28)

where if the graph has been given, then λi (i = 1, 2, · · · , N)
are known. Thus we can evaluate the error E(λ) only at λi,
however, the obtained filter is useful only for graphs with the
same structure. For the graph-independent case, all of λ in
[0, 1] need to be considered, since E(λ) = E(2− λ). We use
a discretization of λi = i

L (i = 0, 1, · · · , L), where L is the
number of the points to be evaluated.

Moreover, if a sharper stopband is required as discussed
in [13], it is also possible to impose some zeros λm (m =
0, 1, · · · ,M) in the stopband;

H0(λm) =
√
2(1− λm

2
)p(1 +

K−p∑
k=1

bkλ
k
m) = 0. (29)

Since 1 < λm < 2, Eq.(29) can be reduced to

1 +

K−p∑
k=1

bkλ
k
m = 0 (30)

which are added into the optimization problem in Eq.(28).
It is possible to solve the optimization problem in Eq.(28)

by using the fmincon function in Matlab. The fmincon function
needs a good initial solution. It is seen in Example 1 that the
bp1 in Eq.(25) has yielded a reasonable solution. Thus we use
the bp1 in Eq.(25) as the initial solution b0 = [bp1 , 0, · · · , 0].
The number of unknown coefficients bk (p1 ≤ k ≤ K − p)
is K − p − p1 + 1, whereas K − p in [13], that is, bk (1 ≤
k ≤ K − p). Therefore, the proposed design method is more
computationally efficient.

Example 2: We firstly used H0(λ) designed in Example 1
as the initial solution, whose degree is K = p + p1 = 18



Fig. 4. Spectral responses of H0(λ) in Example2.

Fig. 5. Reconstruction error E(λ) in Example 2.

with p = 8, p1 = 10. By increasing the filter degree to
K = 20, we have designed H0(λ) with the same degree of
flatness to minimize the reconstruction error. The resulting
spectral response is shown in dotted line in Fig. 4, and the
reconstruction error E(λ) in Fig. 5. The spectral response of
the initial solution with K = 18 is also shown in dashed line
in Fig. 4 for comparison. The maximum reconstruction error
of the initial solution is Emax = 0.01972, while it has been
reduced to Emax = 0.0001344 with the filter of K = 20.
The spectral response and reconstruction error of H0(λ) of
degree K = 22 are also shown in solid line in Fig. 4 and
Fig. 5, respectively. It is seen in Fig. 4 that these filters have
almost the same spectral. The maximum reconstruction error
is further reduced to Emax = 0.00001783 in Fig. 5.

Example 3: We have designed H0(λ) of degree K = 6
with p = p1 = 1, which is the same as Example 1 in [13].
Note that p1 = 1 means the filter without any constraint of
flatness at λ = 0, and the method proposed in [13] cannot
design the filter with the flatness constraint at λ = 0. The
spectral of H0(λ) is shown in dotted line in Fig. 6, and
the reconstruction error E(λ) in Fig. 7. For comparison, the
results designed by Tay and Lin are also shown in dashed
line in Fig. 6 and Fig. 7, respectively. It is seen that the Tay-
Lin’s filter has a sharper spectral response than the proposed
filter in Fig. 6, however, the reconstruction error of our filter

Fig. 6. Spectral responses of H0(λ) in Example 3.

Fig. 7. Reconstruction error E(λ) in Example 3.

(Emax = 5.094 × 10−9) is much smaller than their filter
(Emax = 0.001747) in Fig. 7. It is because their initial solution
is generated from the Bernstein polynomial and different from
that in this paper. From the viewpoint of minimizing the
maximum reconstruction error while satisfying the flatness
constraints, our solution is better than their filter. To obtain
a sharper stopband, we have increased the degree of flatness
at λ = 2 to p = 3. The resulting spectral and reconstruction
error are also shown in solid line in Fig. 6 and Fig. 7. It is clear
that the spectral of this filter is close to the Tay-Lin’s filter,
and the maximum reconstruction error is Emax = 0.001721
which is slightly smaller. It should be noted that the Tay-Lin’s
filter has only one zero (p = 1) at λ = 2, while the filter of
p = 3 has three zeros and is flatter at λ = 2.

V. APPLICATION

To demonstrate that the proposed graph wavelet QMFs is
useful in analyzing and compressing arbitrary signals defined
on irregular graphs, we have applied the kernel filters of degree
K = 6 in Example 3 to the Minnesota traffic graph signal from
[10], [11], [12]. The graph is shown in Fig. 8(a), and the graph
signal in Fig. 8(b), where the color of the node represents the
sample value. We used the Matlab code provided in [11] and



(a) (b)

Fig. 8. (a) Minnesota traffic graph, and (b) the graph signal.

Fig. 9. Subband coefficients of the filter bank with p = p1 = 1.

[12] to implement it. The subband coefficients obtained by
using the filter bank with p = p1 = 1 in Example 3 are shown
in Fig. 9. Similarly as in [11], [12] and [13], the LL channel
is an approximation of the original signal, while the LH and
HH channels capture highpass details for reconstruction. Note
that the HL channel is empty after downsampling because the
graph is perfectly 3-colorable.

The signal is reconstructed by using γ (e.g., 1%) absolute-
largest highpass coefficients in the LH and HH channels and
all of lowpass coefficients in the LL channel. The compression
performance has been investigated, and the Signal-to-Noise-
Ratio (SNR) of the reconstructed graph signal is given in
Table I. For comparison, the results obtained from the Tay-
Lin’s kernel filter in Example 1 of [13] and the Meyer kernel
approximation with the same length in [11] are also given in
Table I. It is seen that the proposed graph QMFs outperform
the existing graph wavelet filter banks. In particular, the
kernel filter with p = p1 = 1 has significantly reduced the
reconstruction error.

VI. CONCLUSION

In this paper, we have proposed a new design method
of two channel compactly supported near orthogonal graph
wavelet filter banks. Firstly, we have proven the necessary

TABLE I
SNR(dB) OF RECONSTRUCTED GRAPH SIGNAL

γ p = 1 p = 3 Tay-Lin Meyer
0.01 14.20 13.93 13.91 12.43
0.02 14.84 14.52 14.49 12.90
0.03 15.35 15.02 14.99 13.29
0.05 16.26 15.90 15.86 14.04
0.08 17.52 17.11 17.07 15.10
0.10 18.37 17.91 17.86 15.82
0.20 22.66 21.82 21.73 19.31
0.30 27.13 25.98 25.87 22.89
0.50 47.15 44.83 44.68 28.28
1.00 180.34 64.43 72.99 28.37

condition for the orthogonality where the kernel filter must
have a flat spectral both in passband and stopband. we then
have derived the closed-form solution of the maximally flat
filters. From the maximally flat filters, we have given a kernel
filter function that ensures the specified degrees of flatness at
λ = 0 and λ = 2, thus we can use the remaining coefficients
to minimize the reconstruction error. The proposed design
method is computationally efficient. Several examples have
been designed and compared with the method proposed in
[13]. Finally, the proposed graph wavelets have been applied
to the Minnesota traffic graph to demonstrate the effectiveness.
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