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Abstract—This paper presents an efficient method for designing
complex infinite impulse response digital filters in the complex
Chebyshev sense. The proposed method is based on the formu-
lation of a generalized eigenvalue problem by using the Remez
multiple exchange algorithm. Hence, the filter coefficients can
be easily obtained by solving the eigenvalue problem to find the
absolute minimum eigenvalue, and then the complex Chebyshev
approximation is attained through a few iterations starting from
a given initial guess. The proposed algorithm is computationally
efficient because it not only retains the speed inherent in the
Remez exchange algorithm but also simplifies the interpolation
step. Some design examples are presented and compared with
the conventional methods. It is shown that the results obtained
by using the method proposed in this paper are better than those
obtained by the conventional methods.

Index Terms—Complex Chebyshev approximation, eigenvalue
problem, infinite impulse response (IIR) digital filter, Remez mul-
tiple exchange algorithm.

I. INTRODUCTION

I T IS WELL KNOWN [1]–[4], [6] that the Remez exchange
algorithm is an efficient tool for designing finite impulse re-

sponse (FIR) digital filters with linear phase, where the design
problem is a real Chebyshev approximation and the Remez ex-
change algorithm is based on the alternation theorem. In many
applications such as equalization, beamforming, and so on, the
design of digital filters with arbitrary magnitude and phase re-
sponses is required, which results in a complex Chebyshev ap-
proximation problem [1]–[21], [24]. Although the alternation
theorem no longer holds in the complex case, the Remez ex-
change algorithm has also been generalized to design complex
FIR filters [11], [17]–[21], [24]. Compared with FIR filters, in-
finite impulse response (IIR) filters tend to be of much lower
order for meeting the same specifications [5], [7]–[9], [12]–[15],
[22], [23]. However, IIR filter design is more difficult than FIR
design because it is a rational approximation problem. In [22]
and [25], the Remez exchange algorithm has been applied to the
real Chebyshev approximation for IIR filters, where the inter-
polation problem has been reduced to a generalized eigenvalue
problem. Thus, the solution can be easily obtained by finding
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the absolute minimum eigenvalue in most cases. In this paper,
we wish to generalize the method proposed in [22] to the com-
plex Chebyshev approximation for IIR filters.

Several design methods using nonlinear programming [5],
[7], linear programming [8], [13], multiple criterion optimiza-
tion [9], [12], and differential correction algorithm [14] have
been suggested to design IIR digital filters in the complex do-
main also. However, the major disadvantages thereof are quite
computationally expensive and/or poor frequency responses.

In this paper, we consider the complex Chebyshev approx-
imation problem of IIR digital filters and propose an efficient
method to attain the specified magnitude and phase responses
in the complex Chebyshev sense. The proposed method is based
on the formulation of a generalized eigenvalue problem by using
the Remez multiple exchange algorithm. Hence, the filter coeffi-
cients can be easily obtained by solving the eigenvalue problem
to find the absolute minimum eigenvalue, and then the complex
Chebyshev approximation is attained through a few iterations
starting from a given initial guess. The proposed algorithm is
computationally efficient because it not only retains the speed
inherent in the Remez exchange algorithm but also simplifies
the interpolation step. Finally, some design examples are pre-
sented and compared with the conventional methods. It is shown
that the results obtained by using the method proposed in this
paper are better than the conventional methods.

This paper is organized as follows. Section II states the
complex Chebyshev approximation problem of IIR digital fil-
ters. Problem formulation based on the generalized eigenvalue
problem by using the Remez multiple exchange algorithm is
presented in Section III. Section IV discusses how to select a set
of initial filter coefficients. A design algorithm is given in detail
in Section V, and the stability issue of IIR filters is addressed in
Section VI. Section VII presents some numerical examples and
a comparison with other existing IIR filter design methods.

II. PROBLEM STATEMENT

Let be the transfer function of an IIR digital filter with
numerator degree and denominator degree

(1)
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where filter coefficients , are complex in general and
. The frequency response of is generally a com-

plex-valued function of the normalized frequency

(2)

The complex Chebyshev approximation problem may be briefly
stated as follows. Let be the desired frequency re-
sponse

(3)

where
desired magnitude response;
desired phase response;
interest bands (e.g., passband and stop-
band).

The approximation problem consists in finding the filter coeffi-
cients , that will minimize the Chebyshev norm

(4)

of the weighted error

(5)

among all possible choices of , . The weighting
must be a real, strictly positive and continuous function on.

In order to guarantee the filter causality and stability, the poles
are required to locate inside the unit circle. It is known in [13]
that the optimal complex Chebyshev approximation may not
exist when the poles are restricted inside the unit circle. In some
applications, such as image processing, it is not necessary for the
filter to be causal since the signal length is finite [3]. Therefore,
the constraint can be relaxed and only the stability remains to be
considered. In this case, the poles are required only not to locate
on the unit circle. It was pointed out in [13] that there is no guar-
antee of the uniqueness of the complex Chebyshev approxima-
tion problem, and the number of the optimal approximation may
be arbitrarily large. The characterization of the optimal rational
approximation in the complex Chebyshev sense is available as
sufficient conditions for the general approximation without pole
restrictions. One sufficient condition is that the weighted error
function has at least extremal points [13]. In
the following, we will make use of this sufficient condition in
the problem formulation without any pole restrictions. The filter
stability issue is addressed in Section VI.

III. FORMULATION BASED ON EIGENVALUE PROBLEM

In this section, we describe the design of IIR digital filters
based on the eigenvalue problem by using the Remez multiple
exchange algorithm. Our aim is to find a set of filter coefficients

, in such a way that the weighted error function in (5)
satisfies

(6)

where is the maximum error to be minimized.

To solve the above complex Chebyshev approximation
problem, we use the Remez multiple exchange algorithm and
formulate the condition for in the form of a generalized
eigenvalue problem. Assume that there are extremal
frequencies in the bands . We
first formulate at these frequencies as

(7)

where is the magnitude error and is the phase of
at . Notice that the denominator polynomial of
has to satisfy

(8)

Substituting (2) into (7), we obtain

(9)

We then rewrite (9) in the matrix form as

(10)

where . The elements
of the matrices , are given by

(11)

(12)

Once extremal frequencies and their phases
are given, it is seen from (11) and (12) that the elements of the
matrices , are known. Therefore, it should be noted that
(10) corresponds to a generalized eigenvalue problem, i.e.,is
an eigenvalue and is a corresponding eigenvector. In order to
minimize , we must find the absolute minimum eigenvalue by
solving the above eigenvalue problem [22], [25], so that the cor-
responding eigenvector gives a set of filter coefficients, .
Since we are interested in only one eigenvector corresponding
to the absolute minimum eigenvalue, this computation can be
done efficiently by using the iterative power method without in-
voking general methods such as the QR technique. By using
the obtained filter coefficients, we compute the weighted error
function and search for all extremal frequenciesin the
bands . As a result, it could be found that the obtained
may not be equiripple. We then choose those extremal
frequencies having the largest deviations as the sampling fre-
quencies in the next iteration and calculate the phase of
at to obtain . Therefore, the eigenvalue problem of (10)
can be again solved to obtain a set of filter coefficients, .
The above procedure is iterated until the equiripple response
is attained. Notice that a set of initial extremal frequencies
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and their phases are required to start the proposed iter-
ation procedure. The selection of the initial value will directly
influence the convergence of the iteration procedure. In the fol-
lowing, we will discuss how to select a set of initial extremal
frequencies and their phases .

IV. SELECTION OFINITIAL VALUE

In the above-mentioned iteration procedure, an initial step is
required to get a first solution with at least 2 extremal
values. Arbitrarily selecting a set of extremal frequenciesand
their phases cannot guarantee the algorithm to converge
to the optimal solution. Hence, how to select an initial value is
very important. We should give an initial value close enough to
the optimal solution to guarantee the convergence of the algo-
rithm. Here, we refer to the method proposed in [11]. Since the
aim is to minimize the weighted error function on , we
construct an initial solution by picking 1 frequency
points within and by assuming to be zero at these
frequency points

(13)

A possible choice is to pick these frequenciesequally spaced
within . Other distributions may also be preferred to decrease
the number of iterations. The denominator polynomial
has to satisfy (8). Since , we substitute (2) into (13) and
obtain

(14)

which is a set of linear equations. Hence, there is always a
unique solution, and we can get an initial solution by solving
the linear equations of (14). By using the obtained filter coeffi-
cients, we compute and search for all extremal frequencies

in . Since we have assumed to be zero at 1
frequency points, there always exist at least 2 extremal
frequencies . We then choose those 2 extremal fre-
quencies having the largest deviations as the initial frequency
points and calculate the phase of at to obtain .
With the generation of 2 extremal frequencies, we can
start the next step in the optimization procedure. When IIR fil-
ters with real coefficients are designed, we must symmetrically
select between positive and negative frequencies, because the
real filters have a complex-conjugate frequency response. Sim-
ilarly, 2 extremal frequencies should be symmetric
also. The design algorithm is shown as follows.

V. DESIGN ALGORITHM

Procedure {Design Algorithm of IIR Digital
Filters}

Begin
1. Read , , and .
2. Select frequency points
within .
3. Solve (14) to get an initial solu-
tion.
4. Compute and search for all ex-
tremal values in , then choose

extremal frequencies having the
largest deviations and calculate .

Repeat
5. Set for .
6. Compute and by using (11) and
(12), then find the absolute minimum
eigenvalue of (10) to obtain a set of
filter coefficients , .
7. Compute and search for all ex-
tremal values in , then choose
extremal frequencies having the
largest deviations and calculate .

Until Satisfy the following condition for
a prescribed small constant :

End.

VI. STABILITY ISSUE

In the above design algorithm, the obtained filter may
not be stable. The stability must be checked by finding the pole
location. To guarantee the filter stability, we have to avoid the
poles located on the unit circle, i.e., (8) must be satisfied for all

. In Section III, we have chosen the absolute minimum eigen-
value to minimize the error, which ensures that (8) is satisfied
in . However, (8) may not be satisfied in the “don’t care” band.
For example, IIR filters with nearly linear phase always have a
pair of poles in the transition band near the passband edge. This
pair of poles maybe moves toward the unit circle as the desired
group delay varies. It has been pointed out in [13] that the sta-
bility of is mainly dependent on the specifications, i.e., the
filter degree , ; the desired frequency response ;
and the weighting . Therefore, the specifications should
be carefully chosen to guarantee the filter stability. See [13] in
detail.

VII. D ESIGN EXAMPLES

In this section, we present several numerical examples to
demonstrate the effectiveness of the proposed method and
compare the filter performance with other existing IIR filter
design methods. We first design two real-valued IIR low-pass
filters with the same specifications asExample 1andExample
2 in [13]. Next, a real-valued bandpass filter in [23] and a
complex-valued IIR filter are presented.

Example 1: The filter specification is

The weighting is set to in both passband and stop-
band. In the following, we show only the positive frequency re-
sponse since it is a real filter. The initial is selected as shown
in Fig. 1. Note that either or has to be included in

since is odd. We then obtained a first solution
and chose a set of initial extremal frequencies, as shown in
Fig. 1. Notice that the magnitude response of in Fig. 1
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Fig. 1. Initial guess in Example 1.

TABLE I
ERRORS ANDERRORREDUCTIONS IN EXAMPLE 1

TABLE II
FILTER COEFFICIENTS INEXAMPLE 1

has been magnified for illustration and is not the actual one.
Starting with these initial extremal frequencies, we obtained an
equiripple solution after six iterations. The approximation errors
and the error reductions of each iteration are shown in Table I,
and the obtained filter coefficients are given in Table II. The
magnitude response of is shown in Fig. 2 and the max-
imum error is , whereas in [13].
The magnitude response and group delay of are shown in
Figs. 3 and 4, respectively. The results in [13] are also shown in
the dotted line for comparison. The magnitude error is 0.0233
in passband and 0.0234 (32.6 dB) in stopband, while the error
in [13] is 0.0420 and 0.0420 (27.5 dB), respectively. The group
delay in passband is between 4.83 and 5.97, and its maximum
deviation from the desired group delay is 0.97 in the passband
edge. In [13], the group delay is between 4.65 and 6.34, and its
maximum deviation is 1.34. The pole-zero location of the ob-
tained filter is shown in Fig. 5, and it is clear that it is causal
and stable. To examine the relationship between the specifica-
tions and stability, we show the plot of the maximum pole radius
versus group delay in Fig. 6. It is seen in Fig. 6 that when the

Fig. 2. Magnitude responses ofE(!) in Example 1.

Fig. 3. Magnitude responses ofH(z) in Example 1.

Fig. 4. Group delays ofH(z) in Example 1.

Fig. 5. Pole-zero location ofH(z) in Example 1.

group delay is 2.5, the maximum pole radius is equal to one,
i.e., this pair of poles locates on the unit circle and the filter is
unstable. When the group delay is larger than 2.5, the maximum
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Fig. 6. Maximum pole radius versus group delay.

Fig. 7. Initial guess in Example 2.

TABLE III
ERRORS ANDERRORREDUCTIONS IN EXAMPLE 2

pole radius is smaller than one; then the filter becomes causal
and stable. Therefore, we should specify a larger group delay to
guarantee the causality and stability.

Example 2: The filter specification is ,

The weighting is set to in passband and
in stopband. The initial is selected as shown in Fig. 7. Note
that both and are not included in since

1 is even. We then obtained a first solution and chose
a set of initial extremal frequencies, as shown in Fig. 7. No-
tice that the magnitude response of in Fig. 7 has been
magnified for illustration also. Starting with these initial ex-
tremal frequencies, we obtained an equiripple solution after five
iterations. The approximation errors and the error reductions
of each iteration are shown in Table III, and the filter coeffi-
cients are given in Table IV. The magnitude response of
is shown in Fig. 8, and the maximum error is ,
whereas in [13]. The magnitude response and

TABLE IV
FILTER COEFFECIENTS INEXAMPLE 2

Fig. 8. Magnitude responses ofE(!) in Example 2.

Fig. 9. Magnitude responses ofH(z) in Example 2.

group delay of are shown in Figs. 9 and 10, respectively.
The magnitude error is 0.003 50 in passband and 0.001 24 (58.1
dB) in stopband, while the error in [13] is 0.0155 and 0.0052
(45.7 dB), respectively. The maximum deviation from the de-
sired group delay is 0.081, whereas it is 0.80 in [13]. It
is seen in Fig. 9 that a magnitude overshoot appears in the tran-
sition band. It is because there is a pair of poles in the transition
band near the passband edge, as shown in Fig. 11. To avoid this
overshoot, we try to vary the desired group delay to . The
obtained magnitude responses of and are shown in
the dashed line in Figs. 8 and 9, respectively. It is clear that it
does not have a magnitude overshoot and is better than that in
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Fig. 10. Group delays ofH(z) in Example 2.

Fig. 11. Pole-zero location ofH(z) in Example 2.

Fig. 12. Maximum pole radius versus group delay.

[13]. The plot of the maximum pole radius versus group delay
is shown in Fig. 12. When the group delay is larger than ,
the filters are causal and stable.

Example 3: We consider a real-valued IIR bandpass filter
with

The weighting is set to in passband and
in stopband. The obtained magnitude response of is shown
in Fig. 13, and the maximum error is . The
number of iterations is six. The resulting magnitude response
and group delay of are shown in Figs. 14 and 15, respec-
tively. The pole-zero location is shown in Fig. 16, and the re-
sulting filter is causal and stable. A comparison with the results
in [15] and [23] is summarized in Table V. In Table V, and

Fig. 13. Magnitude response ofE(!) in Example 3.

Fig. 14. Magnitude response ofH(z) in Example 3.

Fig. 15. Group delay ofH(z) in Example 3.

Fig. 16. Pole-zero location ofH(z) in Example 3.
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TABLE V
A COMPARISON OFRESULTS IN EXAMPLE 3

Fig. 17. Magnitude response ofE(!) in Example 4.

Fig. 18 . Magnitude response ofH(z) in Example 4.

are the maximum passband and minimum stopband attenua-
tions in decibels, respectively.is the group delay and is the
group delay quality factor defined by [23]

(15)

It is seen in Table V that the magnitude response of the obtained
filter is better than those in [15] and [23], whereas the group
delay is worse. We have also tried to design an IIR filter with
the same group delay ( ) as in [15] and [23] but cannot
obtain a causal and stable solution.

Example 4: We consider a complex-valued IIR filter with
,

Fig. 19. Group delay ofH(z) in Example 4.

The weighting is set to in passband and in
stopband. The obtained magnitude response of is shown
in Fig. 17, and the maximum error is . The re-
sulting magnitude response and group delay of are shown
in Figs. 18 and 19, respectively. The magnitude error is 0.001 71
in passband and 0.003 62 (48.8 dB) in stopband, respectively,
and the maximum deviation from the desired group delay

is 0.152. We have also calculated the poles of the resulting
filter and found that it is causal and stable.

VIII. C ONCLUSIONS

In this paper, we have proposed an efficient method for de-
signing complex IIR digital filters in the complex Chebyshev
sense. The proposed method is based on the formulation of a
generalized eigenvalue problem by using the Remez multiple
exchange algorithm. Hence, the filter coefficients can be easily
obtained by solving the eigenvalue problem to find the abso-
lute minimum eigenvalue, and then the complex Chebyshev ap-
proximation is attained through a few iterations starting from a
given initial guess. The proposed algorithm is computationally
efficient because it not only retains the speed inherent in the
Remez exchange algorithm but also simplifies the interpolation
step. Since the convergence is dependent on the initial solution,
the proposed algorithm maybe fail to converge, in particular, in
the design of high-order and multiband filters. Finally, it also
has been shown through some design examples that the results
obtained by using the method proposed in this paper are better
than those obtained by the conventional methods. The proposed
method can be applied to the design of Hilbert transformers and
differentiators.
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