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Complex Chebyshev Approximation for IIR Digital
Filters Based on Eigenvalue Problem

Xi Zhang Member, IEEEKazuyoshi Suzuki, and Toshinori Yoshikaywdember, IEEE

Abstract—This paper presents an efficient method for designing the absolute minimum eigenvalue in most cases. In this paper,

complex infinite impulse response digital f!lters in the complex we wish to generalize the method proposed in [22] to the com-
Chebyshev sense. The proposed method is based on the formu-p|ex Chebyshev approximation for IR filters.

lation of a generalized eigenvalue problem by using the Remez S | desi hod . i . 5
multiple exchange algorithm. Hence, the filter coefficients can everal design methods using nonlinear programming [5],

be easily obtained by solving the eigenvalue problem to find the [7], linear programming [8], [13], multiple criterion optimiza-
absolute minimum eigenvalue, and then the complex Chebyshevtion [9], [12], and differential correction algorithm [14] have

approximation is attained through a few iterations starting from  peen suggested to design IIR digital filters in the complex do-
a given initial guess. The proposed algorithm is computationally main also. However, the major disadvantages thereof are quite

efficient because it not only retains the speed inherent in the tati I . a/ f
Remez exchange algorithm but also simplifies the interpolation computationally expensive and/or poor irequency responses.

step. Some design examples are presented and compared with In this paper, we consider the complex Chebyshev approx-
the conventional methods. It is shown that the results obtained imation problem of IIR digital filters and propose an efficient
by using the method proposed in this paper are better than those method to attain the specified magnitude and phase responses
obtained by the conventional methods. in the complex Chebyshev sense. The proposed method is based
Index Terms—Complex Chebyshev approximation, eigenvalue onthe formulation of a generalized eigenvalue problem by using
problem, infinite impulse response (IIR) digital filter, Remez mul-  the Remez multiple exchange algorithm. Hence, the filter coeffi-
tiple exchange algorithm. cients can be easily obtained by solving the eigenvalue problem
to find the absolute minimum eigenvalue, and then the complex
|. INTRODUCTION Chebyshev approximation is attained through a few iterations
starting from a given initial guess. The proposed algorithm is
TIS WELL KNOWN [1}-[4], [6] that the Remez eXChangecomputationally efficient because it not only retains the speed

algorithm is an efficient tool for designing finite impulse "inherent in the Remez exchange algorithm but also simplifies

sponse (FIR) digital filters with linear phase, where the desi He interpolation step. Finally, some design examples are pre-

problem is a real Chebyshev approximation and the Remez &&nted and compared with the conventional methods. Itis shown

applications such as equalization, beamforming, and so on,iﬁét the results obtained by using the method proposed in this

design of digital filters with arbitrary magnitude and phase ré)_aper are better than the conventional methods.

sponses is required, which results in a complex Chebyshev a ]’his paper is organized as follows. Section Il states the
P q ' P Y cgmplex Chebyshev approximation problem of IIR digital fil-

proximation problem [1]_[.21]’ [24]. Although the alternauonters_ Problem formulation based on the generalized eigenvalue
theorem no longer holds in the complex case, the Remez ex-

change algorithm has also been generalized to design com g))(blem by using the Remez multiple exchange algorithm is
FIR filters [11], [17]-[21], [24]. Compared with FIR filters, in- présented in Section Ill. Section IV discusses how to select a set

finite impulse response (IR) filters tend to be of much Ioweorf'mt'al filter coefficients. A design algorithm is given in detalil

rder ormestng e same speciatons(S, 115, 12115 5C100 6 e ety Ssue ol v adtressoo
[22], [23]. However, IR filter design is more difficult than FIR i P P

design because it is a rational approximation problem. In [zalcompanson with other existing IIR filter design methods.

and [25], the Remez exchange algorithm has been applied to the
real Chebyshev approximation for IIR filters, where the inter- Il. PROBLEM STATEMENT
polation problem has been reduced to a generalized eigenvalue

problem. Thus, the solution can be easily obtained by findingLet H(z) be the transfer function of an IIR digital filter with
numerator degre&’ and denominator degred
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where filter coefficientsq,,, b,, are complex in general and To solve the above complex Chebyshev approximation
bp = 1. The frequency response &f(>) is generally a com- problem, we use the Remez multiple exchange algorithm and

plex-valued function of the normalized frequency formulate the condition foff (¢/*) in the form of a generalized

N eigenvalue problem. Assume that there &re- M + 2 extremal

Zane—jnw frequenciesy; (i =0, 1, ..., N4+ M +1) in the bandsk. We
. — N first formulate H (¢/*) at these frequencies; as
H(e”) = 220 -2 @ (=) quencies
w jwi Jwi] — §pdfe(w:

S byeime B(w) = W(w)[H(¢™) — Hy(e)] = 6%) (7)
m=0 where$ is the magnitude error ard(w; ) is the phase oF(w)

The complex Chebyshev approximation problem may be briefit,,,, Notice that the denominator polynomi@{w) of H(c7*)
stated as follows. Let{4(c/*) be the desired frequency re-pas to satisfy

sponse .
Hy(e™) = |[Hy(¢) [ (we R) ®) D)= bue ™ £0,  (weR). @8)
where m=0
|Hy(c?)] desired magnitude response; Substituting (2) into (7), we obtain
Ba(w) desired phase response; 78 (o)
R C (—w,n] Iinterest bands (e.g., passband and stop- N(w;) — Hy(7)D(w;) = §¢ D(w;). 9)
band). W(wi)

The approximation problem consists in finding the filter coeffiwe then rewrite (9) in the matrix form as
cientsa,, b,,, that will minimize the Chebyshev norm

1) = max [ E() @ Pa =0 o)
_ e wherea = [ag, ai, ..., an, b, by, ..., by]%. The elements
of the weighted error of the matriced?, @ are given by
E(w) = W(@)[H(e™) = Ho(e)] 5) einn, (=01, ... N)

among all possible choices @f,, b,,. The weightingW (w) P, = —Hy(eiom)emin=N=Dwm = (n = N 41, ...,
must be a real, strictly positive and continuous functionfbn N+M+1)

In order to guarantee the filter causality and stability, the poles (11)
are required to locate inside the unit circle. It is known in [13]
that the optimal complex Chebyshev approximation may not 0, (n=01...,N)
exist when the poles are restricted inside the unit circle. In sonég _ ) eIleleom)m(n=N=L)wn] (= N1
applications, such as image processing, itis not necessary fort e W (wpm) =N+l
filter to be causal since the signal length is finite [3]. Therefore, N+M+1).
the constraint can be relaxed and only the stability remains to be (12)

considered. In this case, the poles are required only not to locate ] .
on the unit circle. It was pointed out in [13] that there is no guaRnceN+M +2 extremal frequencies; and their phase (w;)

antee of the uniqueness of the complex Chebyshev approxifd&e given, itis seen from (11) and (12) that the elements of the
tion problem, and the number of the optimal approximation m;g}atricesP, Q are known. Therefore, it should be noted that
be arbitrarily large. The characterization of the optimal ration&t0) corresponds to a generalized eigenvalue problemgiie.,
approximation in the complex Chebyshev sense is available@s€igenvalue and is a corresponding eigenvector. In order to
sufficient conditions for the general approximation without pol@inimize 4, we must find the absolute minimum eigenvalue by
restrictions. One sufficient condition is that the weighted err&!ving the above eigenvalue problem [22], [25], so that the cor-
function E(w) has at leasV + M + 2 extremal points [13]. In rgspondlng eigenvector gives a set of .fllter coefficientsb,,,. '
the following, we will make use of this sufficient condition inSince we are interested in only one eigenvector corresponding
the problem formulation without any pole restrictions. The filtel© the absolute minimum eigenvalue, this computation can be

stability issue is addressed in Section VI. done efficiently by using the iterative power method without in-
voking general methods such as the QR technique. By using

i , i , ... function E(w) and search for all extremal frequenciesin the
In this section, we describe the design of IIR digital filterg 45k As a result, it could be found that the obtainBd.)
based on the eigenvalue problem by using the Remez multim%y not be equiripple. We then choose thde M + extremal
exchange algorithm. Our aimis to find a set of filter C(_)ef'ﬁ(_:ientﬁequencieS having the largest deviations as the sampling fre-
an, bm N such a way that the weighted error function in (5 encies.; in the nextiteration and calculate the phas&6b)
satisfies atw; to obtaind, (w; ). Therefore, the eigenvalue problem of (10)
|E(w)] < Sumass (w € R) (6) can be again solved to _ob_tain a set of_ filter coefﬁpiem;sbm.
The above procedure is iterated until the equiripple response
whered . (> 0) is the maximum error to be minimized. is attained. Notice that a set of initial extremal frequencigs
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and their phase&.(w;) are required to start the proposed iter- extremal frequencies Q; having the
ation procedure. The selection of the initial value will directly largest deviations and calculate 0.(2).
influence the convergence of the iteration procedure. In the fétepeat
lowing, we will discuss how to select a set of initial extremal 5. Set w; =, for i=0,1,..., N+ M + 1.
frequenciesv; and their phase&. (w;). 6. Compute P and @ by using (11) and
(12), then find the absolute minimum
IV. SELECTION OFINITIAL VALUE eigenvalue of (10) to obtain a set of
In the above-mentioned iteration procedure, an initial step isfIIter coefficients s .
required to get a first solution with at leaSt+ A/ +2 extremal 7. Compute E(w) and search for all ex-
values. Arbitrarily selecting a set of extremal frequencigand tremal values in _ R, then cho_ose N+M+2
their phase$. (w;) cannot guarantee the algorithm to converge extremal frs_:qgenmes §; having the
to the optimal solution. Hence, how to select an initial value | ""?rgeS‘ d_ewatlons and _calculate_ . O (£2:).
very important. We should give an initial value close enough ntil Sat_lsfy the following condition for
the optimal solution to guarantee the convergence of the algo-a prescribed small constant <
rithm. Here, we refer to the method proposed in [11]. Since the N+M+1
aim is to minimize the weighted error functidi{w) on R, we Z €2 —wi| <e.
construct an initial solution by pickingy + M+1 frequency i=0

pointsw; within R and by assumindg’(w) to be zero at these End.
frequency points

E@;) = W(@)[H('™) — Hy(“)]=0.  (13) VI. STABILITY ISSUE

A possible choice is to pick these frequencie®qually spaced N the above design algorithm, the obtained filféfz) may
within R. Other distributions may also be preferred to decrea8@t be stable. The stability must be checked by finding the pole
the number of iterations. The denominator polynonditt.) location. To guarantee the filter stability, we have to avoid the

has to satisfy (8). Sinc, = 1, we substitute (2) into (13) and poles located on the unit circle, i.e., (8) must be satisfied for all
obtain ' w. In Section Ill, we have chosen the absolute minimum eigen-

N M value to minimize the erraf, which ensures that (8) is satisfied
—jn@; i@ —jm@; _ i@ in R. However, (8) may not be satisfied in the “don’t care” band.

;a”e Ha(e™) Z bme = Ha(e™) (14) For example, IIR filters with nearly linear phase always have a
pair of poles in the transition band near the passband edge. This
Sodir of poles maybe moves toward the unit circle as the desired
roup delay varies. It has been pointed out in [13] that the sta-
ility of H(z)is mainly dependent on the specifications, i.e., the
lter degreeN, M; the desired frequency respong&g(c/=);

m=1

which is a set of linear equations. Hence, there is alway
unigue solution, and we can get an initial solution by solvin

the linear equations of (14). By using the obtained filter coeffz
cients, we comput&(w) and search for all extremal frequencieﬁ

géétgﬁ;lgg?n\getgae\;g Zlij:)r/r;éetitids)t; E’ﬁiﬁﬂ;ﬁ;gl and the weighting¥ (w). Therefore, the specifications should
’ ! be carefully chosen to guarantee the filter stability. See [13] in
frequencied?;. We then choose thosg + M +2 extremal fre- il y 9 y [13]

quencies having the largest deviations as the initial frequency
pointsw; and calculate the phase Bfw) atw; to obtainf, (w; ).

With the generation oV + M +-2 extremal frequencies, we can
start the next step in the optimization procedure. When IIR fil- In this section, we present several numerical examples to
ters with real coefficients are designed, we must symmetricafhgmonstrate the effectiveness of the proposed method and
selects; between positive and negative frequencies, because @énpare the filter performance with other existing IIR filter
real filters have a complex-conjugate frequency response. Sigsign methods. We first design two real-valued IIR low-pass
ilarly, N 4+ M+2 extremal frequencies; should be symmetric filters with the same specifications Bxample landExample

VIl. DESIGN EXAMPLES

also. The design algorithm is shown as follows. 2 in [13]. Next, a real-valued bandpass filter in [23] and a
complex-valued IIR filter are presented.
V. DESIGN ALGORITHM Example 1: The filter specification iV = M = 4

Procedure  {Design Algorithm of IIR Digital o eI (0 < |w| < 0.27)

Filters} Hy(e) = 0
. , (047 < |w| < 7).

Begin
1. Read N, M, Hy(¢/*) and W(w). The weighting is set t&V (w) = 1 in both passband and stop-
2. Select N + M + 1 frequency points w; band. In the following, we show only the positive frequency re-
within  R. sponse since itis a real filter. The initia} is selected as shown
3. Solve (14) to get an initial solu- in Fig. 1. Note that eithev = 0 or w = 7 has to be included in
tion. w; sinceN 4+ M 4+ 1 is odd. We then obtained a first solution
4. Compute FE(w) and search for all ex- and chose a set of initial extremal frequencigsas shown in

tremal values in R, then choose N+ M +2 Fig. 1. Notice that the magnitude responseit.) in Fig. 1
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NORMALIZED FREQUENCY 0 0.1 0.2 0.3 0.4 0.5

Fig. 1. Initial guess in Example 1. NORMALIZED FREQUENCY

Fig. 2. Magnitude responses Bfw) in Example 1.

TABLE |
ERRORS ANDERRORREDUCTIONS IN EXAMPLE 1 " T
No. of iteration | Chebyshev error | Error reduction @
0 0.265451 (L'Z,J,
1 0.045440 484.2% 8
0
2 0.030374 49.6% e
3 0.025800 17.7% o
=)
4 0.023406 10.2% =
5 0.023398 0.03% $ | Proposed |
6 0.023398 o~ Chen—Parks | {
TABLE 1l © o1 02 03 04 05
FILTER COEFFICIENTS INEXAMPLE 1 NORMALIZED FREQUENCY
ag | =0.030963 || & 1.000000 Fig. 3. Magnitude responses &f(z) in Example 1.
ay 0.065455 || &1 | —2.572785 6.5
as | —0.017905 [ b, 2.897621 5
as | 0.036301 || bs | —1.608927 —— Proposed
--------- Chen-Parks

aq 0.028163 || by 0.365009

GROUP DELAY [T]
[}
N

has been magnified for illustration and is not the actual one.
Starting with these initial extremal frequencies, we obtained an
equiripple solution after six iterations. The approximation errors
and the error reductions of each iteration are shown in Table I,
and the obtained filter coefficients are given in Table Il. Theig. 4. Group delays aff (=) in Example 1.
magnitude response @(w) is shown in Fig. 2 and the max-

imum error isé,,., = 0.0234, whereasd,,,, = 0.0420 in [13]. Im
The magnitude response and group delafd¢f) are shown in
Figs. 3 and 4, respectively. The results in [13] are also shown in
the dotted line for comparison. The magnitude error is 0.0233
in passband and 0.0234 (32.6 dB) in stopband, while the error
in [13] is 0.0420 and 0.0420 (27.5 dB), respectively. The group
delay in passband is between 4.83 and 5.97, and its maximum
deviation from the desired group delay is 0.97 in the passband
edge. In [13], the group delay is between 4.65 and 6.34, and its
maximum deviation is 1.34. The pole-zero location of the olig. 5. Pole-zero location df (=) in Example 1.

tained filter is shown in Fig. 5, and it is clear that it is causal

and stable. To examine the relationship between the specifigaoup delay is 2.5, the maximum pole radius is equal to one,
tions and stability, we show the plot of the maximum pole radiu., this pair of poles locates on the unit circle and the filter is
versus group delay in Fig. 6. It is seen in Fig. 6 that when thumstable. When the group delay is larger than 2.5, the maximum

NORMALIZED FREQUENCY

O ZERO
x POLE

T T "

PR T W B |
— 0 1 5o Re
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» TABLE IV
2 FILTER COEFFECIENTS INEXAMPLE 2
a
<
ToaF i ap | 0.002676 | &o 1.000000
—
8 ay; | —0.008455 || &, —4.809253
S 09 1 ap | 0.010671 | b, | 10.621628
=
5 az | —0.011995 || b3 | —13.796082
= 0.8 , . . aq | 0.013294 || by | 11.294999
2 GgOUP DELA:AY 5 as | —0.006682 || b5 | —5.799266
ag 0.007497 || bg 1.722892
Fig. 6. Maximum pole radius versus group delay.
b7 —0.227885
3 ® . ; .
w
w X W, 0016p, sl SN e 4
g = i
. \3/ of T
= u . B el
G w 0.01f L & v
< o ' '
=0 . . , , 2 LS — 7=10
0 0.1 0.2 0.3 0.4 0.5 % i Vo e T=12
NORMALIZED FREQUENCY < 0.005p: e Chen—Parks ]
Fig. 7. Initial guess in Example 2. ,
0 01 0.2 0.3 0.4 0.5

TABLE Il

ERRORS ANDERRORREDUCTIONS IN EXAMPLE 2 NORMALIZED FREQUENCY

Fig. 8. Magnitude responses Bfw) in Example 2.
No. of iteration | Chebyshev error | Error reduction
0 0.158518 0
1 0.007738 1948.6% I - e AR
2 0.004594 68.4% @
g 20
3 0.003748 22.6% e
[99]
4 0.003731 0.5% o
5 0.003731 & —4or
=
Z  [— =10
pole radius is smaller than one; then the filter becomes causal <§: _got _12 .
—ee- T =

and stable. Therefore, we should specify a larger group delay to
guarantee the causality and stability. -----Chen—Parks
Example 2: The filter specification igV = 6, M = 7

0 0.1 0.2 0.3 0.I4 05

e (0 < |w| £0.27)
0, (047 < |w| < 7).

—j10w
s NORMALIZED FREQUENCY

Hd(Cjw) = {
Fig. 9. Magnitude responses (=) in Example 2.

The weighting is set t&V (w) = 1 in passband and’(w) = 3

in stopband. The initial; is selected as shown in Fig. 7. Notegroup delay ofH (») are shown in Figs. 9 and 10, respectively.

that bothw = 0 andw = = are not included ino; since The magnitude error is 0.003 50 in passband and 0.001 24 (58.1

N + M+1is even. We then obtained a first solution and chosiB) in stopband, while the error in [13] is 0.0155 and 0.0052

a set of initial extremal frequencies, as shown in Fig. 7. No- (45.7 dB), respectively. The maximum deviation from the de-

tice that the magnitude response Bfw) in Fig. 7 has been sired group delay = 10 is 0.081, whereas it is 0.80 in [13]. It

magnified for illustration also. Starting with these initial exis seen in Fig. 9 that a magnitude overshoot appears in the tran-

tremal frequencies, we obtained an equiripple solution after figgion band. It is because there is a pair of poles in the transition

iterations. The approximation errors and the error reductiohand near the passband edge, as shown in Fig. 11. To avoid this

of each iteration are shown in Table Ill, and the filter coeffiovershoot, we try to vary the desired group delay te 12. The

cients are given in Table IV. The magnitude respons& @) obtained magnitude responsesiffo) and H () are shown in

is shown in Fig. 8, and the maximum erromig,. = 0.00373, the dashed line in Figs. 8 and 9, respectively. It is clear that it

whereas,..x = 0.0155 in [13]. The magnitude response andloes not have a magnitude overshoot and is better than that in
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Fig. 10. Group delays aff(z) in Example 2.

Im

O ZERO
x POLE

0.1

Fig. 11. Pole-zero location df (=) in Example 2.

0.95F

MAXIMUM POLE RADIUS

Fig. 12. Maximum pole radius versus group delay.

1 I
8 9 10 11
GROUP DELAY

12

Fig. 13.

Fig. 14.

[13]. The plot of the maximum pole radius versus group delay

is shown in Fig. 12. When the group delay is larger thasa 9,

the filters are causal and stable.

Example 3: We consider a real-valued IIR bandpass filter

with N = M = 12

67‘720“‘,

Hy(e*) = {

The weighting is set tdV (w) = 1 in passband and/ (w) = 10
in stopband. The obtained magnitude responde(af) is shown
in Fig. 13, and the maximum error &,,, = 0.0115. The

(0.47 < |w| € 0.67)
0, (0 < |w| £0.287, 0.727 < |w| < ).

Fig. 15.

number of iterations is six. The resulting magnitude response
and group delay ofH (=) are shown in Figs. 14 and 15, respec-
tively. The pole-zero location is shown in Fig. 16, and the re-
sulting filter is causal and stable. A comparison with the results

in [15] and [23] is summarized in Table V. In Table ¥, and Fig. 16.

0.015 T T T T

[E(w)|

0.01t

0.005F

MAGNITUDE

0 01 02 03 04
NORMALIZED FREQUENGY

0.5

Magnitude response &f(w) in Example 3.
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Magnitude response &f(z) in Example 3.
E
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Group delay off (=) in Example 3.
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Pole-zero location d (=) in Example 3.
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TABLE V 122 - - - -
A COMPARISON OFRESULTS IN EXAMPLE 3 E
>.
AB) | a,uB) | - | @ 5121
[m]
L.R.Gramian [15] 0.977 42.01 | 14.0 | 0.38% o 12
Freq.Weighting [23] | 0.984 | 42.72 | 14.0 | 0.55% 2
O
This Method 0.110 | 58.79 | 20.0 | 3.78% 1o ) . . .
015 02 025 03 035 0.4
— NORMALIZED FREQUENGY
§ [ 1 Fig. 19. Group delay off (z) in Example 4.
= 0.003 ]
S The weighting is settéV (w) = 2in passband and’(w) = 1in
E ki stopband. The obtained magnitude responsE(af) is shown
K in Fig. 17, and the maximum error &g, = 0.00362. The re-
s 0.001 1 sulting magnitude response and group delaf6£) are shown
' in Figs. 18 and 19, respectively. The magnitude error is 0.001 71
L A in passband and 0.003 62 (48.8 dB) in stopband, respectively,
-05 -03 -0i 0.1 0.3 0.5 and the maximum deviation from the desired group delay

NORMALIZED FREQUENCY

12 is 0.152. We have also calculated the poles of the resulting

filter and found that it is causal and stable.

Fig. 17. Magnitude response &f(w) in Example 4.
[ea
k=)
w
1%}
pd
e}
o
173}
u
o
w
(=)
D>
=
zZ
O]
<
=
step.
-80 1 1 \ ' 1 L 4 ) L
—0.5 -0.3 -0.1 0.1 0.3 05
NORMALIZED FREQUENCY
Fig. 18 . Magnitude response &f(z) in Example 4.

VIII. CONCLUSIONS

In this paper, we have proposed an efficient method for de-
signing complex IIR digital filters in the complex Chebyshev
sense. The proposed method is based on the formulation of a
generalized eigenvalue problem by using the Remez multiple
exchange algorithm. Hence, the filter coefficients can be easily
obtained by solving the eigenvalue problem to find the abso-
lute minimum eigenvalue, and then the complex Chebyshev ap-
proximation is attained through a few iterations starting from a
given initial guess. The proposed algorithm is computationally
efficient because it not only retains the speed inherent in the
Remez exchange algorithm but also simplifies the interpolation

Since the convergence is dependent on the initial solution,

the proposed algorithm maybe fail to converge, in particular, in
the design of high-order and multiband filters. Finally, it also
has been shown through some design examples that the results
obtained by using the method proposed in this paper are better
than those obtained by the conventional methods. The proposed

A, are the maximum passband and minimum stopband attenoeethod can be applied to the design of Hilbert transformers and
tions in decibels, respectively.is the group delay an@ is the differentiators.

group delay quality factor defined by [23]

Tmax — Tmin

Tmax T Tmin

(15)

- [1]
Itis seen in Table V that the magnitude response of the obtainegp;
filter is better than those in [15] and [23], whereas the group
delay is worse. We have also tried to design an IIR filter with

the same group delay (= 14) as in [15] and [23] but cannot [
obtain a causal and stable solution.
Example 4: We consider a complex-valued IIR filter with [5]
N=10,M =6
e~ (0.3 < w < 0.87) (6]

Hd(ej“") = {

0 (-7 <w<0).

7
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