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Closed-Form Design of Maximally Flat IIR
Half-Band Filters

Xi Zhang, Senior Member, IEEE,and Kevin Amaratunga

Abstract—Half-band (HB) filters are of great importance and
are often used in multirate digital signal processing systems, filter
banks and wavelets. In this paper, a new closed-form expression for
the transfer function of the maximally flat (MF) infinite-impulse
response (IIR) HB filters is presented. The filter coefficients are di-
rectly obtained by solving a linear system of Vandermonde equa-
tions that are derived from the maximal flatness conditions. The
proposed IIR half-band filters are more general than the existing
half-band filters, because they include the conventional finite-im-
pulse response (FIR) half-band filters with exactly linear phase, the
generalized FIR half-band filters with approximately linear phase
and the all-pass-based IIR half-band filters, as special cases. Fur-
thermore, the causal stable IIR HB filters and the IIR HB filters
with exactly linear phase can be realized also. Finally, some design
examples are presented to demonstrate the effectiveness of the pro-
posed IIR HB filters.

Index Terms—Closed-form solution, half-band filter, infinite-im-
pulse response (IIR) digital filter, maximally flat response.

I. INTRODUCTION

H ALF-BAND (HB) filters are an important class of dig-
ital filters and are often used in multirate digital signal

processing systems, filter banks and wavelets [1]–[5]. For ex-
ample, it is well-known [3], [4], [9], [10], [12] that the de-
sign problem of two-band perfect reconstruction filter banks
including orthonormal and biorthogonal filter banks can be
reduced to that of HB filters. Therefore, it is very important
how to design HB filters according to the given specification.
In many applications of filter banks and wavelets, such as
wavelet-based image coding, HB filters are required to pos-
sess the maximally flat (MF) frequency response to get better
coding performance [3], [4]. Much work has been done until
now, which is mainly devoted to the design of finite-impulse
response (FIR) HB filters [1]–[8], [15]–[21]. The closed-form
solution for the MF FIR HB filters with exactly linear phase
can be found in [1]–[4] and [18], while that for the generalized
MF FIR HB filters with approximately linear phase is recently
presented in [15] and [19]–[21]. In contrast, there exists little
work regarding infinite-impulse response (IIR) HB filters [12],
[13], [22]. It is known that IIR filters tend to be of much lower
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order for meeting the same specification as compared with FIR
filters. A class of IIR HB filters has been given in [2]–[4], [10],
[12] by using the parallel structure of a pure delay section and
an all-pass subfilter and applied in the design of filter banks
and wavelets. It has been shown also in [10] and [12] that the
design of such all-pass-based IIR HB filters is equivalent to
the phase approximation of the all-pass subfilter. A detailed
review about the all-pass filter design has been given in [11].
The closed-form solution for the all-pass-based MF IIR HB
filters can be found in [11] and [12]. The MF IIR HB filters
with exactly linear phase are also given as a special case of the
generalized Butterworth filters proposed in [13].

In this paper, we propose a more general class of IIR HB
filters than the existing HB filters. The proposed IIR HB fil-
ters include not only the conventional FIR HB filters with ex-
actly linear phase, the generalized FIR HB filters with approxi-
mately linear phase and the all-pass-based IIR HB filters as spe-
cial cases, but also the causal stable IIR HB filters and the IIR
HB filters with exactly linear phase. The IIR HB filters with
exactly linear phase are generally needed in image processing
applications and have a better magnitude response than the FIR
counterparts, although the resulting filters are noncausal. The
noncausal IIR filters, however, can be realized by dividing them
into the causal and anticausal stable parts to implement in some
applications such as image processing and offline processing.
We present a new closed-form expression for the transfer func-
tion of the MF IIR HB filters. The filter coefficients are directly
obtained by solving a linear system of Vandermonde equations
that are derived from the maximal flatness conditions. We also
investigate the conditions for realizing the causal stable IIR HB
filters and the IIR HB filters with exactly linear phase and show
that the MF IIR HB filters with exactly linear phase proposed
in [13] are only a subclass of that proposed in this paper. Fi-
nally, some design examples are presented and compared with
the existing MF HB filters to demonstrate the effectiveness of
the proposed MF IIR HB filters.

This paper is organized as follows. Section II derives the
transfer function from the time-domain condition for general
IIR HB filters and examines the relation with the existing HB fil-
ters. Some filter properties and the flatness condition are shown
in Section III. Section IV gives a new closed-form expression for
the MF IIR HB filters. The relationship between the proposed
MF IIR HB filters and the existing MF HB filters is discussed
in Section V. Section VI presents some design examples and a
comparison with the existing MF HB filters.
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Fig. 1. IIR Half-Band filters. All-pass filter (AP). Causal-stable filter (CS).
Linear-phase filter (LP).

II. IIR H ALF-BAND FILTERS

Let be the impulse response of an IIR
HB filter. It is well-known that the impulse response should
satisfy the following condition:

(1)

where is the desired group delay of the HB filter. In genaral,
is odd number. Note that if is an even number, then we

have from (1). The HB filter is composed of a delay
element and a HB filter with an odd group delay of .
In the following, we will consider the design of HB filters with
an odd . According to the time-domain condition in (1), the
transfer function of the IIR HB filter can be given by

(2)

If is FIR filter, then becomes FIR HB filter. In this
paper, we assume that is a general IIR filter with numerator
degree and denominator degree

(3)

where and are real coefficients and . It should
be noted that if , will degenerate into FIR filter.
Then becomes the generalized FIR HB filters proposed
in [15] and [19]–[21]. If we further impose the constraints of

and on , then will be the con-
ventional FIR HB filters with exactly linear phase. In addition,
if and , where is constant, then
will be allpass with gain and is the all-pass-based
IIR HB filters presented in [2], [10], and [12], which are based
on the parallel structure of a pure delay section and an
all-pass subfilter. To summarize, as shown in Fig. 1, the IIR
HB filters proposed in this paper include the conventional FIR
HB filters with exactly linear phase, the generalized FIR HB fil-
ters and the all-pass-based IIR HB filters as special cases, there-
fore, are more general than the existing HB filters. Furthermore,

we can get the causal stable IIR HB filters by constraining its
poles inside the unit circle and the IIR HB filters with exactly
linear phase by imposing the constraints of and

, on when is odd and even.
The IIR HB filters with exactly linear phase are noncausal, but
needed in image processing applications, in general. The non-
causal IIR filters can be divided into the causal and anticausal
stable parts that have the poles inside and outside the unit circle
respectively and can be realized in some applications such as
image processing and offline processing.

III. FILTER PROPERTIES

In general, HB filters are required to be lowpass with the de-
sired group delay of . The desired frequency response of
is given by

(4)

where , are the cutoff frequencies of the passband and
stopband, respectively and . From (2), we have

(5)

that is

(6)

which means that is required to be allpass with gain 1/2 in
the band [0, 2 ]. Let be the advanced version of

(7)

then there exist the following relations between and

(8)

where , , and , , are the
magnitude, phase and group delay responses of and ,
respectively. Therefore, the desired frequency response of
is

(9)

The frequency response of is given from (7) by

(10)

and satisfies

(11)
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where denotes the complex conjugate of. This means that
if in the stopband, then the frequency response
of becomes 1 in the passband. Therefore, we just need to
approximate the stopband response in the HB filter design.

In many applications such as the wavelet-based image coding,
HB filters are required to be maximally flat (MF). The flatness
condition is given by

(12)

From (8), we get

(13)

Since , then we have

(14)

Therefore, it can be derived from (14) that (13) is equivalent to

(15)

That is, (12) is equivalent to (15). This means that must
have zeros located at . It can be derived
from (11) that if the flatness condition in (15) is satisfied, then

will satisfy also

(16)

that is

(17)

and

(18)

where , are the
real and imaginary parts of respectively, i.e.,

. The magnitude, phase and group delay re-
sponses of can be expressed in terms of ,
as

(19)

Hence, it is clear from (17) and (18) that the magnitude, phase
and group delay responses of satisfy

(20)

and

(21)

That is, the magnitude and group delay responses of sat-
isfy

(22)

and

(23)

which mean that has both the maximally flat magnitude
and group delay responses at also, if the flatness con-
dition in (12) is satisfied at . Therefore, we just need to
consider the flatness condition in (12) in the MF HB filter de-
sign.

IV. CLOSED-FORM SOLUTION FORMF IIR HB FILTERS

In this section, we derive a new closed-form expression for
the MF IIR HB filters from the flatness condition in (12). We
have from (10)

(24)

where

(25)

Since must have zeros located at , the
flatness condition in (12) is equivalent to

(26)
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From (25), we have

(27)
Substituting (27) into (26), we get

(28)
Since , we have (29) at the bottom of the page. We rewrite
(29) in matrix form as

(30)

where ,
: see (31) at the bottom of the page, and

diag with

(32)

It should be noted that is the Vandermonde matrix with dis-
tinct elements since is odd number. Therefore, there is always
a unique solution. By using the Cramer’s rule and Vandermonde
determinant [23], a closed-form solution can be obtained by

(33)

V. RELATION WITH THE EXISTING MF HB FILTERS

In this section, we examine the relationship between the pro-
posed MF IIR HB filters and the existing MF HB filters and
present some new MF IIR HB filters, such as the exactly linear
phase IIR HB filters and the causal stable IIR HB filters.

A. Generalized MF FIR HB Filters

When , is FIR filter and then becomes FIR
HB filter. In this case, the closed-form solution for the MF HB
filters can be obtained by substituting into (33), that is

(34)

which is the same as that for the generalized MF FIR HB filters
given in [15], [19]–[21]. The generalized MF FIR HB filters
have an approximately linear phase response in the passband.

B. Conventional MF FIR HB Filters With Exactly Linear
Phase

Let , then (34) becomes

(35)

where is an odd number since is odd. It is easy to verify that
the linear phase condition of is satisfied. Therefore,
the MF FIR HB filters have an exactly linear phase response.

C. All-Pass-Based IIR HB Filters

If we assume that , then (33) becomes (36) at the
bottom of the page. It is clear that the condition of
is satisfied. Therefore, is an all-pass filter with gain 1/2

(29)

...
...

.. .
...

...
. . .

...
(31)

(36)
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TABLE I
RANGE OFK FOR THECAUSAL STABLE IIR HB FILTERS

and is the all-pass-based IIR HB filter proposed in [2],
[10], and [12]. As shown in [2], [10], and [12], the all-pass-based
IIR HB filters may not be causal stable depending on the group
delay . To get the causal stable IIR HB filters, all of their poles
must be located inside the unit circle. It is known in [14] that
the causal stable all-pass filter of orderhas a monotonically
decreasing phase response and its phase is at . If
poles of the all-pass filter are located outside the unit circle, then
its phase is at . For example, when there is
only 1 pole outside the unit circle, its phase is at

. It is seen from (6) that the desired phase response of
is . To ensure the obtained HB filters are causal

stable, the phase response of must be closer to rather
than when approaches. Therefore, should be
chosen to satisfy

(37)

Since is odd number, the minimal group delay for the causal
stable IIR HB filters is .

D. Causal Stable IIR HB Filters

Like the all-pass-based IIR HB filters, the proposed IIR HB
filters may not be causal stable depending on the group delay

. To get a causal stable IIR HB filter, we have to choose
carefully. For example, in the case of , has just
one pole of . For to be causal
stable, this pole should be located inside the unit circle,
that is

(38)

Therefore, we should choose

(39)

Note, that when , then the pole . Since is
an odd number, the minimal is if is odd and

if is even. However, it is more complicated
to determine the range of for the causal stable IIR HB filters
in theory when . The coefficients of the MF IIR HB
filters have been given in (33), then we can investigate what
ensure the IIR HB filters to be causal stable. The obtained result
is given in Table I for and . In Table I,
the single number in the entry denotes the minimal group delay

, that is, when , the IIR HB filters are causal
stable. The bracketed numbers indicate the range ofand
means that there is no causal stable filter. For example, in the
case of and , the IIR HB filters are causal stable
when , i.e., . In the case of and ,
the IIR HB filters become causal stable when . In
the case of and , there is not any causal stable
IIR HB filter. From Table I, we summarize as follows.

1) When , , that is, if is
odd and if is even.

2) When , and increases
as and increase.

3) When , , because is an
all-pass filter.

4) When but , .
Note that is the upper limit of .

5) When , there is no causal stable filter.
6) Between the cases of but and ,

there are a few exceptions where the IIR HB filters only
with one or some are causal stable and the lower limit
of is . For example, the filter of ,
is causal stable only when .
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(a)

(b)

(c)

Fig. 2. Impulse responses of MF HB filters in Example 1. (a)N = 6,M = 2,
(b)N = 8 (FIR), (c)N = M = 4 (All-pass-based).

E. Exactly Linear Phase IIR HB Filters

When is odd and is even, we let , then
the filter coefficients and become (40) seen at the bottom
of the page, which satisfy the linear phase conditions of

and . Therefore, the MF IIR HB filters have
an exactly linear phase response. The exactly linear phase IIR
HB filters are not causal since half the poles are located outside
the unit circle. However, the noncausal filters can be divided
into the causal and anticausal stable parts that have the poles
inside and outside the unit circle, respectively, and can be real-
ized in some applications such as image processing and offline
processing. The exactly linear phase IIR HB filters are gener-
ally needed in image processing applications and have a better
magnitude response than the FIR counterparts (see Example 3).

Fig. 3. Magnitude responses of MF HB filters in Example 1.

Fig. 4. Group delays of MF HB filters in Example 1.

If , they will degenerate into the conventional FIR HB
filters with exactly linear phase. In [13], the MF IIR HB filters
with exactly linear phase are also given as a special case of the
generalized Butterworth filters and are equivalent to that pro-
posed in this paper with . It should be noted that there
is no restriction about and in (40) and, thus, we can ob-
tain the MF IIR HB filters with and . There-
fore, the MF IIR HB filters with exactly linear phase proposed
in [13] are only a subclass of that given in (40). In addition, if

, all the zeros of are located on , then
the filters are equivalent to the classic Butterworth filters. How-
ever, if , at least one zero of is not located on

, then they are different from the classic Butterworth fil-
ters. Therefore, the exactly linear phase MF IIR HB filters with

are new.

VI. DESIGN EXAMPLES

Many design examples of the conventional FIR HB filters
with exactly linear phase, the generalized FIR HB filters with
approximately linear phase and the all-pass-based IIR HB fil-
ters have been given in [1]–[10], [12], [15]–[21]. In this section,

(40)
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(a)

(b)

(c)

Fig. 5. Impulse responses of MF IIR HB filters in Example 2. (a)K = 11,
(b)K = 13, (c)K = 15.

we present several numerical examples to demonstrate the ef-
fectiveness of the proposed MF IIR HB filters and compare the
filter performance with the existing MF HB filters.

Example 1: We consider the MF IIR HB filter with
and . The group delay is set to . The filter
coefficients can be easily obtained from (33). Its impulse
response is shown in Fig. 2(a) and it is clear that it is causal
stable. The resulting magnitude and group delay responses
are shown in the solid line in Figs. 3 and 4, respectively.
For comparison, we have also designed the generalized FIR
HB filter of and the all-pass-based IIR HB filter of

with the same group delay of . It is
seen from Table I that the all-pass-based IIR HB filter of

is causal stable because of . These
filters have the same flatness since is satisfied.
Their impulse responses are shown in Fig. 2 and the magnitude
and group delay responses are shown in Figs. 3 and 4 also. It
is clear in Figs. 3 and 4 that the proposed IIR HB filter has
more flat magnitude response in the passband and stopband
and more flat group delay in the passband than the FIR HB
filter and the all-pass-based IIR HB filter.

Fig. 6. Magnitude responses of MF IIR HB filters in Example 2.

Fig. 7. Group delays of MF IIR HB filters in Example 2.

Example 2: We consider the MF IIR HB filters with
and . Firstly, the group delay is set to . It is
seen from Table I that the minimal group delay for this filter
is , then it is causal stable. Its impulse response
is shown in Fig. 5(a) and the magnitude and group delay re-
sponses are shown in the solid line in Figs. 6 and 7, respectively.
We then increase the group delay to . The resulting
impulse response is shown in Fig. 5(b) and the magnitude re-
sponse and group delay are shown in Figs. 6 and 7 also. It is
seen in Figs. 6 and 7 that the magnitude response and group
delay of the MF IIR HB filter with are more flat than
that with . We have also designed the MF IIR HB filter
with . Its impulse response, magnitude response and
group delay are shown in Figs. 5(c), 6, and 7, respectively. It is
seen that the performance of this filter is very poor. Therefore,
we conclude that a larger group delaywill result in a poor
frequency response.

Example 3: We consider the MF IIR HB filter with
and . The group delay is set to . Since

is satisfied, the IIR HB filter has an exactly linear
phase response. Its impulse response is shown in Fig. 8(a) and
is symmetrical. The resulting magnitude response is shown in
the solid line in Fig. 9. We have also designed another IIR HB
filter with and . To get an exactly linear phase
response, the group delay is set to , which
is the same as that proposed in [13]. Its impulse response and
magnitude response are shown in Figs. 8(b) and 9, respectively.
For comparison, the exactly linear phase MF FIR HB filter with

has been designed also. The impulse response
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(a)

(b)

(c)

Fig. 8. Impulse responses of the exactly linear phase MF HB filters in Example
3. (a)N = 5,M = 10, (b)N = 11,M = 4, (c)N = 15 (FIR).

Fig. 9. Magnitude responses of the exactly linear phase MF HB filters in
Example 3.

and magnitude response are shown in Figs. 8(c) and 9. Note
that these MF HB filters have the same flatness since

is satisfied. It is seen in Fig. 9 that the IIR HB filters with
exactly linear phase have a better magnitude response than the
conventional FIR HB filters with exactly linear phase.

VII. CONCLUSION

In this paper, we have proposed a more general class of IIR HB
filters than theexistingHBfilters.Theproposed IIRHBfilters in-
clude not only the conventional FIR HB filters with exactly linear
phase, the generalized FIR HB filters with approximately linear
phase and the all-pass-based IIR HB filters as special cases, but
also the causal stable IIR HB filters and the IIR HB filters with
exactly linear phase. We have given a new closed-form expres-
sion for the transfer function of the MF IIR HB filters. The filter
coefficients are directly obtained by solving a linear system of
Vandermonde equations from the maximal flatness conditions.
We have also investigated the conditions for realizing the causal
stable IIR HB filters and the IIR HB filters with exactly linear
phase. It has been shown through the design examples that the
causal stable MF IIR HB filters can outdo the FIR HB filters and
the all-pass-based IIR HB filters with the same flatness in gen-
eral, while the MF IIR HB filters with exactly linear phase have a
better magnitude response than the FIR counterparts. It has been
found also that the frequency response of IIR HB filters becomes
very poor as the group delay increases.
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