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Closed-Form Design of Maximally Flat IR
Half-Band Filters

Xi Zhang Senior Member, IEEEBNd Kevin Amaratunga

Abstract—Half-band (HB) filters are of great importance and  order for meeting the same specification as compared with FIR
are often used in multirate digital signal processing systems, filter filters. A class of IR HB filters has been given in [2]-[4], [10],

banks and wavelets. In this paper, a new closed-form expression for : :
the transfer function of the maximally flat (MF) infinite-impulse [12] by using the parallel structure of a pure delay section and

response (IIR) HB filters is presented. The filter coefficients are di- an all-pass subfilter and applied in the_ design of filter banks
rectly obtained by solving a linear system of Vandermonde equa- and wavelets. It has been shown also in [10] and [12] that the
tions that are derived from the maximal flatness conditions. The design of such all-pass-based IR HB filters is equivalent to

proposed IIR half-band filters are more general than the existing ; : _ - ;
half-band filters, because they include the conventional finite-im- the phase approximation of the all-pass subfilter. A detailed

pulse response (FIR) half-band filters with exactly linear phase, the '€View about the aII-pa_ISS filter design has been given in [11].
generalized FIR half-band filters with approximately linear phase The closed-form solution for the all-pass-based MF IIR HB
and the all-pass-based IIR half-band filters, as special cases. Fur- filters can be found in [11] and [12]. The MF IIR HB filters

thermore, the causal stable IIR HB filters and the IR HB filters \ith exactly linear phase are also given as a special case of the
with exactly linear phase can be realized also. Finally, some design lized B h il din 13
examples are presented to demonstrate the effectiveness of the progenera ized Butterworth filters proposed in [13].

posed IIR HB filters. In this paper, we propose a more general class of IIR HB
Index Terms—Closed-form solution, half-band filter, infinite-im- ~ filters than the existing HB filters. The proposed IIR HB fil-
pulse response (IIR) digital filter, maximally flat response. ters include not only the conventional FIR HB filters with ex-

actly linear phase, the generalized FIR HB filters with approxi-
mately linear phase and the all-pass-based IIR HB filters as spe-
cial cases, but also the causal stable IIR HB filters and the IIR
H ALF-BAND (HB) filters are an important class of dig- Hp filters with exactly linear phase. The IIR HB filters with
ital filters and are often used in multirate digital signaéxacﬂy linear phase are generally needed in image processing
processing systems, filter banks and wavelets [1]-[5]. For exppjications and have a better magnitude response than the FIR
ample, it is well-known [3], [4], [9], [10], [12] that the de- counterparts, although the resulting filters are noncausal. The
sign problem of two-band perfect reconstruction filter banksoncausal IIR filters, however, can be realized by dividing them
including orthonormal and biorthogonal filter banks can b the causal and anticausal stable parts to implement in some
reduced to that of HB filters. Therefore, it is very importa”épplications such as image processing and offline processing.
how to design HB filters according to the given specificationye present a new closed-form expression for the transfer func-
In many applications of filter banks and wavelets, such &g of the MF IIR HB filters. The filter coefficients are directly
wavelet-based image coding, HB filters are required to pPogptained by solving a linear system of Vandermonde equations
sess the maximally flat (MF) frequency response to get betight are derived from the maximal flatness conditions. We also
coding performance [3], [4]. Much work has been done uniihestigate the conditions for realizing the causal stable IIR HB
now, which is mainly devoted to the design of finite-impulsgters and the IR HB filters with exactly linear phase and show
response (FIR) HB filters [1]-[8], [15]-{21]. The closed-formyyt the MF IIR HB filters with exactly linear phase proposed
solution for the MF FIR HB filters with exactly linear phasg, [13] are only a subclass of that proposed in this paper. Fi-
can be found in [1]-[4] and [18], while that for the generalizedy)||y some design examples are presented and compared with
MF FIR HB filters with approximately linear phase is recentlyne existing MF HB filters to demonstrate the effectiveness of
presented in [15] and [19]-[21]. In contrast, there exists littlg,o proposed MF IIR HB filters.
work regarding infinite-impulse response (IIR) HB filters [12], This paper is organized as follows. Section Il derives the
[13], [22]. It is known that IIR filters tend to be of much loweriansfer function from the time-domain condition for general
IIR HB filters and examines the relation with the existing HB fil-
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we can get the causal stable IIR HB filters by constraining its
poles inside the unit circle and the 1IR HB filters with exactly
linear phase by imposing the constraintsfof= N — A and

Up, = AN—p, b = bar—m ONG(2) whenhN is odd andf even.

The IR HB filters with exactly linear phase are noncausal, but
needed in image processing applications, in general. The non-
causal IIR filters can be divided into the causal and anticausal
stable parts that have the poles inside and outside the unit circle
respectively and can be realized in some applications such as
image processing and offline processing.

IIR Half-Band Filter

AP: All-Pass
LP: Linear Phase

CS: Causal Stable Ill. FILTER PROPERTIES

In general, HB filters are required to be lowpass with the de-

Fig. 1. 1R Half-Band filters. All-pass filter (AP). Causal-stable filter (CS).gjred group de|ay0f{ The desired frequency responséﬂb’)
Linear-phase filter (LP). is g|ven by

II. IR HALF-BAND FILTERS H, (Cjw) _ {le(w7 (0 <w<L wp) (4)
: 0, s Sw=
Let 2, (n = 0,1,...) be the impulse response of an IIR (W swsm)

HB filter. It is well-known that the impulse responag should wherew,, w, are the cutoff frequencies of the passband and

satisfy the following condition: stopband, respectively ang, + w; = w. From (2), we have
1 —jKu,

hKI% Q CjQw:{Q (OSwap) 5

{hKJer =0, (k=+1,42,...) (1) a () —%e‘”““ (ws Sw <) ®)

whereK is the desired group delay of the HB filter. In genaraF,hat is
K is odd number. Note that if is an even number, then we
havehg = 0 from (1). The HB filter is composed of a delay

—1 . .
element: ™" and a HB filter with an odd group delay & — which means that¥(z) is required to be allpass with gain 1/2 in

In the following, we will consider the design of HB filters W|th .
an oddK. According to the time-domain condition in (1), the the band [0, 2, ]. LetH(z) be the advanced version &f(z)

transfer functiond () of the IIR HB filter can be given by

. 1 .
Gy (c]“") = 567‘7([‘/2)“, (0 < w < 2wp) (6)

N
K—2n
1 - E[ _ I(H _ 1 nz=:0 anz (7)
) = LK s 6 (). @ ()= HE =+ 52—
2 E ban—an
If G(z) is FIR filter, thenH (z) becomes FIR HB filter. In this m=0

paper, we assume tha{ z) is a general lIR filter with numerator then there exist the following relations betweiz) andH (=)
degreeN and denominator degred

N |H ()] = |H (%)

2, o B(w) = b(w) — Kw ®)
Ge) =1 — 3) T(w)=7(w)+ K

X bma where| H(c/*)|, 6(w), 7(w) and|H(e#)], 6(w), 7(w) are the

magnitude, phase and group delay responségef andH (z),

wherea,, andb,, are real coefficients antl, = 1. It should yespectively. Therefore, the desired frequency responé of
be noted that ifM/ = 0, G(z) will degenerate into FIR filter. g

Then H(z) becomes the generalized FIR HB filters proposed

in [15] and [19]-[21]. If we further impose the constraints of Ay (%) = { L 0fw<w) )
N = K anda,, = ay_, onG(z), thenH(z) will be the con- 0, (wssw=m)

ventional FIR HB filters with exactly linear phase. In addition

it N = M andb, = Cax_,, whereC is constant, theli(z) The frequency response &(z) is given from (7) by

will be allpass with gainl/C and H(z) is the all-pass-based N K —2n)

IIR HB filters presented in [2], [10], and [12], which are based N 1 Z_:O an€

on the parallel structure of a pure delay sectior® and an H (%) = 5t VAN (10)
all-pass subfilter. To summarize, as shown in Fig. 1, the IR 37 by i2me

HB filters proposed in this paper include the conventional FIR m=0

HB filters with exactly linear phase, the generalized FIR HB filand satisfies
ters and the all-pass-based IIR HB filters as special cases, there- L e ()
fore, are more general than the existing HB filters. Furthermore, H()+H (GJ e ) =1 (11)
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wherez* denotes the complex conjugatesfThis means that Hence, it is clear from (17) and (18) that the magnitude, phase

if f[(ej“) = 0 in the stopband, then the frequency responsad group delay responsesIéI(z) satisfy
of H(z) becomes 1 in the passband. Therefore, we just need to

approximate the stopband response in the HB filter design. ~ .
S s . (1) =
In many applications such as the wavelet-based image coding, o
HB filters are required to be maximally flat (MF). The flatness o fg(f”ﬂ =0 (i=1,2,...,N+M) (20)
condition is given by “ o
‘ ' and
' H (/%) | . L
o | 0 =0l N+M). (12) 25| 20 (i=0,1,...,N+ M)
W=T w=0 .
From (8), we get OHD | =0 (i=0,1,...,N+M—1)
LA . w=0
az H Jw
% —0 (i=0,1,....N+M). (13) (21)
W
o That is, the magnitude and group delay response#(ef) sat-
SinceH (¢7*) = |H(e#<)|e?%), then we have isfy
o H (w L O [H (e9)| o {eter ) H(1)| =
Z Ow™ Owi—n ) (14) 87|H( )
— w w s =0 (i=1,2,...,N+M)
Therefore, it can be derived from (14) that (13) is equivalent to w=0 (22)
o and
azH Jw
% =0 (i=0,1,...,N+M). (15) (0) =K
w .
©s Ir)l =0 (i=1,2,...,N+M—1)
That is, (12) is equivalent to (15). This means th&tz) must w=0
have N + M + 1 zeros located at = —1. It can be derived (23)
from (11) that if the flatness condition in (15) is satisfied, then
H{(») will satisfy also which mean thaf{ (z) has both the maximally flat magnitude
X and group delay responseswat= 0 also, if the flathess con-
H(l)=1 dition in (12) is satisfied ab> = 7. Therefore, we just need to
i Erf o consider the flatness condition in (12) in the MF HB filter de-
o' () (16)
o =0 (i=1,2,...,N+M) sign.
w=0
that is IV. CLOSED-FORM SOLUTION FORMF IIR HB FILTERS
Hp(0)=1 In this section, we derive a new closed-form expression for
O () the MF IIR HB filters from the flatness condition in (12). We
part =0 (i=12,....N+M) have from (10)
w=0
17) ~ i N(w)
H(Y) = —% 24
and () D(w) (24)
O'H
GHiw) (i=0,1,...,N+M) (18) where
w’ o
A ]\T . - ]\/I .
where Hp(w) = R{H(c™*)}, Hi(w) = S{H(e’*)} are the N(w) = ¥ aped B 4 L S, emi2me
real and imaginary parts @1 (i) respectively, i.e H (/) = v m=0 . (25)
HR( )+ ‘;JEII( w). The magnitude, phase and group delay re- D(w) = 3 by i2me
sponses oH (=) can be expressed in terms Hiz(w), Hr(w) m=0
as SinceH (=) must haveV + M + 1 zeros located at = —1, the
i (ej“') _ FIR( )+ FII( )2 flatness condition in (12) is equivalent to
) _ —1 f{r(w) .
f(w) = tanA Tn() . 19) &N (w) .
Hw) = _90(w) _ HR(w)HI(w) HR(u.)HI(u.) o =0 (i=0,1,...,N+M). (26)
Ow HR(u,)Q—f—HI(u,)Q w=m
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From (25), we have V. RELATION WITH THE EXISTING MF HB FILTERS

In this section, we examine the relationship between the pro-
J'N(w) B i posed MF IIR HB filters and the existing MF HB filters and
It =" Z an{j(K —2n)}" + Z bn(—j2m)", present some new MF IIR HB filters, such as the exactly linear
w=r = (27) Phase IIR HB filters and the causal stable IIR HB filters.

Substituting (27) into (26), we get

A. Generalized MF FIR HB Filters

: WhenM = 0, G(z) is FIR filter and ther () becomes FIR
22 an(K—Zn)i—Z b (—2m)'=0(i =0,1,..., N+M). HB filter. In this case, the closed-form solution for the MF HB
filters can be obtained by substitutidg = 0 into (33), that is

m=0
(28)
Sinceby = 1, we have (29) at the bottom of the page. We rewrite ()" I, (i— %)
(29) in matrix form as Un = (2n — K) n!(N —n)! (34)
VDa —u (30) which is the same as that for the generalized MF FIR HB filters
o given in [15], [19]-[21]. The generalized MF FIR HB filters
where  a a0, a1, -, an b, - ba]?, have an approximately linear phase response in the passband.
v = [L,0,. ]T see (31) at the bottom of the page, an§ - Conventional MF FIR HB Filters With Exactly Linear
= dla(‘.'{do, dl, . dN+J\4] with Phase
. Let N = K, then (34) becomes
d‘_{2 (0<i<N) (32)
T — 7 . ; n N— : 2
1 (N+1<i<N+M) (—1)(N+D/2+ HE:O 1)/2 (i+1)

(39)

a, =

n — ! — !

It should be noted thd is the Vandermonde matrix with dis- (2n = N) iV —n)!
tinct elements sinc is odd number. Therefore, there is alwaygyhereN is an odd number sind is odd. Itis easy to verify that
a unique solution. By using the Cramer’s rule and Vandermongi linear phase condition af, = ay_,, is satisfied. Therefore,

determinant [23], a closed-form solution can be obtained by the MF FIR HB filters have an exactly linear phase response.

D" T (5-4) C. All-Pass-Based IIR HB Filters

— - . i—0

Un = 773 aN—m)! [, (E+i-n) (33) If we assume thatV = M, then (33) becomes (36) at the
b —(_1ym M N E_ ' bottom of the page. Itis clear that the conditiorbpf= 2an_,,

m = (-1) m ITi=o £ —itm is satisfied. Thereforg7(z) is an all-pass filter with gain 1/2

N M
23 an— X bm=1
n=0

m=1
~ . (29)
23 an(K —2n)i — Ebm( m)i=0 (i=1,2,...,N+M)
n=0 7’71/—
1 1 1 1 1
K K-2 K —2N —2 —2M
V= : : . : : . : (31)
KN.'*'M (K _ 2.)N+M - ._ (K _ 2N)N+M (_2).1\"+M . (_QM)N+M

N (NN K N\ qN-n Ny1-£_i
a":(l)Q <H)H7og+7¢n %(71)1_[71:1 T Eyi

nf N N B N n N41-E_; (36)
bn = (_1) n Hz: E itn = n Hi:l ?



ZHANG AND AMARATUNGA: CLOSED-FORM DESIGN OF MAXIMALLY FLAT IIR HALF-BAND FILTERS 413

TABLE |
RANGE OF K FOR THE CAUSAL STABLE IIR HB FILTERS
M\N |1 2 3 4 5 6 7 819 110|11}12(13]114]15
1 1 3 3 5 5 7 7 919 |11|11|13[13]15]15
2 1 3 5 5 7 7 9 111111313 15|15|17|19
3 3 3 5 7 7 9 11 1111311511517 (17|19 |21
4 3 5 5 7 9 9 11 131311517 (17(1921}21
5 3 5 5 7 9 11 11 13|15(17 17119 121{21}23
6 3 5 7 7 9 11 13 151151711919 |21 ]23]25
7 B]| 5 7 9 9 11 13 1517|1719 21[23}23]|25
8 x | [5,9] 7 9 11 11 13 1517119119121 (23125}25
9 x | [8] 7 9 11 11 13 151171192121 (23]|25]27
10 X x | [7,9] 9 11 13 13 15117192123 (23]25]27
11 X x [7 {9,185 11 13 15 151171192123 (252527
12 X x x [9] 11 13 15 1711711921123 (25|27 |27
13 b X X X [11,13] 13 15 17119119721 |23[2527 |29
14 X X x x 11} | [13,17] 15 17119 1211211232527 |29
15 bs x X x x [13] |{15,21) {17 |19{21|23|23|25|27 |29

and H(z) is the all-pass-based IIR HB filter proposed in [2]Therefore, we should choose
[10],and [12]. As shownin[2],[10], and [12], the all-pass-based
IIR HB filters may not be causal stable depending on the group K>N-1 (39)
delayK. To get the causal stable IR HB filters, all of their polegyote, that whenkk — oo, then the polez, — 1. SinceX is
must be located inside the unit circle. It is known in [14] tha§n odd number, the minimd( is K, = N if N is odd and
the causal stable all-pass filter of ord€rhas a monotonically g, .. = N + 1if N is even. However, it is more complicated
decreasing phase response and its phasé\is atw = 7. If k' to determine the range @ for the causal stable IIR HB filters
poles of the all-pass filter are located outside the unit circle, thgntheory whenM > 2. The coefficients of the MF IIR HB
its phase is-(N — 2k)m atw = 7. For example, when there isfilters have been given in (33), then we can investigate wihat
only 1 pole outside the unit circle, its phase-i$/N — 2)7 at ensure the IIR HB filters to be causal stable. The obtained result
w = =. Itis seen from (6) that the desired phase responseisfjiven in Table I forl < N < 15andl < M < 15.InTable |,
G(z) is —(K/2)w. To ensure the obtained HB filters are causahe single number in the entry denotes the minimal group delay
stable, the phase respons&igf:) must be closerte- N« rather K, that is, whenK > K., the IR HB filters are causal
than—(N — 2)7 whenw approaches. Therefore K should be stable. The bracketed numbers indicate the rangl @nd «
chosen to satisfy means that there is no causal stable filter. For example, in the
case ofN = 6 andM = 4, the IIR HB filters are causal stable
whenk > 9,i.e.,Kin = 9. Inthe case ofV =2 andM = §,
the IIR HB filters become causal stable wher< K < 9. In
. . - the case ofV = 2 and M = 12, there is not any causal stable
SinceK is odd _numb_er, the minimal group delay for the causrﬁlR HB filter. From Table I, we summarize as follows.
stable IIR HB filters isK ,;, = 2N — 1. 1) WhenM = 1, Ky > N, that is, Ky = N if IV is

odd andK,;, = N + 1if N is even.
D. Causal Stable IIR HB Filters 2) WhenM < N, N < Ky, < 2N—1andK,,;, increases

asN and M increase.
Like the all-pass-based IIR HB filters, the proposed IIR HB 3) WhenM = N, K, = 2N — 1, because7(z) is an

filters may not be causal stable depending on the group delay all-pass filter.

K. To get a causal stable IIR HB filter, we have to chodSe  4) WhenA/ > N but» N, 2N —1 < Kpin < 2N + 1.

carefully. For example, in the case 8f = 1, G(z) has just Note that2N + 1 is the upper limit ofK .

one pole ofz, = (K — 2N)/(K +2). ForG(z) to be causal  5) WhenM >> N, there is no causal stable filter.

stable, this polez;, should be located inside the unit circle, 6) Between the cases 8f > N but® N andM > N,

that is there are a few exceptions where the IIR HB filters only
with one or somé( are causal stable and the lower limit

K —2N <1 (38) of K is2N + 1. For example, the filteroNV =2, M =9

K12 ’ is causal stable only whelt = 5.

K> 2(N —1). (37)

|2p] :‘
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of— Z
—0.1r 7] If M = 0, they will degenerate into the conventional FIR HB
o s 90 15 20 25 filters with exactly linear phase. In [13], the MF IIR HB filters
n with exactly linear phase are also given as a special case of the
(© generalized Butterworth filters and are equivalent to that pro-
Fig. 2. Impulse responses of MF HB filters in Example 1.a}= 6, M = 2, posed n thls_ paper withv' > M'_ It should be noted that there
(b) N = 8 (FIR), (c) N = M = 4 (All-pass-based). is no restriction aboulV and M in (40) and, thus, we can ob-
tain the MF IIR HB filters with’NV > A and N < M. There-
E. Exactly Linear Phase IIR HB Filters fore, the MF IIR HB filters with exactly linear phase proposed

in [13] are only a subclass of that given in (40). In addition, if
N = M +1, all the zeros of{ (») are located on = —1, then
Mhe filters are equivalent to the classic Butterworth filters. How-
—n andb,,, = bps_.,. Therefore, the MF IIR HB filters have ever, itV < M —1, at Igast one zero df (z) |s_not located on
—1, then they are different from the classic Butterworth fil-
an exactly linear phase response. The exactly linear phase IR
t rs Therefore, the exactly linear phase MF IIR HB filters with
HB filters are not causal since half the poles are located outsi
S . L < M — 1 are new.
the unit circle. However, the noncausal filters can be divided
into the causal and anticausal stable parts that have the poles
inside and outside the unit circle, respectively, and can be real-
ized in some applications such as image processing and offlinédMany design examples of the conventional FIR HB filters
processing. The exactly linear phase IIR HB filters are genewxith exactly linear phase, the generalized FIR HB filters with
ally needed in image processing applications and have a bettpproximately linear phase and the all-pass-based IIR HB fil-
magnitude response than the FIR counterparts (see Exampld&s have been given in [1]-[10], [12], [15]-[21]. In this section,

When N is odd andM is even, we letK = N — M, then
the filter coefficients:,, andb,,, become (40) seen at the botto
of the page, which satisfy the linear phase conditiong,of=

VI. DESIGN EXAMPLES

NS VS VIR | MG i ) BT CS VLR VI § NN € it )
R B Ce ey B B0 VR G
T

i=0

M N N _;_ M _ M N N_ M
b = (=1)™ < ) ico x5t = (=M= < ) ITiso %

m m

(40)
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—0.1F | -
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~8 3L ] Example 2: We consider the MF IIR HB filters withlV = 6
04l [ P B and M = 5. Firstly, the group delay is set th = 11. It is

seen from Table | that the minimal group delay for this filter
is Kin = 11, then it is causal stable. Its impulse response
© is shown in Fig. 5(a) and the magnitude and group delay re-
Fig. 5. Impulse responses of MF IIR HB filters in Example 2. f&)= 11,  sponses are shown in the solid line in Figs. 6 and 7, respectively.
O R =13, (R = 15. We then increase the group delay & = 13. The resulting
impulse response is shown in Fig. 5(b) and the magnitude re-
we present several numerical examples to demonstrate thespionse and group delay are shown in Figs. 6 and 7 also. It is
fectiveness of the proposed MF IIR HB filters and compare tlseen in Figs. 6 and 7 that the magnitude response and group
filter performance with the existing MF HB filters. delay of the MF IIR HB filter with K’ = 11 are more flat than
Example 1: We consider the MF IIR HB filter withV = 6 that with K’ = 13. We have also designed the MF IIR HB filter
and M = 2. The group delay is set t& = 9. The filter with K = 15. Its impulse response, magnitude response and
coefficients can be easily obtained from (33). Its impulsgroup delay are shown in Figs. 5(c), 6, and 7, respectively. It is
response is shown in Fig. 2(a) and it is clear that it is caussaden that the performance of this filter is very poor. Therefore,
stable. The resulting magnitude and group delay responses conclude that a larger group del&y will result in a poor
are shown in the solid line in Figs. 3 and 4, respectivelftequency response.
For comparison, we have also designed the generalized FIRExample 3: We consider the MF IIR HB filter withV =
HB filter of N = 8 and the all-pass-based IIR HB filter of5 and M = 10. The group delay is set t& = —5. Since
N = M = 4 with the same group delay ok = 9. It is K = N — M is satisfied, the IR HB filter has an exactly linear
seen from Table | that the all-pass-based IIR HB filter gfhase response. Its impulse response is shown in Fig. 8(a) and
N = M = 4 is causal stable because #f,;, = 7. These is symmetrical. The resulting magnitude response is shown in
filters have the same flatness sinde+ M = 8§ is satisfied. the solid line in Fig. 9. We have also designed another IR HB
Their impulse responses are shown in Fig. 2 and the magnitditer with &N = 11 andA/ = 4. To get an exactly linear phase
and group delay responses are shown in Figs. 3 and 4 alsaelponse, the group delay is setho= N — M = 7, which
is clear in Figs. 3 and 4 that the proposed IIR HB filter hais the same as that proposed in [13]. Its impulse response and
more flat magnitude response in the passband and stopbarafnitude response are shown in Figs. 8(b) and 9, respectively.
and more flat group delay in the passband than the FIR HB®r comparison, the exactly linear phase MF FIR HB filter with
filter and the all-pass-based IIR HB filter. N = K = 15 has been designed also. The impulse response
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g‘:. o ] VIl. CONCLUSION
0:4 L 4 Inthis paper, we have proposed a more general class of IR HB

T T T T T
0.3 ‘ ] filters thanthe existing HB filters. The proposed IIR HB filters in-
T ‘ ‘ L
I

= 0.2} . clude not only the conventional FIR HB filters with exactly linear
0.1F — phase, the generalized FIR HB filters with approximately linear
o i phase and the all-pass-based IIR HB filters as special cases, but
—0.11 ] also the causal stable IIR HB filters and the IIR HB filters with
T TR T S S T exactly linear phase. We have given a new closed-form expres-
n sion for the transfer function of the MF IIR HB filters. The filter
@ coefficients are directly obtained by solving a linear system of
- . . Vandermonde equations from the maximal flatness conditions.
0.6 T . T T ™ We have also investigated the conditions for realizing the causal
0.5 ] stable IIR HB filters and the IIR HB filters with exactly linear
0.4 7 phase. It has been shown through the designh examples that the
- o3 ] causal stable MF IIR HB filters can outdo the FIR HB filters and
0.21 7 the all-pass-based IIR HB filters with the same flatness in gen-
0.1r | | ] eral, while the MF IIR HB filters with exactly linear phase have a
Or ' ' better magnitude response than the FIR counterparts. It has been
—0r L . . N found also that the frequency response of IIR HB filters becomes
-5 0 5 10 15 20 very poor as the group delay increases.
n
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