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Abstract—This paper considers the design of the WSS parau-
nitary filterbanks composed of a single complex allpass filter and
gives a new class of real-valued orthonormal symmetric wavelet
bases. First, the conditions that the complex allpass filter has to
satisfy are derived from the symmetry and orthonormality condi-
tions of wavelets, and its transfer function is given to satisfy these
conditions. Second, the paraunitary filter banks are designed by
using the derived transfer function from the viewpoints of the reg-
ularity and frequency selectivity. A new method for designing the
proposed paraunitary filterbanks with a given degrees of flatness
is presented. The proposed method is based on the formulation of
a generalized eigenvalue problem by using the Remez exchange al-
gorithm. Therefore, the filter coefficients can be easily obtained by
solving the eigenvalue problem, and the optimal solution is attained
through a few iterations. Furthermore, both the maximally flat and
minimax solutions are also included in the proposed method as two
specific cases. The maximally flat filters have a closed-form solu-
tion without any iteration. Finally, some design examples are pre-
sented to demonstrate the effectiveness of the proposed method.

Index Terms—Complex allpass filter, eigenvalue problem, or-
thonormal symmetric wavelets, Remez exchange algorithm.

I. INTRODUCTION

T HE discrete wavelet transform (DWT) has been ap-
plied extensively to digital signal and image processing

[1]–[20]. In many applications, wavelets are required to be real
since the signals to be processed are real-valued in general.
In this paper, we restrict ourselves to real-valued wavelets. It
is well-known [1], [7], [11] that the real-valued orthonormal
wavelet bases can be generated by two-band paraunitary
filterbanks with real coefficients. One desirable property for
wavelets is symmetry, which requires all filters in the filter-
banks to possess exactly linear phase because the symmetric
extension method is generally used to treat the boundaries of
images in digital image coding [9], [10], [16]. It is known [2]
that FIR filters (corresponding to the compactly supported
wavelets) can easily realize the linear phase. However, it is
widely appreciated [1], [4] that the only FIR solution that
produces a real-valued orthonormal symmetric wavelet basis
is the Haar solution, which is not continuous. To obtain
real-valued orthonormal symmetric wavelet bases with more
regularity than the Haar solution, Herley and Vetterli have
proposed a class of IIR solutions in [12]. In [12], Herley and
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Vetterli discussed two cases: half sample symmetric (HSS)
and whole sample symmetric (WSS). In the HSS case, the
scaling and wavelet functions are symmetric and antisymmetric
respectively, whereas both are symmetric in the WSS case.
Herley and Vetterli have shown in [12] that the HSS filterbanks
can be constructed by using real allpass filters. The design
methods for these allpass-based HSS filterbanks have been
proposed in [15] and [20]. However, the WSS filterbanks are
not as easy to use as the HSS ones, and Herley and Vetterli
gave only one example.

In this paper, we discuss the WSS case and give a new class of
real-valued orthonormal symmetric wavelet bases, where the as-
sociated paraunitary filterbanks are composed of a single com-
plex allpass filter [6], [19]. First, we derive the conditions im-
posed on the complex allpass filter from the symmetry and or-
thonormality conditions of wavelets and give the transfer func-
tion of complex allpass filter to satisfy these conditions. Second,
we consider the design of the paraunitary filterbanks by using
the derived transfer function from the viewpoints of the regu-
larity and frequency selectivity [13], [20]. We propose a new
method for designing the paraunitary filterbanks with a given
degrees of flatness. The proposed method is based on the formu-
lation of a generalized eigenvalue problem by using the Remez
exchange algorithm [14], [18]. Therefore, the filter coefficients
can be easily obtained by solving the eigenvalue problem to
find the positive minimum eigenvalue, and the optimal solu-
tion is attained through a few iterations. The proposed algo-
rithm is computationally efficient because it not only retains the
speed inherent in the Remez exchange algorithm but also sim-
plifies the interpolation step. Furthermore, both the maximally
flat and minimax solutions are also included in the proposed
method as two specific cases. The maximally flat filters have a
closed-form solution without any iteration. Finally, some design
examples are presented to demonstrate the effectiveness of the
proposed method. The major contributions in this paper are the
closed-form solution for the maximally flat wavelet filters and
the design method using the Remez exchange algorithm for the
wavelet filters with a given degrees of flatness.

This paper is organized as follows. In Section II, the condi-
tions imposed on the complex allpass filter are derived from
the symmetry and orthonormality conditions of wavelets, and
its transfer function is given to satisfy these conditions. A
closed-form solution for the maximally flat filters is presented
in Section III. In Section IV, a new method for designing
the paraunitary filterbanks with a given degree of flatness is
proposed, based on the formulation of a generalized eigenvalue
problem by using the Remez exchange algorithm. Some
numerical examples are presented in Section V.
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II. ORTHONORMAL SYMMETRIC WAVELETS

It is well-known [1], [4], [7] that a real-valued orthonormal
wavelet basis can be generated by a two-band paraunitary filter-
bank with real coefficients, where is as-
sumed to be a lowpass filter, and is highpass. The or-
thonormality condition that and have to satisfy is

(1)

In image coding applications, the circular extension and
symmetric extension methods are generally used to treat the
boundaries of images. The symmetric extension has been
proven to yield a better quality of the reconstructed image [9],
[10]. The symmetric extension method requires the wavelet
basis to be symmetric, i.e., both and possess
exactly linear phase response. To satisfy the symmetry and
orthonormality conditions simultaneously, Herley and Vetterli
have proposed a class of linear-phase IIR solutions in [12].
In [12], the half sample symmetric (HSS) and whole sample
symmetric (WSS) cases are discussed. It is shown that the
HSS filterbanks can be constructed by using real allpass filters,
where the numerator degree of and is odd, resulting
in a symmetric scaling function and an antisymmetric wavelet
function. However, the WSS filterbanks are not as easy to use
as the HSS ones, and only one example is given in [12]. In this
paper, we will consider the WSS filterbanks, i.e., the numerator
degree of and is even, and both the scaling and
wavelet functions are symmetric.

According to [6], we construct and by using a
single complex allpass filter as follows:

(2)

where is a complex allpass filter, and has a set of
filter coefficients that are complex conjugate with ones of .
One can verify that and have a set of real-valued
filter coefficients and the numerator degree is even. From the
orthonormality condition in (1), must satisfy [6]

(3)

which means that if is a pole of , then is also a pole
of . Consequently, has a pair of poles and/or
one pole , where is complex, is real, and denotes
the complex conjugate of. To force and to have
exactly linear phase response, must also satisfy

(4)

It is known that and satisfy the following relation:

(5)

Fig. 1. Pole-zero location ofA(z).

Thus, the condition of (4) becomes

(6)

which means that if is a pole of , then is also
a pole of . Therefore, has a quadruplet of poles

and/or a pair of poles , as
shown in Fig. 1. The transfer function of can be expressed
as

(7)

where the degree of is , and
or . By expanding (7), we have

(8)

where are real coefficients, and . It should be noted
that the symmetry and orthonormality conditions have been
satisfied by using the transfer function of given in (8).
Therefore, the design problem of the paraunitary filterbank

with exactly linear phase becomes the phase
approximation of in (8).

Let be the phase response of . We have from (8)

(9)

where when is even

(10)
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and when is odd

(11)

Therefore, we have from (2)

(12)

It is clear that both and have exactly linear-phase
response, and their magnitude responses satisfy the following
power-complementary relation:

(13)

III. M AXIMALLY FLAT FILTERS

In this section, we describe the design of the proposed WSS
filterbanks with the maximum flatness. From the viewpoint of
the regularity, and are required to meet the following
flatness conditions:

(14)

(15)

where is even, and . Note that cor-
responds to the maximally flat filters, and when , there
is no flatness condition imposed on and . Equations
(14) and (15) imply that and contain zeros located
at and , respectively. Note that since and

are orthogonal, the flatness conditions in (14) and (15) are
equivalent to each other. For convenience, we use the condition
in (15). Substituting directly the magnitude response of
into (15) will result in a set of nonlinear equations to be solved,
which is very difficult when is large. To avoid this problem,
we decompose as

(16)

where

(17)

(18)

By differentiating (16), we get

(19)
Since is a highpass filter, it is clear from (12) that since

is required, then . Therefore, it can be
easily derived from (19) that the flatness condition of (15) is
equivalent to

(20)

Similarly, it is seen from (17) that the condition of (20) can be
reduced to

(21)

that is

(22)

and in (10) or (11) into (22), we can rewrite (22) in matrix
form as

(23)

where

...
...

.. .
...

...
(24)

and diag

even

odd
(25)

for , and

even

odd
(26)

When the maximally flat filters, i.e., are re-
quired, there is always a unique solution in (23) due to
. Therefore, the maximally flat solutions can be obtained by

solving the above linear equations. However, it should be no-
ticed that is a Vandermonde matrix and can be analytically
solved. Thus, the closed-form formula is given by

even

odd
(27)

for .
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IV. FILTER DESIGN WITH GIVEN FLATNESS

It is well-known that the maximally flat filters have poor
frequency selectivity. Of course, frequency selectivity is also
thought of as a useful property for many applications. How-
ever, it is known in [13] that regularity and frequency selectivity
somewhat contradict each other. For this reason, we consider the
design of the paraunitary filterbanks that have the best possible
frequency selectivity for a given regularity, i.e., a given degrees
of flatness. The flatness conditions have been given in (14) and
(15), but in this case. Our aim is to achieve an
equiripple response by using the remaining degrees of freedom.

and are required to be a pair of lowpass and high-
pass filters. The desired magnitude responses are given by

(28)

(29)

where and are the cut-off frequencies of the passband and
stopband of , respectively, and . Therefore,
the desired phase response of is from (12)

(30)

and the desired response of is from (9)

(31)

When is even, it is seen from (10) that and
. Thus, we should choose to meet

this symmetry property. When is odd, and
from (11), then . Due to the

symmetry of , we need to approximate to in
the passband only. Therefore, the design problem becomes the
approximation of in the passband.

We use the Remez exchange algorithm and formulate the de-
sign problem in the form of the eigenvalue problem. First, we
select extremal frequencies in the passband

as follows:

(32)

where when , we should choose due to the
flatness condition at . When , it can be seen that
there is not any flatness condition imposed on and ,
that is, and will not contain any zero located at

and . Thus, we should choose , which results
in the optimal (minimax) solution in the Chebyshev sense. We
then formulate as

(33)

where is a phase error to be minimized, and or to
guarantee . According to the symmetry of , when

is even, we have if , and if ,

TABLE I
FILTER COEFFICIENTS OFA(z) IN EXAMPLE 1

whereas when is odd, if , and if
. From (10) or (11), we have

(34)

where , and the denominator polynomial must satisfy

(35)

Substituting Equation (34) can be rewritten in matrix form
as

(36)

where

...
...

.. .
...

(37)

and diag

even

odd
(38)

for , and

even

odd
(39)

By involving the flatness condition in (23), we have

(40)
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Fig. 2. Phase responses ofA(z) in Example 1.

Fig. 3. Magnitude responses ofH(z) andG(z) in Example 1.

where

(41)

(42)

and is a null matrix. It should be noted that
(40) corresponds to a generalized eigenvalue problem, i.e.,is
an eigenvalue, and is a corresponding eigenvector. In order
to minimize , we must find the positive minimum eigen-
value by solving the above eigenvalue problem [14], [18], which
can be done efficiently by using the iterative power method, so
that the corresponding eigenvector gives a set of filter coeffi-
cients . By using the obtained filter coefficients , we com-
pute the phase response and search for all extremal fre-
quencies in the passband. As a result, it could be found that
the obtained may not be equiripple. We then choose the
extremal frequencies as the sampling frequencies in the
next iteration and solve the eigenvalue problem of (40) to get a
set of filter coefficients again. The above procedure is iter-
ated until the equiripple response is attained. The convergence
of the proposed algorithm has been proven in [21], provided that

Fig. 4. Scaling functions in Example 1.

Fig. 5. Wavelet functions in Example 1.

(35) is satisfied. It has also been proven in [14] and [18] that (35)
can be satisfied by choosing the positive minimum eigenvalue if
the solution that satisfies (35) exists. However, sometimes none
of the eigenvalues gives a solution that satisfies (35). That is,
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TABLE II
FILTER COEFFICIENTS OFA(z) IN EXAMPLE 2

Fig. 6. Phase responses ofA(z) in Example 2.

the solution that satisfies (35) may not exist. In this case, the
algorithm fails to converge. In general, it is caused by an unapt
choice of the extremal frequency points. Therefore, there always
exists the solution that satisfies (35) by appropriately choosing
the extremal frequencies, as shown in (32). The design algo-
rithm is shown in detail as follows.

Procedure Design Algorithm for Complex Allpass Filters

Begin

1) Read and the cutoff frequency .

2) Select an initial extremal frequencies

equally spaced in the passband.

Repeat

3) Set for .

4) Compute and by using (41) and (42), then find the positive minimum

eigenvalue of (40) to obtain a set of filter coefficients.

5) Compute the phase response and search the extremal frequenciesin the

passband.

Until Satisfy the following condition for a prescribed small constant(typically,

)

End.

Fig. 7. Magnitude responses ofH(z) andG(z) in Example 2.

Fig. 8. Scaling functions in Example 2.

V. DESIGN EXAMPLES

In this section, we will use the design method proposed in this
paper to design the WSS paraunitary filterbanks composed of a
single complex allpass filter and present some numerical exam-
ples to demonstrate the effectiveness of the proposed method.

Example 1: We consider the design of the maximally flat
filters. The filter coefficients of with the maximum flat-
ness can be calculated from (27) and ones of
are listed in Table I. Note that when is even, i.e.,

, then , and when is odd, i.e., ,
then . The resulting phase responses of are
shown in Fig. 2, and the magnitude responses of and
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Fig. 9. Wavelet functions in Example 2.

are shown in Fig. 3, respectively. It is clear that the fre-
quency responses become more flat asincreases. The scaling
and wavelet functions generated by the above paraunitary filter-
banks are shown in Figs. 4 and 5, respectively. It can be seen
in Figs. 4 and 5 that both the scaling and wavelet functions are
symmetric and are more regular with an increasing.

Example 2: We consider the design of the paraunitary filter-
banks with a given degrees of flatness. The order of is
. The cut-off frequency is , and . We

have designed with by using the proposed
method. The obtained filter coefficients are listed in Table II.
The resulting phase responses of are shown in Fig. 6, and
the magnitude responses of and are shown in Fig. 7,
respectively. It can be seen that corresponds to the max-
imally flat solution, and is the minimax solution that has
no zero located at and . The magnitude error in-
creases as increases. The generated scaling and wavelet func-
tions are shown in Figs. 8 and 9, respectively. It is seen in Figs. 8
and 9 that when , the scaling and wavelet functions are
not continuous because the regularity conditions are not satis-
fied. The scaling and wavelet functions become more smooth
with an increasing .

VI. CONCLUSION

In this paper, we have discussed the design of the WSS pa-
raunitary filterbanks composed of a single complex allpass filter
and given a new class of real-valued orthonormal symmetric
wavelet bases. From the symmetry and orthonormality condi-
tions of wavelets, we have first given the conditions imposed on

the complex allpass filter and derived the complex allpass filters
transfer function to satisfy these conditions. Second, we have
proposed a new method for designing the WSS paraunitary fil-
terbanks with a given degrees of flatness from the viewpoints of
the regularity and frequency selectivity. The proposed method is
based on the formulation of a generalized eigenvalue problem
by using the Remez exchange algorithm. Therefore, the filter
coefficients can be easily obtained by solving the eigenvalue
problem to find the positive minimum eigenvalue, and the op-
timal solution is attained through a few iterations. The proposed
algorithm is computationally efficient because it not only retains
the speed inherent in the Remez exchange algorithm but also
simplifies the interpolation step. Furthermore, both the maxi-
mally flat and minimax solutions are also included in the pro-
posed method as two specific cases. The maximally flat filters
have a closed-form solution without any iteration. Finally, some
design examples are presented to demonstrate the effectiveness
of the proposed method.
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