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A New Class of Orthonormal Symmetric Wavelet
Bases Using a Complex Allpass Filter

Xi Zhang Senior Member, IEEEAkira Kato, and Toshinori Yoshikawdlember, IEEE

Abstract—This paper considers the design of the WSS parau- Vetterli discussed two cases: half sample symmetric (HSS)
nitary filterbanks composed of a single complex allpass filter and and whole sample symmetric (WSS). In the HSS case, the
gives a new class of real-valued orthonormal symmetric wavelet g.qjing and wavelet functions are symmetric and antisymmetric
bases. First, the conditions that the complex allpass filter has to . o
satisfy are derived from the symmetry and orthonormality condi- respectively, Whereas both arg symmetric in the \_NSS case.
tions of wavelets, and its transfer function is given to satisfy these Herley and Vetterli have shown in [12] that the HSS filterbanks
conditions. Second, the paraunitary filter banks are designed by can be constructed by using real allpass filters. The design
using the derived transfer function from the viewpoints of the reg- methods for these allpass-based HSS filterbanks have been
ularity and frequency selectivity. A new method for designing the proposed in [15] and [20]. However, the WSS filterbanks are

proposed paraunitary filterbanks with a given degrees of flatness .
is presented. The proposed method is based on the formulation of not as easy fo use as the HSS ones, and Herley and Vetterli

a generalized eigenvalue problem by using the Remez exchange algave only one example.

gorithm. Therefore, the filter coefficients can be easily obtained by In this paper, we discuss the WSS case and give a new class of
solving the eigenvalue problem, and the optimal solution s attained real-valued orthonormal symmetric wavelet bases, where the as-
through a few iterations. Furthermore, both the maximally flat and sociated paraunitary filterbanks are composed of a single com-

minimax solutions are also included in the proposed method as two . . . o .
specific cases. The maximally flat filters have a closed-form solu- plex allpass filter [6], [19]. First, we derive the conditions im-

tion without any iteration. Finally, some design examples are pre- Posed on the complex allpass filter from the symmetry and or-
sented to demonstrate the effectiveness of the proposed method. thonormality conditions of wavelets and give the transfer func-

Index Terms—Complex allpass filter, eigenvalue problem, or- tion of complex allpass filter to satisfy these conditions. Second,
thonormal symmetric wavelets, Remez exchange algorithm. we consider the design of the paraunitary filterbanks by using
the derived transfer function from the viewpoints of the regu-
larity and frequency selectivity [13], [20]. We propose a new
method for designing the paraunitary filterbanks with a given

HE discrete wavelet transform (DWT) has been aplegrees of flatness. The proposed method is based on the formu-

plied extensively to digital signal and image processinigtion of a generalized eigenvalue problem by using the Remez
[1]-[20]. In many applications, wavelets are required to be regkchange algorithm [14], [18]. Therefore, the filter coefficients
since the signals to be processed are real-valued in genegah be easily obtained by solving the eigenvalue problem to
In this paper, we restrict ourselves to real-valued wavelets find the positive minimum eigenvalue, and the optimal solu-
is well-known [1], [7], [11] that the real-valued orthonormalion is attained through a few iterations. The proposed algo-
wavelet bases can be generated by two-band parauniteifigm is computationally efficient because it not only retains the
filterbanks with real coefficients. One desirable property fapeed inherent in the Remez exchange algorithm but also sim-
wavelets is symmetry, which requires all filters in the filterplifies the interpolation step. Furthermore, both the maximally
banks to possess exactly linear phase because the symméaicand minimax solutions are also included in the proposed
extension method is generally used to treat the boundariesmgthod as two specific cases. The maximally flat filters have a
images in digital image coding [9], [10], [16]. It is known [2]closed-form solution without any iteration. Finally, some design
that FIR filters (corresponding to the compactly supportegkamples are presented to demonstrate the effectiveness of the
wavelets) can easily realize the linear phase. However, itggoposed method. The major contributions in this paper are the
widely appreciated [1], [4] that the only FIR solution thaclosed-form solution for the maximally flat wavelet filters and
produces a real-valued orthonormal symmetric wavelet batle design method using the Remez exchange algorithm for the
is the Haar solution, which is not continuous. To obtaiwavelet filters with a given degrees of flatness.
real-valued orthonormal symmetric wavelet bases with moreThis paper is organized as follows. In Section Il, the condi-
regularity than the Haar solution, Herley and Vetterli havions imposed on the complex allpass filter are derived from
proposed a class of IIR solutions in [12]. In [12], Herley anthe symmetry and orthonormality conditions of wavelets, and

its transfer function is given to satisfy these conditions. A

. . _ closed-form solution for the maximally flat filters is presented
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Il. ORTHONORMAL SYMMETRIC WAVELETS Iffl
) Va bil/B la®
It is well-known [1], [4], [7] that a real-valued orthonormal o) 1J o
wavelet basis can be generated by a two-band paraunitary filter- O ZERO 8
bank {H(z), G(»)} with real coefficients, wherd?(») is as- x POLE X 15
sumed to be a lowpass filter, ar&(z) is highpass. The or-
thonormality condition thaH (z) andG(z) have to satisfy is 3 » Re
-a
HRH(E Y+ H(—2)H(-—2H =1 ©
G(2) G +G(—2)G(—2"H =1 1)
H(z)G(z™Y) + H(—2)G(-=z"1) = 0. Va' LB Ta
In image coding applications, the circular extension and Fig. 1. Pole-zero location of(z).

symmetric extension methods are generally used to treat the
boundaries of images. The symmetric extension has beﬁlilus’ the condition of (4) becomes

proven to yield a better quality of the reconstructed image [9],

[10]. The symmetric extension method requires the wavelet A(z) = A(z™Y) (6)
basis to be symmetric, i.e., botH(z) and G(z) possess

exactly linear phase response. To satisfy the symmetry apHich means that ifx is a pole of A(z), then1/« is also
orthonormality conditions simultaneously, Herley and Vetterfi pole of A(z). Therefore, A(z) has a quadruplet of poles
have proposed a class of linear-phase IIR solutions in [1Z}, 1/, —a*, —1/a*) and/or a pair of poles;3,1/53), as
In [12], the half sample symmetric (HSS) and whole sampkhown in Fig. 1. The transfer function df ») can be expressed
symmetric (WSS) cases are discussed. It is shown that e
HSS filterbanks can be constructed by using real allpass filters,
where the numerator degree®{ z) andG(z) is odd, resulting

_ N 1]\_[ (1+52) (1 — 5B %)

in a symmetric scaling function and an antisymmetric WavelAt( s (L= jfzt) (14348, 271)

function. However, the WSS filterbanks are not as easy to use B

as the HSS ones, and only one example is given in [12]. In this y Ne (11— a2) ( k) (1+ anz) (1 + ﬁ)

paper, we will consider the WSS filterbanks, i.e., the numerator o _ o

degree ofH(z) and G(z) is even, and both the scaling and ket (L anz™h) ( B _) (14 az™) (1 K )

wavelet functions are symmetric. (1)
According to [6], we construcH (z) and G(z) by using a )

single complex allpass filter as follows: where the degree ol(z) is N = 2Ny + 4N, andy = +w/4

or +37 /4. By expanding (7), we have

ao + jarz + agz® + -+
ag— jarz"t+agz=2 4 .-

. . ~ o tazVN 2+ jar VN +ag
where A(z) is a complex allpass filter, and(z) has a set of X 2 S0 0 - (8)

.. —N+2 _ 5, ,—N+1 —N
filter coefficients that are complex conjugate with onesiéf). tazz Jarz + a0z
One can verify thatt{ (z) and Gi(z) have a set of real-valued wherea,, are real coefficients, and, = 1. It should be noted
filter coefficients and the numerator degree is even. From thgat the symmetry and orthonormality conditions have been

{H(z) = 3l 2+ A} ) P
G(2) = 5-{A() - A(=)} Az) = 1z

orthonormality condition in (1)A(z) must satisfy [6] satisfied by using the transfer function df(z) given in (8).
Therefore, the design problem of the paraunitary filterbank
Az) = £5A(=2) (3) {H(z), (%)} with exactly linear phase becomes the phase

approximation ofA(z) in (8).
which means that if is a pole ofA(z), then—a* isalsoapole  Letf(w) be the phase response4fz). We have from (8)
of A(z). Consequentlyd(>) has a pair of pole&y, —«*) and/or
one polejs, wherea is complex, is real, ande* denotes 0(w) =1+ 2¢(w) 9)
the complex conjugate af. To force H(z) andG(z) to have

exactly linear phase respons(z) must also satisfy where whenl/ = N/2 is even

M/2-1
A(z) = i 4) 2 Z a2nt1 cos(M — 2n — Dw
z _ n=
o(w) = tan™* 0 W21
It is known thatA(z) and A(z) satisfy the following relation: ap +2 Y agncos(M — 2n)w
n=0
1
A(z) = = . (5) =tan~! _N(w) (10)

A(z7) (w)
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and whenM = N/2is odd By differentiating (16), we get
(eoz)/2 MG _ oy~ (B 1G] |G|
ap + 2 Z a2pn41 cos(M — 2n — Dw T Ok 2 Z < i ) It k1 :
— i=0
pw) =tan™ —
' <A;—10>/2 (19)
9 M2 SinceG(z) is a highpass filter, it is clear from (12) that since
z_: a2, cOS(M = 2n)uw 6(0) = 0 is required, thenG(1)| = 1. Therefore, it can be
Nw) =0 easily derived from (19) that the flatness condition of (15) is
=tan™* Do)’ (11) equivalent to
%G, (7
Therefore, we have from (2) % =0 (k=0,1,..., K -1). (20)
w=0
H(e) = cos 9(?) 12) Similarly, it is seen from (17) that the condition of (20) can be
Jwy = i (12)
G(e?*) = e 9% sin B(w). reduced to
It is clear that bothH (z) and G(z) have exactly linear-phase % [sin 1D(w) + cos gN(w)]
response, and their magnitude responses satisfy the following Ok =0
power-complementary relation: (k=0 1w=0 K-1) (1)
Jwy|2 Jwy|2
[H(e’)|" 4+ [G(e™)]" = L. (13) ot
9*D(w) n O*N(w) B
ll. MAXIMALLY FLAT FILTERS d* | _, tooty —ok o 0
In this section, we describe the design of the proposed WSS (k=0,1,..., K —-1) (22)

filterbanks with the maximum flatness. From the viewpoint of

the regularityH () andG(z) are required to meet the following %??nDé‘s") in (10) or (11) into (22), we can rewrite (22) in matrix

flatness conditions:

% =0 (k=0,1,....K—1) (14)
w ) w=m wherea = [ao,a1,...,a1\4]T,0= [0,0,...,0]T
HG()|
w=0 ]\42 (M - 1)2 N 1 0
where K is even, and) < K < N. Note thatK = N cor- V= : : oo (24)
responds to the maximally flat filters, and whé&h = 0, there k-2 (M _'1)1(_2 10

is no flatness condition imposed @#(>) andG(z). Equations
(14) and (15) imply thatf ( ») andG(») containk zeros located andD = diagdy, d,- - ., dm]

atz = —1 andz = 1, respectively. Note that sinc€(z) and )
G(z) are orthogonal, the flatness conditions in (14) and (15) are d = 1, n (i - even (25)
equivalent to each other. For convenience, we use the condition ‘ cot 9 (¢ : odd)
in (15). Substituting directly the magnitude response=6¢) )
into (15) will result in a set of nonlinear equations to be solved’ ¢ = 0,1,..., M —1, and
which is very difficult whenq is large. To avoid this problem, 1
we decomposei(c’«)| as P (M : eveny 26
Mo lcotﬂ (M : odd) #0)
|G(e?)| = sin f(w) = 2sin bw) cos b(w) 2 2’
. . 2 2 When the maximally flat filters, i.e X = N = 2M are re-
= 2|G1 ()| Ga(e*))] (16)

quired, there is always a unique solution in (23) duego=

1. Therefore, the maximally flat solutions can be obtained by
solving the above linear equations. However, it should be no-
ticed thatV is a Vandermonde matrix and can be analytically
solved. Thus, the closed-form formula is given by

where

|G1(e?*)] = sin g cos @(w) + cos g sin ¢(w)

_ sing D(w) +cos g N(w)

B N(w)2 + D(w)? (A7) <]7:7> , (n : even
N = U w) — sin L sin p(w n = @7)
|G ()] = cos 5 cos o ). sin o sin p(w) _<N>tang, (n : odd)
_cos 3 D(w) —sin g N(w)

. 18
N(w)? + D(w)? (18) fori =0,1,...,N.
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IV. FILTER DESIGN WITH GIVEN FLATNESS TABLE |
. . . FILTER COEFFICIENTS OFA(z) IN EXAMPLE 1
It is well-known that the maximally flat filters have poor

frequency selectivity. Of course, frequency selectivity is also
thought of as a useful property for many applications. How-
ever, itis known in [13] that regularity and frequency selectivity
somewhat contradict each other. For this reason, we consider the g || 1.000000 | 1.000000 | 1.000000 |  1.000000
design of the paraunitary filterbanks that have the best possible ay || 4.828427 | —1.656854 | 14.485281 | —3.313708
frequency selectivity for a given regularity, i.e., a given degrees as || 1.000000 | 6.000000 | 15.000000 | 28.000000
of flatness. The flatness conditions have been given in (14) and

N=2 N=4 N=6 N=8

—_3 _ 1 __3 _1
n=—3m n=qm n=—i7 n=3w

A T . ~1.656854 | 48.284271 | —23.195959
(15), but0 < K < N in this case. Our aim is to achieve an ®
equiripple response by using the remaining degrees of freedom. 4 1.000000 | 15.000000 | 70.000000
H(z) andG(z) are required to be a pair of lowpass and high- a5 14.485281 | —23.195959
pass filters. The desired magnitude responses are given by ag 1.000000 |  28.000000
' 1 (0<w<w,) ar —3.313708
|Ha(e’")| = {0 (o <w <) (28) as 1.000000
o 0 0<w<w
Gale™)| = { e (29) | | |
=% = whereas whenV/ is odd,! = 0if » = 3x/4, andl = 1 if

wherew, andw, are the cut-off frequencies of the passband artd™ —3m/4. From (10) or (11), we have

stopband ofH (z), respectively, and:,, + w, = . Therefore, tan o(w;) — tan pa(w;)

the desired phase responseAdf) is from (12) tanfp(w;) — pa(wi)] = 1+ tan p(wr) tan pa(ws)
0 (0 S w S wp) _ D(UJZ) + N(UJZ) cot g L 1viH
Bu(w) = { 4T (w0, <w < m) (30) - D(w;)cot I — N(w;) (=)™8
2 (34)

and the desired responsewfw) is from (9) ) ) _
whereé = tan 6, and the denominator polynomial must satisfy

(w) = _g O=wsa (31) D(w)cot T — N 0 (v 35
palw) = i%—g (2 < w <) (w)co 5~ (w) # (Vw). (35)

SubstitutingV (w)Equation (34) can be rewritten in matrix form

When M is even, it is seen from (10) that(/2) = 0 and

¢(w) = —p(m —w). Thus, we should choose= 4 /4 to meet

this symmetry property. Whel(/ is odd,¢(7/2) = +x /2 and CDa = §CTa (36)
o(w) = +7 —¢(r —w) from (11), theny = +3= /4. Due to the

symmetry ofp(w), we need to approximatg(w) to w4(w) i \where

the passband only. Therefore, the design problem becomes the

approximation ofp(w) in the passband. cos Mwo cos(M — L)wo e 1
We use the Remez exchange algorithm and formulate the de;., cos Muw, cos(M — 1)wy o 1
sign problem in the form of the eigenvalue problem. First, we ~ : : :
select(M — K/2 + 1) extremal frequencies; in the passband cos Mwy_icps cos(M = Dwp_gpp - 1
[0,w,] as follows: 37)
Wp =Wo > WL > > Wh—k/2 20 (32) andT = diag{to,tl, ,t]w]
where whenK' > 0, we should choose;_ /2 > 0 due to the (—1)! cot ] (i : even
flatness condition ab = 0. WhenK = 0, it can be seen that t; = 2’ ) (38)
there is not any flatness condition imposedi(z) andG(z), { (1)t (¢ : odd)
that is, H(z) andG(z) will not contain any zero located at= .
—1andz = 1. Thus, we should choose,; = 0, which results "¢ = 0,1,....M —1, and
in the optimal (minimax) solution in the Chebyshev sense. We (—1)! n
then formulatep(w) as oty (M : even
4 ta = (_1)1+1 (39)
p(wi) = pa(wi) = (=1)"+6, (33) 5 (M : odd)

where¢, is a phase error to be minimized, ahé= 0 or 1 to By involving the flatness condition in (23), we have
guarante&, > 0. According to the symmetry of(w), when
M is even, we have=0if n = —xw/4,andl = 1if n = 7 /4, Pa =6Qa (40)
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Fig. 3. Magnitude responses Hf(z) andG(z) in Example 1. Fa I N=4 {
= -
)
0
where S
V S | SR B .
8 6 4 2 0 2 4 6 8
P = {C} D (41) TIME
0 2_:;...v-.-....r;_
Q= C T (42) w N=6
2 1} .
E
. . P |
and0is aK/2 x (M + 1) null matrix. It should be noted that g oF————"\| \/ D
(40) corresponds to a generalized eigenvalue problem§iie., S 3 | P TN .
an eigenvalue, and is a corresponding eigenvector. In order < 6 4 2 0. 2 4 & 8
to minimizeé (>0), we must find the positive minimum eigen- T
value by solving the above eigenvalue problem [14], [18], which u 2r N=8 ]
can be done efficiently by using the iterative power method, so 2 1
that the corresponding eigenvector gives a set of filter coeffi- § 0
cientsa,,. By using the obtained filter coefficients,, we com- = | A T
pute the phase respongéw) and search for all extremal fre- 2 6 <4 =2 0 2 4 6 8
guencied?; in the passband. As a result, it could be found that
the obtainedy(w) may not be equiripple. We then choose the Fig. 5. Wavelet functions in Example 1.

extremal frequencie®; as the sampling frequencies in the

next iteration and solve the eigenvalue problem of (40) to ge(35) is satisfied. It has also been provenin [14] and [18] that (35)

set of filter coefficientss,, again. The above procedure is iter€an be satisfied by choosing the positive minimum eigenvalue if

ated until the equiripple response is attained. The convergettice solution that satisfies (35) exists. However, sometimes none
of the proposed algorithm has been proven in [21], provided thatthe eigenvalues gives a solution that satisfies (35). That is,
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TABLE I
FILTER COEFFICIENTS OFA(z) IN EXAMPLE 2 0
o
S | Hz AN K=0
K=0 K=2 K=4 | K=6 Wyl - K=2 A
b4
ao || 1.000000 [ 1.000000 | 1.000000 | 1.000000 0 - E=Z
a; || 6.990896 | 7.751857 | 10.633790 | 14.485281 ﬁ—zo- T
ap || 5.289258 | 5.730382 | 8.618640 | 15.000000 g
o
as || 15.177506 | 16.993447 | 25.175324 | 48.284271 5-30- 1
aq || 5289258 | 5.730382 | 8.618640 | 15.000000 g
S 4ot |
as || 6.990896 | 7.751857 | 10.633790 | 14.485281 40 i
as || 1.000000 | 1.000000 | 1.000000 | 1.000000 ] N\
% 03 04 05
NORMALIZED FREQUENCY
0.5k Fig. 7. Magnitude responses Hf(z) andG(z) in Example 2.
W = K=0
-]
(2] [
Z S
o o
& 0.25 s 0
L 1 L L I 1 I i 1 1
= -8 -6 2 0 4 6 8
W TIME
< — P
- a 1E K=2 ]
D
E
0 T
R S 20
-05-04-03-02-01 0 01 02 03 04 05 — R
NORMALIZED FREQUENCY - ~ TIME
Fig. 6. Phase responses4(z) in Example 2. w T rrTrTTITTEmE R
o 1t K=4 ]
D
=
. . g . . o
the solution that satisfies (35) may not exist. In this case, the L,
algorithm fails to converge. In general, it is caused by an unapt < " bt
choice of the extremal frequency points. Therefore, there always - -6 -2 T”\OAE 4 6 8
exists the solution that satisfies (35) by appropriately choosing — S
the extremal frequencies, as shown in (32). The design algo- 8 1 K= ]
rithm is shown in detail as follows. =
z
S0
< 1 L 1 1 1 1 1 A
Procedure { Design Algorithm for Complex Allpass Filte}s -8 -6 -~ 0 6 8
_ TIME
Begin
1) ReadN, I and the cutoff frequency. Fig. 8. Scaling functions in Example 2.

2) Select an initial extremal frequenci®s (¢ = 0,1,...,M — K/2)

equally spaced in the passband.

Repeat

3) Setw; = §2; for: =0,1,.
4) Computel” and@ by using (41) and (42), then find the positive minimum

M —K/2.

eigenvalue of (40) to obtain a set of filter coefficients.

5) Compute the phase responsg.) and search the extremal frequendigsin the

passband.

Until Satisfy the following condition for a prescribed small constartypically, ¢

10™%)

End.

M—FK/2

>

=0

[ —wi| <e

V. DESIGN EXAMPLES

In this section, we will use the design method proposed in this
paper to design the WSS paraunitary filterbanks composed of a
single complex allpass filter and present some numerical exam-
ples to demonstrate the effectiveness of the proposed method.

Example 1: We consider the design of the maximally flat
filters. The filter coefficients ofA(z) with the maximum flat-
ness can be calculated from (27) and onesvot= 2,4,6,8
are listed in Table I. Note that whe#/ is even, i.e.,N =
4,8,...,thenn = n/4, and whenM is odd, i.e.,N =2,6,. ..,
thenn = —3x/4. The resulting phase responsesAif:) are
shown in Fig. 2, and the magnitude responseddt) and
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the complex allpass filter and derived the complex allpass filters
transfer function to satisfy these conditions. Second, we have
proposed a new method for designing the WSS paraunitary fil-
terbanks with a given degrees of flatness from the viewpoints of
the regularity and frequency selectivity. The proposed method is
based on the formulation of a generalized eigenvalue problem
by using the Remez exchange algorithm. Therefore, the filter
coefficients can be easily obtained by solving the eigenvalue
problem to find the positive minimum eigenvalue, and the op-
timal solution is attained through a few iterations. The proposed
algorithm is computationally efficient because it not only retains
the speed inherent in the Remez exchange algorithm but also
O simplifies the interpolation step. Furthermore, both the maxi-
mally flat and minimax solutions are also included in the pro-
posed method as two specific cases. The maximally flat filters
have a closed-form solution without any iteration. Finally, some
design examples are presented to demonstrate the effectiveness
of the proposed method.

AMPLITUDE

AMPLITUDE

AMPLITUDE
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