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Abstract—A new method for designing linear-phase finite
impulse response (FIR) filters is proposed by using the blockwise
waveform moments. The proposed method yields linear-phase
FIR filters whose magnitude response and its derivatives to a
certain order take the prescribed values at the equally spaced
frequency points. The design procedure only needs to solve a
system of linear equations, whose size is slightly smaller than the
degree of the resulting filter. In addition, the inversion of the linear
equations can be essentially precomputed. Therefore, the proposed
design method is computationally efficient. In particular, for some
important cases, i.e., the maximally flat -regular th-band FIR
filters, a closed-form formula can be obtained. It is also shown
that the resulting -regular th-band FIR filters have the zero
intersymbol interference property.

Index Terms—Linear-phase FIR filter, maximally flat filter,
Nyquist filter, waveform moment.

I. INTRODUCTION

L IKE their well-known statistical counterparts, waveform
moments describe some of the important geometric char-

acteristics of a signal, e.g., the position of center, symmetry,
etc. By its definition, a waveform moment can be easily cal-
culated from the signal. For these reasons, they have been used
to describe the characteristics of the waveform of a signal or
the impulse response of a digital filter in more or less explicit
manners. Some applications are: the coefficient sensitivity anal-
ysis of FIR filters [23], [24], deconvolution [28], cepstrum anal-
ysis [26], characterization of Coiflets [22], and the derivative
analysis of the squared-magnitude of FIR filters [8]. The wave-
form moments have been extended to the blockwise waveform
moments [25]. The extension enables us to grasp the period-
ical characteristics of the signal or impulse response analyzed.
Specifically, it has been shown in [25] that the waveform mo-
ments of a discrete signal exactly describe certain derivative be-
haviors (the value, tangency, curvature, …) of the frequency re-
sponse at the equally spaced frequency points and has been used
to evaluate the quality of signals recovered by the interpolation
filters [27]. This property suggests to us the possibility of a gen-
eral design method of FIR filters such that the derivative be-
haviors of the frequency response can be controlled arbitrarily.
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Maximally flat FIR filters are an important class of digital fil-
ters and have been well studied in [2]–[8]. In addition,-regular

th-band filters play an important role in constructingband
wavelet filterbanks [9]. th-band filters are required to have the
Nyquist property, i.e, the zero intersymbol interference prop-
erty. The design methods of these filters have been proposed in
[9]–[21]. In [9] and [10], the closed-form design of-regular

th-band filters are presented, but the case of evenis con-
sidered only. In [21], one method using the spectral mask con-
straints is proposed for designing general FIR filters. Although
one can control arbitrary behavior of the frequency response by
placing an appropriate mask, in [21], it was not discussed how
to design the maximally flat -regular th-band FIR filters.

In this paper, we propose aderivative-controlleddesign
method of linear-phase FIR filters using the blockwise wave-
form moments. We consider all four types of linear-phase FIR
filters. Given the values of the 0th to th derivatives of
the magnitude response at-division frequency points, a set
of filter coefficients can be easily obtained by the proposed
method. The design procedure consists of two stages. First,
the specified derivatives are transformed into the
blockwise moments. This stage involvestimes of -point
DFT. Second, the filter coefficients are calculated from the
blockwise moments by solving systems of Vandermonde
equations of size by . The length of the resulting FIR filters
is approximately and exactly determined by , , and
the type of the filters. We note that the Vandermonde matrices
to be inverted are actuallyconstant for the specification, and
then, the inversion can be precomputed. Therefore, the design
procedure is computationally efficient. In particular, for the
maximally flat filters, i.e., in the case when all the derivatives
other than 0th are required to be zero, the design procedure
is so simplified that a closed-form formula can be obtained.
The closed-form formula is presented for the maximally flat

-regular th-band FIR filters, including the case of odd
that was not covered in [9].

One may think at this point that we do not have many rea-
sons to force the derivatives of the magnitude response at grid
points of the frequency to be certain values other than zero. For
example, the tangency is essential at least for digital differentia-
tors. Consider the following situation. Suppose that we have a
many number of signals (say, images), which fall into a certain
class (say, of human faces), and we wish to extract some useful
partial informations from these signals by means of a linear time
invariant (LTI) system. In many cases, the characterization of
the class of signals and the partial information that we wish to
extract depend heavily on the intuition of human, and ana priori
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mathematical characterization of them is usually unavailable. In
such a case, we have to repeat tuning the parameters of the LTI
and inspecting the output of the LTI until the LTI can correctly
extract the partial information. The LTI parameters supplied by
us should have a clear intuitive meaning. On the other hand,
the parameters also should have a concrete mathematical sense;
otherwise, the further fine theoretical analysis of the class of the
signals is impossible, even after the LTI outputs satisfactory re-
sults for a set of examples. We believe that the derivatives of the
magnitude are suitable in both senses, and the proposed method
considerably reduces the turn-around time.

The paper is organized as follows. In Section II, we review
the blockwise waveform moments and their relationship to the
derivatives of the frequency response. In Section III, we focus on
the case of linear-phase FIR filters and describe the relationship
between the blockwise waveform moments and the derivatives
of the magnitude response. Section IV presents the design pro-
cedure of linear-phase FIR filters. In Section V, the closed-form
formula for the maximally flat -regular th-band FIR filters is
derived. In Section VI, some design examples are presented to
demonstrate the effectiveness of the proposed design method.

II. DEFINITION OF BLOCKWISE WAVEFORM MOMENT

Let be the transfer function of an FIR filter of degree
, and let be its real-valued impulse response

(1)

For a non-negative integer, the th waveform moment (around
zero) for the impulse response is defined by

(2)

which is an analog of the statistical moment, if one seesas
a discrete probabilistic distribution. Like the statistical counter-
part, it is useful to describe the geometric characteristics of the
impulse response . Especially, the center of is defined
in terms of the waveform moment as

(3)

where is the smallest non-negative integer for which
holds. When is symmetrical or antisymmetrical (i.e.,

( )), is consistent with the natural center
. Then, the th waveform moment around the centeris

defined by

(4)

The waveform moment has a definite sense in the frequency do-
main, as well as in the time domain. Specifically, theth wave-
form moment describes theth differential coefficient of the
frequency response of the corresponding FIR filter at the origin

(5)

An extended version of the waveform moments, called block-
wise waveform moments, has been proposed in [25], which en-
ables us to describe a periodic property of the impulse response.
Let be a positive integer. Then, the extended blockwise wave-
form moment around the origin is defined by

(6)

where , and

(7)

Note that the waveform moment in (2) can be decomposed
into the sum of blockwise waveform moments :

(8)

which corresponds to the following polyphase decomposition:

(9)

It follows from the definition of in (6) that

(10)

i.e., the blockwise waveform moments describe the derivative
behavior of the frequency response atfrequency points

( ). It is clear that the derivatives of
the frequency response at ( ) are
the -point discrete fourier transform (DFT) of the blockwise
waveform moments ( ). Thus, we have
by the inverse transform

(11)

By (6) and (11), the blockwise waveform moments
bridge between the time and frequency domains. The blockwise
waveform moments around the center can also be defined in the
same manner

(12)
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where is the center of the impulse response defined by
(3). Similarly, the following decomposition holds:

(13)

In the following section, we will examine the relationship be-
tween and the magnitude response of linear-phase FIR
filters.

III. L INEAR-PHASE FIR FILTERS

Hereafter, we concentrate on the case of linear-phase FIR fil-
ters. There are four types of linear-phase FIR filters, depending
on the parity of the filter degree and the symmetry of the im-
pulse response. A linear-phase FIR filter is referred to as “Type

” in [1], if we define parameters by

( : even)
( : odd)

(14)

(15)

where in any case, the center defined by (3) is

(16)

When is the transfer function of a linear-phase FIR filter

(17)
is a real function of and represents the signed magnitude re-
sponse of the filter.

In the previous section, we have seen that the blockwise wave-
form moments are related to theth derivatives of the
frequency response at the -division frequency points

( ) via -point DFT in (10) and (11). For
the linear-phase FIR filters, there is the same relation between
the blockwise waveform moments around the center
and the th derivatives of the magnitude response . By
derivating times (17) by and substituting for , we
get

(18)

where denotes . That is,

is -point DFT of . By IDFT, we have

(19)

Given the th derivatives of the magnitude response at the fre-
quency points ( ), the th blockwise
waveform moments ( ) can be cal-

culated directly via (19). On the other hand, theth blockwise
waveform moments are related to the impulse response by

(20)

These properties of the blockwise waveform moments suggest
to us a design procedure for linear-phase FIR filters, which is
able to control the derivative behavior of the magnitude response
at the frequency points .

IV. DESIGNPROCEDURE FORLINEAR-PHASE FIR FILTERS

In this section, we present a design method for linear-phase
FIR filters. Based on the properties of the blockwise waveform
moments in the previous section, FIR filters are designed in a
derivative-controlledmanner. That is, the magnitude response
and its derivatives (of order ) of the filter take the prescribed
values at the frequency points ( ).

A. Overview

The design procedure has two stages. First, the blockwise
waveform moments are calculated from the derivatives via
the IDFT in (19). Then, the filter coefficients are obtained by
solving the linear equations in (20).

B. Specifications and Conditions

Input:

a) : the number of division of the block;
b) : the number of derivatives controlled, i.e., 0th to

th derivatives of the magnitude to be controlled;
c) : Zero-One parameters defining the filter type as in

(14) and (15); the resulting filter is of Type ;
d) : real matrix of size by ;

representing , which is the desired value of
the th derivative of the magnitude at . It must
be satisfied that

(21)

The above condition on the matrix comes from the fact
that the filters of Type are constrained by

from (17). In addition, is con-
strained by both and

. For these reasons, we are able to specify only
about half ’s, and some entries must be zero. To be precise,
writing

( : even)
( : odd)

(22)

( : even)
( : odd)

(23)

respectively, the number of free entries in the matrix is counted
as

(24)
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TABLE I
FILTER DEGREEN

and it is required that

for such that is odd (25)

In addition, if is even

for such that is odd (26)

It is always possible to remove redundancies from by re-
stricting the range of appropriately; however, this will intro-
duce some complication in notation.

Output: : The coefficients of linear-phase FIR
filters of Type , whose magnitude satisfies

Note that

for such that is odd (27)

must be satisfied from (25) and whenis even, from (26)

for such that is odd (28)

The filter degree is written as

(29)

The filter degree is of the possible minimum since the real
vectors with the condition of (15) span a vector
space of dimension

which should agree with (24), which is the dimension of the
real vector space spanned by the matrices satisfying (21).
Once and are fixed, takes only three values , ,
and . The filter degree for all cases is shown in Table I.

C. Calculating Blockwise Waveform Moments

Using the IDFT relation in (19), the blockwise waveform mo-
ments are calculated from the specification

. That is

(30)

which need times of -point IDFT.

D. Solving the Defining Linear System

Now, we have the value of for
and . From (20), which is the definition of
the blockwise waveform moments around the center, we have a
system of linear equations

(31)

When , the system becomes the nondegenerate
Vandermonde matrix of size by

Thus, solving the system for the values of (
) gives a set of filter coefficients ( )

immediately. The condition is true for almost all
since ( , 1, 2) from Table I and

by (7).
The first exception is only when and .

From Table I, it occurs only if , , and , or
, , and . For the case , , and ,

plugging the values of , with odd and
into (30), the blockwise waveform moment is in fact

Using (21), it can be rewritten as

Thus, vanishes for odd since is even. On the
other hand, from the facts that
and that is odd, the left-hand side of (31) is 0 for oddand

for even . Therefore, (31) shrinks to

which is a nondegenerate Vandermonde system of size
by 1 and can be solved to obtain for

1No two columns are the same becauseLi�N=2 = �(Li �N=2) implies
L(i+ i ) = N = LR, which is impossible if bothi andi are less thanR=2.
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. The relation determines
for .

For the case , , and , by a similar argument,
(31) can be reduced to

whose matrix is of Vandermonde type, and
gives for .2

Another exception is only when
and . From Table I, it occurs if and only if

or , . When , the system
is reduced to

where if ; otherwise, . When ,
, the system is reduced to

In either case, for are obtained by
solving a linear system of at most sizeby . We can obtain
all filter coefficients by solving such a linear systemtimes.

E. Computational Complexity and Numerical Stability

The overall procedure needs to solve a linear system of
variables, and so, it would take multiplicationsa

priori . However, the blockwise waveform moments localize
the problem and reduce its complexity. The first stage takes

times of -point IDFT, which is accomplished by
multiplications. If is a power of 2, then FFT can be employed;
thus, it is reduced to . The second stage needs to
solve times the Vandermonde system of sizeby .

An algorithm has been presented in [30, Sec.2.8], which
exploits symbolic polynomial multiplications to solve a
Vandermonde system of sizeby in scalar multipli-
cations. Thus, the total number of multiplications in this stage

2Note thath[L(R=2)] = �h[L(R=2)] = 0.

is . Therefore, the proposed design procedure takes
only multiplications.

The numerical stability of the design procedure depends
on and . The condition number of the matrix in (31) may
be big when and are large. By our experiments, for all
combinations of , floating-point operations
with nine-decimal-digits precision guarantee the upper bound

on relative error of each entry of the inverse matrix. The
error bound was estimated using the GP/PARI system [29],
which can invert the matrix without error by the exact integer
or rational-number operations. When ( ) is out of the above
range, we should pay an attention to the implementation of the
algorithm. We may use the exact integer operations instead of
the floating point operations to avoid numerical difficulties.
If the coefficients of the master polynomial, at the heart of
the algorithm, are calculated by the exact integer operations
of GP/PARI, then the relative error bound is satisfied,
even when (256,4), (32,32), or (4,256) if the scalars
other than the polynomial coefficients are nine-decimal-digits
precision floating-point numbers. This implementation of the
algorithm considerably increases the running time (in this
case, the running time cannot be bounded only by the number
of multiplications since the largest magnitude of scalars that
appear in the computation is about , which
requires a bit length of ). Despite this fact, the use of
the exact operations is practical. An Athlon 700-MHz personal
computer with GP/PARI calculator finishes the whole design
procedure in 12.03 [s], 2.69 [s], and 12.63 [s] for the cases

(256,4), (32,32), and (4,256), respectively.

F. Precomputation and Superposition

We also note that every matrix to be inverted is constant once
the parameters , , , and are fixed, and thus, these inver-
sions can be precomputed. In other words, for each pair ()
in the range , , we can
precompute the filter coefficients corresponding to the
specification

( )
( )
otherwise.

(32)

Let these be the prototype filters. Note that for such a
sparse specification, is zero or just a special value of
a sinusoidal fuction multiplied by an elementary factor (33),
shown at the bottom of the page. Given the specification matrix

, the corresponding filter can be designed by superposition
of these prototype filters with obvious factors . This implies
that the design procedure can respond quickly to the modifica-
tion on the specification matrix .

( :even)

( : odd)

otherwise.

(33)
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V. CLOSED-FORM FORMULA OF -BAND FIR FILTERS

Maximally flat FIR filters with linear phase are known to be
useful in many applications. For constructing a-band regular
wavelet filterbank, the design of lowpass scaling filters is crit-
ical [9]. In [9], the scaling filter is constructed by first de-
signing a -regular th-band filter and then decomposing
it as , where is a Type 1 linear-phase
FIR filter, and is restricted to an even number for orthonormal
wavelet filterbanks. They presented two closed-form formulae
for with an even . Another closed-form formula for the
same is also presented in [10]. For biorthogonal wavelets,
however, the regularity is not necessarily an even number, i.e.,

may be odd number. The design of with an odd is not
still discussed.

Our derivative-controlled design is applicable to this special
(but useful) class of filters by setting all the magnitude deriva-
tives of positive order to be 0 at every-division frequency
points. In this case, the linear equations to be solved are so
simplified that the filter coefficients can be obtained in a
closed-form formula. Our closed-form formula covers all four
types of linear-phase FIR filters and is applicable whenever
the regularity is odd or even; thus, it includes the results
presented in [9] and [10].

Suppose that all the entries of the specification matrix
are zero, except for the row . Then, every van-
ishes for , and the application of the Cramer’s formula to
(31) (and each of its reduced forms) yields the presentation of
the filter coefficient as a quotient of two Vandermonde’s deter-
minants, which is simplified to (34), shown at the bottom of the
page. Note also that from the argument in Section IV-F, once the
filter coefficients are explicitly calculated using (33) and (34) for
at most possible prototype filters having the specifi-
cation shown in (32) with , then others can be obtained
by superposition of these prototype filters. Furthermore, the re-
sulting filter is a Nyquist filter if the filter degree is even, that
is

mod (35)

independent of the specification . It is be-
cause the constant factor vanishes if

mod and . Note that mod

TABLE II
FILTER COEFFICIENTS FORTYPE 1 LOWPASSFILTER WITH L = 4,R = 8

eliminates the possibility of the second line of (34), since
mod if is odd and . Thus, these maximally flat

FIR filters possess the zero intersymbol interference property.

VI. DESIGN EXAMPLES

Although the design procedure can be applied to the design
of general linear-phase FIR filters, a few design examples are
shown to illustrate the properties of the resulting filters. The first
two examples are frequency selective filters of the maximally
flat type. The third is a differentiator, for which the tangency
is specified. The design procedure devotes all of its degrees of
freedom to the control on the-division frequency points; thus,
the magnitude and its derivatives are exactly controlled on these
points.

A. Example 1 (Type 1 Lowpass Filters)

Type 1 maximally flat th-band lowpass filters are de-
signed for 4, 8, and 16 by using (34) under the specification

( )
(otherwise).

The filter degrees for 4, 8, and 16 are 14, 30, and 62, respec-
tively. As shown in the previous section, they are Nyquist filters.
The filter coefficients for are shown in Table II, in which
we see that .
The magnitude responses are shown in Fig. 1. They exhibit a flat
behavior at and exhibit a deviation from zero,

( )

( )

( )
(otherwise).

(34)
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Fig. 1. Magnitude responses of Type 1 lowpass filters.

Fig. 2. Magnitude responses of Type 3 bandpass filters.

near the point . As the regularity increases, the
maximum deviation decreases.

B. Example 2 (Type 3 Bandpass Filters)

Type 3 maximally flat bandpass filters of , whose center
of the passband is , are designed for 4, 8, and 16, by
using (34) under the specification

( )
( )
(otherwise)

and their magnitude responces are shown in Fig. 2. They are
Nyquist filters as well. The filter degrees by (29) for 4, 8,
and 16 are 20, 40, and 80, respectively. However, by the Nyquist
property, we get , which reduces the actual
filter degrees by two. The filter coefficients for are shown
in Table III, in which we see that ( ).

TABLE III
FILTER COEFFICIENTS FORTYPE 3 BANDPASSFILTER WITH L = 5,R = 8

Fig. 3. Magnitude responses of Type 4 differentiators.

C. Example 3 (Type 4 Digital Differentiators)

Type 4 digital differentiators are designed by the design pro-
cedure in Section IV, for 5 and 4, 8, and 16. The
specification matrices are described as

( )
( )
( )
( ).

The magnitude responses of the obtained differentiators are
shown in Fig. 3.

VII. CONCLUDING REMARKS

In this paper, we have proposed a new method for designing
linear-phase FIR filters by using the blockwise waveform mo-
ments. All four types of linear-phase FIR filters are covered.
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The proposed design method is based on the relationship be-
tween the blockwise waveform moments and the derivatives of
the magnitude response. This enables us to control the first
derivatives of the magnitude response at-division frequency
points. The degree of the resulting FIR filters is about. The
design procedure consists of two stages, involvingtimes of

-point IDFT and times of a linear system of size by .
The inversion of the linear systems can be precomputed. In other
words, the filter coefficients can be precomputed for the proto-
type filters, and others are obtained by superposition of these
prototype filters. Therefore, the design procedure is computa-
tionally efficient. In addition, a closed-form formula for the
maximally flat -regular th-band FIR filters have been derived
as well. The formula is applicable for both even and oddand
includes the formulae presented in [9].
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