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Design of IIR Orthogonal Wavelet Filter Banks
Using Lifting Scheme
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Abstract—The lifting scheme is well known to be an efficient
tool for constructing second generation wavelets and is often used
to design a class of biorthogonal wavelet filter banks. For its effi-
ciency, the lifting implementation has been adopted in the inter-
national standard JPEG2000. It is known that the orthogonality
of wavelets is an important property for many applications. This
paper presents how to implement a class of infinite-impulse-re-
sponse (IIR) orthogonal wavelet filter banks by using the lifting
scheme with two lifting steps. It is shown that a class of IIR or-
thogonal wavelet filter banks can be realized by using allpass filters
in the lifting steps. Then, the design of the proposed IIR orthog-
onal wavelet filter banks is discussed. The designed IIR orthogonal
wavelet filter banks have approximately linear phase responses. Fi-
nally, the proposed IIR orthogonal wavelet filter banks are applied
to the image compression, and then the coding performance of the
proposed IIR filter banks is evaluated and compared with the con-
ventional wavelet transforms.

Index Terms—Allpass filter, approximate linear phase, infinite-
impulse-response (IIR) filter, image coding, lifting scheme, orthog-
onal wavelet filter bank.

I. INTRODUCTION

THE discrete wavelet transform (DWT) has been ap-
plied extensively to digital signal and image processing

[1]–[24]. It is well known that the wavelet bases can be gener-
ated by two-band perfect reconstruction filter banks. Both of
the orthogonality and symmetry of wavelets are desirable prop-
erties for many applications. The symmetry requires all filters
in the filter banks to possess exactly linear phase. It is known in
[2] that finite-impulse-response (FIR) filters (corresponding to
the compactly supported wavelets) can easily realize the linear
phase response. However, it is widely appreciated [1]–[4] that
the only FIR solution that produces a orthogonal symmetric
wavelet basis is the Haar wavelet, which is not continuous.
To get more regularity than the Haar wavelet, one of the con-
straints will be relaxed. Therefore, various classes of orthogonal
wavelet filter banks with approximately linear phase responses
and biorthogonal wavelet filter banks with exactly linear phase
responses have been proposed by using FIR [1]–[4], [11] and
IIR filters [7], [10]–[13], [19]. On the other hand, it is shown in
[10] that IIR filter banks can produce the orthogonal symmetric
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wavelet bases. A class of IIR orthogonal symmetric wavelet
filter banks has been proposed by using allpass filters in [10],
[18], [22], [23].

The lifting scheme proposed by Sweldens in [14] and [15]
is an efficient tool for constructing second generation wavelets,
and has advantages such as faster implementation, fully in-place
calculation, reversible integer-to-integer transforms, and so on.
It has been proved in [16] and [17] that every wavelet transform
with FIR filters can be decomposed into a finite number of lifting
steps. However, it is not always possible for IIR wavelet filter
banks to be decomposed into a finite number of lifting steps. For
example, it is difficult to realize the IIR orthogonal symmetric
wavelet filter banks proposed in [10], [18], [22], [23] by a finite
number of lifting steps. In general, the lifting scheme is often
used to construct a class of biorthogonal wavelet filter banks.
Although the existing orthogonal FIR filter banks can be real-
ized by lifting scheme, the number of the lifting step is required
to be more than two, except for the Haar wavelet. In lossy to
lossless image coding application, more lifting steps mean that
more rounding errors are involved, resulting in degradation of
the coding performance [21]. In this paper, we will consider the
design of IIR orthogonal wavelet filter banks with two lifting
steps. It should be noted that the Haar wavelet is the only FIR
orthogonal wavelet filter bank with two lifting steps.

This paper presents how to implement IIR orthogonal wavelet
filter banks by using the lifting scheme with two lifting steps.
First, we derive the transfer functions for subfilters in the lifting
steps from the orthogonality condition of wavelets. It is shown
that a class of IIR orthogonal wavelet filter banks can be real-
ized by using allpass filters in the lifting steps. Then, we discuss
the design problem of the proposed IIR orthogonal wavelet filter
banks with the flat or equiripple frequency responses, and show
that the resultant IIR orthogonal wavelet filter banks have ap-
proximately linear phase responses. Finally, we apply the pro-
posed IIR orthogonal wavelet filter banks to the image compres-
sion, and investigate the coding performance of the proposed IIR
filter banks by using the reference software of JPEG2000 pro-
vided in [24]. The coding results are compared with the wavelet
transforms supported by the baseline codec of JPEG2000. It can
be seen from the experimental results that the proposed IIR or-
thogonal wavelet filter banks can achieve a better coding perfor-
mance than the conventional wavelet transforms.

This paper is organized as follows. The lifting scheme
is briefly reviewed in Section II. In Section III, the transfer
functions of subfilters in the lifting steps are derived from the
condition of the orthogonality. In Section IV, the design of the
proposed IIR orthogonal wavelet filter banks is discussed, and
some design examples are shown. In Section V, the evaluation
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Fig. 1. Lifting scheme.

and comparison of the coding performance with the conven-
tional wavelet transforms are presented. Finally, Section VI
contains a conclusion.

II. LIFTING SCHEME

The lifting scheme is an efficient tool for constructing second
generation wavelets, and has many advantages such as faster
implementation, fully in-place calculation, and so on [14], [15].
The similar structure has been proposed in 1992 by Breukers
and van den Enden [8], and has been extended for the filter bank
design in [11]. It has been proven in [16] and [17] that every
wavelet transform with FIR filters can be decomposed into a fi-
nite number of lifting steps, thus, this allows the construction of
an integer version of the transform. Such integer wavelet trans-
forms are invertible, and then are attractive in lossless coding
applications. Due to these properties, the lifting implementation
has been adopted in the international standard JPEG2000 [5],
[24]. Conventionally, the lifting scheme is often used to con-
struct a class of biorthogonal wavelet filter banks [14], [15]. It
has been shown in [16] that the orthogonal wavelet filter banks
can also be realized by lifting scheme, however, more than two
lifting steps are needed, except for the Haar wavelet that has only
two lifting steps. In lossy to lossless image coding application,
since more lifting steps mean that more rounding errors are in-
volved, wavelet filter banks with fewer lifting steps will tend to
perform better, resulting in less degradation in the coding per-
formance [21]. In this paper, we restrict ourselves to the lifting
scheme with two lifting steps shown in Fig. 1. In Fig. 1, sub-
filter is a prediction operator and is an update op-
erator. It is clear that a reversible integer-to-integer transform
can be easily realized by rounding the outputs of subfilters
and in the lifting scheme, since the inverse wavelet trans-
form is immediately derived [14], [15]. Therefore, the lifting
scheme is attractive in lossless coding applications, where the
original image can be completely restored after decoding the
compressed image.

Let and be a pair of lowpass and highpass filters
in the analysis bank. Their transfer functions are given by

(1)

(2)

Therefore, the design problem of the filter bank and
becomes how to determine two transfer functions

and to meet the given design specification, such as reg-
ularity, vanishing moments, frequency localization, and so on.
In the design of and , FIR filters are often used so
far to get a class of biorthogonal wavelet filter banks with exact

linear phase [11]–[17], while IIR filters have been also used
to design a class of biorthogonal wavelet filter banks with the
causal stability [11] or with exact linear phase [19]. It is still
open to design the IIR orthogonal wavelet filter banks by using
the lifting scheme. In the following, we will describe how to
obtain a class of orthogonal wavelet filter banks by using IIR
allpass filters in the lifting scheme.

III. IIR ORTHOGONAL WAVELET FILTER BANKS

It is well-known that the orthogonality of wavelets is an
important property for many applications of digital signal and
image processing. The orthogonality conditions of the filter
banks are given by

(3)

(4)

(5)

where and are constants, and in the case of
the orthonormal wavelet filter banks.

Now, we will derive the conditions imposed on the subfilters
and from the conditions of the orthogonality in (3),

(4), and (5). First, by substituting in (2) into (4), we have

(6)
that is

(7)

For to be a highpass filter, we choose to ensure
with unit gain. Thus, we get from (7)1

(8)

which means that should possess a constant magnitude
response at all frequencies. Therefore, must be an allpass
filter and is defined by

(9)

where and are the degree of the delay section and the
allpass filter respectively, are real-valued filter coef-
ficients, and . Therefore, the highpass filter be-
comes

(10)

Next, we substitute in (10) and in (1) into (5) and
get

(11)
that is

(12)

1Note that we consider the filter banks with real-valued coefficients only.
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Thus, becomes

(13)

Finally, we will check whether or not in (13) meets the
condition in (3). By substituting in (13) into (3), we have

(14)

If we choose , then the orthogonality conditions in (3),
(4) and (5) are satisfied. Therefore, a class of orthogonal wavelet
filter banks is realized by using the allpass filter in the
lifting step.

If we choose in (9), then becomes

(15)

which is FIR filter, specifically, a pure delay. Therefore, we have

(16)

(17)

To get a pair of reasonable lowpass and highpass filters, it is clear
that or has to be chosen. The obtained orthog-
onal wavelet filter banks are correspondent to the (unnormal-
ized) Haar wavelets in [16]. Therefore, the Haar wavelet is the
only FIR orthogonal wavelet filter bank with two lifting steps.

IV. DESIGN OF IIR ORTHOGONAL WAVELET FILTER BANKS

In this section, we will discuss the design of the proposed
IIR orthogonal wavelet filter banks. For convenience, we rewrite

and as

(18)

(19)

It can be seen that and are composed of the
delay section and allpass filter [20]. Therefore, the design
problem of the proposed IIR orthogonal wavelet filter banks
can be reduced to the phase approximation of the allpass filter

.
Assume that is the phase response of . The magni-

tude and phase responses of and are given by

(20)

(21)

(22)

(23)

where and are the phase responses of and
, respectively. Note that the maximum magnitudes of
and in the passband are 1 and 2, respectively,

which are the same as the wavelet transforms supported by
the baseline codec of JPEG2000, to avoid the dynamic range
growth of the transform coefficients in successive lowpass
decomposition [5], [24].

For and to be a pair of lowpass and highpass
filters, the phase response of must satisfy

(24)

where and are the edge frequencies of in the pass-
band and stopband, respectively, and . Since the
phase response is periodic with period and antisym-
metric between the positive and negative frequency region, it
is straightforward from (24) that the desired phase response of

is

(25)

Once the phase response of is approximated to the
desire phase response in (25), it is clear from (22) and (23)
that and have approximate linear phase responses.

It is known in [1]–[4] that the flat-frequency responses of the
wavelet filter banks are generally required for the regularity of
wavelets. For and to have the flat-frequency re-
sponses, the allpass filter must have a flat phase response
[18], [22], that is

(26)

where is integer, and . For the maximally flat
design with , it has been shown in [18] that the filter
coefficients of can be analytically determined. Thus,
the closed-form solution is given by

(27)

On the other hand, the optimal design with an equiripple fre-
quency response is also needed in many applications of signal
processing [2], [11], [19]. The optimization method for de-
signing the equiripple phase response of allpass filters has been
proposed in [20] by using the well-known Remez exchange
algorithm, where the obtained equiripple solution is optimal
in the minimax (Chebyshev) sense. Furthermore, the allpass
filters with a specified degree of flatness can also be
designed by the approach proposed in [22]. In the following,
we will design some examples and examine the property of the
proposed IIR orthogonal wavelet filter banks.

Example 1: We consider the design of the maximally flat
(MF) filter banks with , and have designed with var-
ious . It has been found that if or , we
cannot obtain a pair of reasonable lowpass and highpass filters.
We then examine only the MF filters with

below. The obtained phase responses of are shown in
Fig. 2. It can be seen in Fig. 2 that the phase responses of
with and for are
mutually symmetric, and we have found that their poles each
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Fig. 2. Phase responses of A(z) in Example 1.

Fig. 3. Magnitude responses of H (z) and H (z) in Example 1.

other satisfy the mirror-image relation with respect to the unit
circle. The magnitude responses of and are shown
in Fig. 3, while their phase errors are shown in Fig. 4. It is clear
in Figs. 3 and 4 that the filter banks , with
and have the same magnitude responses and
symmetric phase errors. Furthermore, it is seen in Fig. 3 that the
magnitude responses of the filter bank with
are more flat than that with other . It is also found that when

and , has its poles inside the unit
circle and becomes causal stable.

Example 2: We consider the design of IIR filter banks with
and . First, we have designed with the

maximally flat phase response , and shown its phase
response in the solid line in Fig. 5. Next, we set and
use the design method of allpass filters proposed in [20] to get

with the equiripple phase response . The obtained
phase response is also shown in the dashed line in Fig. 5, and it
is optimal in the minimax (Chebyshev) sense. Other two allpass
filters with and have also been designed by using
the approach proposed in [22], and their phase responses are
shown in Fig. 5. The magnitude responses of these filter banks
are shown in Fig. 6, and the phase errors are shown in Fig. 7. It

Fig. 4. Phase errors of H (z) and H (z) in Example 1.

Fig. 5. Phase responses of A(z) in Example 2.

Fig. 6. Magnitude responses of H (z) and H (z) in Example 2.

can be seen in Figs. 6 and 7 that the magnitude and phase errors
decrease as decreases.

V. IMAGE CODING APPLICATION

In this section, we apply the proposed IIR orthogonal wavelet
filter banks only with the maximally flat-frequency responses to
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Fig. 7. Phase errors of H (z) and H (z) in Example 2.

the wavelet-based image coding and investigate its coding per-
formance, because the maximally flat filter banks produce the
most numbers of vanishing moments of the wavelets [1], which
potentially influence the coding performance [21]. We have used
the reference software of JPEG2000 provided in [24] to eval-
uate the coding performance of the proposed IIR filter banks.
Eight images (Barbara, Boat, Crowd, Goldhill, Lena, Mandrill,
Woman, and Zelda) of size 512 512, 8 bit per pixel (bpp) have
been used as test images. The decomposition level of the wavelet
transform is set to 6. Since the proposed IIR filters have only ap-
proximate linear phase responses, a simple extension technique
where the signals are extended by repetition of their first and
last sample values is employed to handle filtering at the signal
boundaries, instead of the symmetric extension. Allpass filters

that include the poles inside and outside the unit circle are
divided into the causal part , which has the poles inside
the unit circle only, and anticausal part , which has the
poles outside the unit circle only, that is, .
Then, the anticausal part is realized by reversing the input
signal, filtering it with that has the poles inside the unit
circle only, and then rereversing the output signal.

A. Lossless Coding Performance

First, we investigate the lossless coding performance of the
proposed IIR orthogonal wavelet filter banks, and then compare
the performance with the reversible integer-to-integer wavelet
transform D-5/3 supported by the baseline codec of JPEG2000
[24].

1) Influence of and : We examine the influence of the
parameters and on the lossless coding performance of the
IIR filter banks, since the maximally flat filter banks
are used here. It is seen in Example 1 that the filter banks with

and for have the same
magnitude responses. Therefore, we will investigate the lossless
coding performance of the filter banks only with .
The lossless coding results of the filter banks with ,

and are given in Table I, Table II, and Table III, re-
spectively. For each image, the best result has been highlighted.
It is seen in Table I that the filter bank with has a lower
bit rate than that with when . If , there
are seven images getting the best lossless coding performance
when , while two images when . Thus, the lowest

TABLE I
LOSSLESS CODING RESULTS: BIT RATE (bpp)

TABLE II
LOSSLESS CODING RESULTS: BIT RATE (bpp)

TABLE III
LOSSLESS CODING RESULTS: BIT RATE (bpp)

average bit rate is obtained when . When , the
filter bank with has the lowest average bit rate, although
one with got the best lossless coding performance for
three images. Therefore, is chosen in general, from
the viewpoint of the average bit rate. It is because the filter bank
with has a more flat-frequency response than that of

as shown in Example 1 and has all poles inside the unit
circle, thus needs not be divided into the causal and anticausal
parts. The filter banks with must be divided into
the causal and anticausal parts to implement, since some poles
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TABLE IV
COMPARISON OF LOSSLESS CODING RESULTS: BIT RATE (bpp)

are located outside the unit circle. Then an extra extension is re-
quired after the causal filtering, which may influence the lossless
coding performance, although these filter banks have slightly
more flat-frequency responses than that of . It can
be seen also in Table IV that the filter bank of has the
best average lossless coding performance. This is because the
regularity of wavelets (the flatness of the filter banks) increases
with an increasing order of allpass filters. When is further
increased, we can only get a little improvement. However, the
computational complexity required in the implementation of the
proposed wavelet transforms becomes higher.

2) Comparison With the Conventional Wavelet D-5/3: We
compare the lossless coding performance of the proposed IIR
orthogonal wavelet filter banks with the conventional wavelet
filter banks. The reversible integer-to-integer wavelet transform
D-5/3 supported by the baseline codec of JPEG2000 is chosen as
a comparison object. The comparison results of lossless coding
performance are shown in Table IV. It is seen from the exper-
imental results in Table IV that the proposed IIR orthogonal
wavelet filter banks with approximate linear phase responses
have better lossless coding performance than the conventional
wavelet transform D-5/3, although there is one image Goldhill
getting the best result for D-5/3.

B. Lossy Coding Performance

We further investigate the lossy coding performance of the
proposed IIR filter banks, and compare its lossy coding per-
formance with the wavelet transforms supported by the base-
line codec of JPEG2000. In the baseline codec of JPEG2000,
two types of wavelet transforms have been employed: the irre-
versible real-to-real wavelet transform D-9/3 and the reversible
integer-to-integer wavelet transform D-5/3.

1) Irreversible Real-to-Real Wavelet Transform: We ex-
amine the lossy coding performance of irreversible real-to-real
wavelet transform. In the proposed IIR orthogonal wavelet
filter banks, the rounding operation is not used in the lifting
steps, then the transform is irreversible (real-to-real). We have
investigated three filter banks with , , and ,
where is set for all filter banks. The lossy coding
results for images Barbara and Lena are given in Fig. 8 and

Fig. 8. Lossy coding performance of irreversible wavelet transform for image
Barbara.

Fig. 9. Lossy coding performance of irreversible wavelet transform for image
Lena.

Fig. 9, respectively. It is seen in Fig. 8 that the proposed IIR
orthogonal wavelet filter banks have better lossy coding perfor-
mance than D-9/7 for image Barbara, while almost same results
are obtained for image Lena, as shown in Fig. 9. For example,
at 0.5 bpp for image Barbara, the proposed filter bank with

has the peak signal-to-noise ratio (PSNR) of 33.415
dB, while D-9/7 is 32.753 dB. To measure the subjective visual
quality, the original and reconstructed images of Lena with
D-9/7 and with the filter banks of and are shown
in Figs. 10–13, respectively.

2) Reversible Integer-to-Integer Wavelet Transform: We ex-
amine the lossy coding performance of reversible integer-to-in-
teger wavelet transform. To obtain the reversible integer-to-in-
teger wavelet transform, the rounding operation must be used in
the lifting steps to round the output of the subfilters and

in Fig. 1. We have also investigated three filter banks with
, , and . The lossy coding

results for images Barbara and Lena are given in Fig. 14 and
Fig. 15, respectively. It is seen in Fig. 14 that the proposed IIR
orthogonal wavelet filter banks have better lossy coding perfor-
mance than D-5/3 for image Barbara. For image Lena, almost
same results are obtained at low bit rate, but D-5/3 is better at
high bit rate, as shown in Fig. 15.
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Fig. 10. Original image Lena (512 � 512, 8 bpp).

Fig. 11. Reconstructed image with the wavelet D-9/7 at 0.503 bpp (PSNR:
37.173 dB).

Fig. 12. Reconstructed image with the filter bank of N2-M1 at 0.501 bpp
(PSNR: 36.975 dB).

C. Comparison of Computational Complexity

It is known that allpass filters with real-valued co-
efficients can be decomposed into the cascade connection of
first-order and second-order allpass filters. The first-order all-
pass filters require one multiplier and two adders respectively,
while the second-order allpass filters require two multipliers
and four adders [2]. Therefore, allpass filters of order
require only multipliers and adders for implementation.

Fig. 13. Reconstructed image with the filter bank of N3-M2 at 0.501 bpp
(PSNR: 36.980 dB).

Fig. 14. Lossy coding performance of reversible wavelet transform for image
Barbara.

Fig. 15. Lossy coding performance of reversible wavelet transform for image
Lena.

The analysis bank in the proposed wavelet filter banks then
requires multipliers and adders. The comparison
of computational complexity with the conventional wavelets
D-5/3 and D-9/7 is given in Table V. It is seen that for the pro-
posed wavelet filter banks, the number of multipliers is not
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TABLE V
COMPARISON OF COMPUTATIONAL COMPLEXITY

TABLE VI
FILTER COEFFICIENTS OF ALLPASS FILTERS

more than D-9/7 and not less than D-5/3, while the number of
adders is more than D-9/7 beside the filter bank of .

For reference, the filter coefficients of the maximally flat all-
pass filters with , and are
given in Table VI, respectively.

VI. CONCLUSION

In this paper, we have presented how to design the IIR
orthogonal wavelet filter banks by using the lifting scheme. It
has been shown that a class of IIR orthogonal wavelet filter
banks can be realized by using allpass filters in the lifting
steps. Thus, the obtained IIR orthogonal wavelet filter banks
have approximate linear phase responses. Moreover, we have
discussed the design problem of the proposed IIR orthogonal
wavelet filter banks with the flat or equiripple frequency re-
sponses, and given some design examples to examine the filter
property. Finally, we have applied the proposed IIR orthogonal
wavelet filter banks to the wavelet-based image compression,
and investigated the lossy and lossless coding performance.
The coding performance results have been also compared with
the wavelet transforms supported by the baseline codec of
JPEG2000. It is seen from the experimental results that the
proposed IIR orthogonal wavelet filter banks with approximate
linear phase responses can achieve a better coding performance
than the conventional wavelet transforms.
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