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Abstract— th-band filters have found numerous applica-
tions in multirate signal processing systems, filter banks, and
wavelets. In this paper, the design problem of generalized maxflat

-regular finite impulse response (FIR) th-band filters with
a specified integer group delay at = 0 is considered, and the
closed-form expression for its impulse response is presented. The
filter coefficients are directly derived by solving a linear system
of Vandermonde equations that are obtained from the regularity
condition of the maxflat -regular FIR th-band filters via the
blockwise waveform moments. Differing from the conventional
FIR th-band filters with exactly linear phase responses, the
generalized FIR th-band filters proposed in this paper have an
arbitrarily specified integer group delay at = 0. Moreover, a
new efficient implementation of the generalized maxflat -regular
FIR th-band filters is proposed by making use of the relation-
ship between the filter coefficients in the closed-form solution.
Finally, several design examples are presented to demonstrate the
effectiveness of the proposed FIR th-band filters.

Index Terms—Closed-form design, finite impulse response (FIR)
filter, maxflat filter, th-band filter, waveform moment.

I. INTRODUCTION

th-band filters are an important class of digital filters and
have found numerous applications in multirate digital signal
processing systems, filter banks and wavelets, and so on [1]–[4].
Its impulse response is required to be exactly zero-crossing at
the Nyquist rate, except for one point. Until now, finite impulse
response (FIR) th-band filters with exactly linear phase
responses have been exhaustively studied [6]–[9], [12]–[14].
Among those works, various methods for designing the linear
phase FIR th-band filters with the minimax (equiripple)
magnitude responses have been proposed in [6]–[9], [13], and
[14]. In recent years, the maxflat (maximally flat) -regular FIR

th-band filters play an important role in constructing regular
-band wavelet bases [12]. The closed-form solution for the

maxflat -regular FIR th-band filters with exactly linear
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phase responses has been given in [12] and [23]. However, a
larger delay results when higher order FIR linear phase filters
are needed. This is because the group delay is equal to half
the filter order for the exactly linear phase FIR filters. A lower
delay is generally needed in some applications of real-time
signal processing [15]. For this reason, the design problem
of FIR th-band filters with an arbitrarily specified group
delay needs to be considered. A few design methods of FIR

th-band filters with an arbitrarily specified group delay have
been proposed in [16] by using the Remez exchange algorithm
to obtain the equiripple response in the stopband and in [18]
by using the eigenfilter to obtain the least squares solution. On
the other hand, the design of generalized maxflat FIR half-band
filters, a special case of the maxflat -regular FIR th-band
filters with an arbitrarily specified group delay ( ),
has been studied also, and the closed-form solution has been
given in [17], [19], [21], and [22]. In addition, a closed-form
solution has been given in [20] only for a specific class of the
maxflat -regular FIR th-band filters with some specific
group delays. The design of generalized maxflat -regular FIR

th-band filters with a specified integer group delay at
has been also solved in [24] and as a special case in [25].

In this paper, we consider the design problem of generalized
maxflat -regular FIR th-band filters with arbitrarily speci-
fied integer group delays at . We review and extend our
previous work in [24] and present closed-form expressions for
the impulse responses. In the proposed design method, we de-
rive a linear system of Vandermonde equations from the regu-
larity condition of the maxflat -regular FIR th-band filters
via the blockwise waveform moments defined in [10], and thus
easily obtain a set of filter coefficients by applying the Cramer’s
formula and Vandermonde’s determinant. Differing from the
conventional FIR th-band filters with exactly linear phase re-
sponses, the generalized maxflat -regular FIR th-band fil-
ters proposed in this paper have an arbitrarily specified integer
group delay at . Moreover, a new efficient implementa-
tion of the generalized maxflat -regular FIR th-band filters
is presented by making use of the relationship between the filter
coefficients in the closed-form solution. Finally, several exam-
ples are shown to demonstrate the effectiveness of the general-
ized maxflat -regular FIR th-band filters.

This paper is organized as follows. The property of FIR
th-band filters is first investigated in Section II. The defi-

nition of waveform moments and their relationship with the
derivatives of the frequency response is briefly reviewed in
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Section III. In Section IV, the closed-form design of general-
ized maxflat -regular FIR th-band filters and its efficient
implementation are proposed. In Section V, the relationship
of the generalized maxflat -regular FIR th-band filters
with the conventional linear phase FIR th-band filters is
examined. In Section VI, several design examples are presented
to demonstrate the effectiveness of the proposed FIR th-band
filters. Finally, Section VII contains a conclusion.

II. FIR TH-BAND FILTERS

Let the transfer function of an FIR digital filter of length
be

(1)

where are real filter coefficients. When is designed as
an th-band filter, its impulse response is required to be exactly
zero-crossing except for one point , i.e.,

( )
( )

(2)

where and are integers and corresponds to the desired
group delay in the passband. In the case of FIR filters with ex-
actly linear phase responses, the filter coefficients have to be
symmetric, i.e., , and then, its group delay is
equal to . Note that must be an odd number.
Hence, increases with an increasing filter length . It results
in a larger delay when higher order FIR filters are needed. In
some applications of real-time signal processing, a lower delay
is generally required. In this paper, we will consider the design
problem of FIR th-band filters with an arbitrarily specified
integer group delay .

th-band filter is required to be low-pass, and the desired
frequency response is given by

(in passband)
(in stopband)

(3)

Let a noncausal shifted version of be ,
i.e., for . The
desired frequency response of becomes

(in passband)
(in stopband)

(4)

By substituting the time-domain condition of (2) into (1), we
have

(5)

It can be seen from (5) that the frequency response of
always satisfies

(6)

which means that the sum of the responses at the frequency
points for keep con-
stant, regardless of what the filter coefficients are. From (6),
we get

(7)

It is clear that the frequency response at is dependent on the
frequency responses at ( ). If its stop-
band response is zero, then the frequency response of will
be one in the passband, i.e., the magnitude response of is
one, and the group delay is in the passband [16]. Therefore,
the design problem of FIR th-band filters with an arbitrarily
specified integer group delay can be reduced to the minimiza-
tion of the error of in the stopband.

III. DEFINITION OF WAVEFORM MOMENTS

Like their well-known statistical counterparts, waveform mo-
ments describe some of the important geometric characteristics
of a signal, e.g., the position of center, symmetry, etc. They have
also been used to describe the characteristics of the impulse re-
sponse of FIR digital filters [5]. The waveform moments have
been extended to the blockwise waveform moments in [10]. The
extension enables us to grasp the periodical characteristics of
the impulse response. Specifically, it has been shown in [10]
that the blockwise waveform moments exactly describe certain
derivative behaviors (the value, tangency, curvature, ) of the
frequency response at the equally spaced frequency points and
has been used to evaluate the quality of signals recovered by
the interpolation filters [11]. This property has suggested to us
a general design method of linear phase FIR filters such that
the derivative behaviors of the magnitude response can be con-
trolled arbitrarily [23]. In the following, we will apply the design
method proposed in [23] to the design of generalized maxflat

-regular FIR th-band filters with an arbitrarily specified in-
teger group delay at .

For a nonnegative integer , the th waveform moment
around zero for is defined by

(8)

which is equivalent to the waveform moment around for the
impulse response . Therefore, this definition is a generaliza-
tion of the conventional waveform moment proposed in [5].
In [5] and [23], only the waveform moments around zero and
around the center have been defined. This generalization en-
ables us to design FIR filters with an arbitrarily specified . It
is known in [5] and [23] that the th waveform moment de-
scribes the th differential coefficient of the frequency response

at

(9)
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Similarly, the blockwise waveform moment around zero for
is defined by

(10)

where and

Note that is the largest integer not greater than . The block-
wise waveform moments defined in (10) enable us to describe a
periodic property of the impulse response . It is seen that the
waveform moment in (8) can be decomposed into the sum
of blockwise waveform moments ;

(11)

It follows from the definition of in (10) that

(12)

i.e., the blockwise waveform moments describe the derivative
behaviors of the frequency response at the frequency
points ( ). It is seen in (12) that
the th derivatives of the frequency response at

are the -point DFT (Discrete Fourier Transform) of
the blockwise waveform moments . Thus, by the inverse
transform, we have

(13)

It is clear that the blockwise waveform moments bridge
between the time and frequency domains by (10) and (13).
Given the th derivatives of the frequency response
at the frequency points , the th blockwise
waveform moments can be calculated via the IDFT in
(13). Then, the filter coefficients can be obtained by solving the
linear equations in (10). Therefore, general FIR filters can be
designed in the derivative-controlled manner by (10) and (13).

IV. CLOSED-FORM DESIGN OF GENERALIZED MAXFLAT

-REGULAR FIR TH-BAND FILTERS

Theory of regular -band wavelet bases has been studied
in [12] as a generalization of two-band wavelet bases, since
they help to zoom in onto narrow-band high-frequency com-
ponents of a signal, while simultaneously having a logarithmic
decomposition of frequency channels. In the construction
of regular -band wavelet bases, regular -band scaling
filters need to be designed first. It is known in [12] that this

-band scaling filters are obtained from regular th-band
filters. Therefore, the design of th-band filters satisfying the

-regularity condition needs to be considered. In [12] and [23],

a closed-form solution has been given for the maxflat -regular
FIR th-band filters with exactly linear phase responses. In
particular, the closed-form solution derived via the blockwise
waveform moments in [23] includes that in [12]. For the design
of -regular FIR th-band filters with an arbitrarily specified
integer group delay , however, a closed-form solution is
given in [20] only for a specific class of the maxflat -regular
FIR th-band filters with and ,
where . Since is restricted to several specific
integers, the group delay cannot be arbitrarily specified. In [25],
an explicit solution of systems for simultaneous Lagrangian
upsampling and fractional-sample delaying is given, where the
generalized maxflat -regular FIR th-band filters are consid-
ered as a special case (Nyquist solution). In the following, we
will describe how to design the generalized maxflat -regular
FIR th-band filters with an arbitrarily specified integer group
delay .

It is known in [12] that an th-band filter is said to be -reg-
ular if it has

(14)

where is an FIR filter of length . First, we consider
the minimal length of the generalized maxflat -regular FIR

th-band filters. For FIR th-band filter , must
be used to satisfy the time-domain condition of the impulse re-
sponse in (2). Thus, the number of filter coefficients of
should agree with the number of the constraint equations. Every
block having coefficients of the impulse response con-
tains one of the constraint equations, except the last block. For
the last block having less than coefficients, the constraint
may not be contained depending on the position of . There-
fore, must satisfy

(15)

where is the least integer not less than . Since the length
of is , (15) becomes

(16)

It is clear that the solution for (16) is .
1) In the case of , the minimal length of

is . There are blocks, but the last block
has coefficients. Since the number of coefficients
of is , the last block does not contain the
constraint; thus the group delay must be for

. Only this case has been considered in [20].
2) In the case of , the minimal length is .

All blocks have coefficients. Therefore, can be
arbitrarily specified. When for

, we have , and the filter length degrades to
. This case corresponds to that of ,

thus is only a special case of . When
for , the filter length degrades

to due to . This case corresponds to
the case where for plus one
delay unit .
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3) In the case of , the filter length is .
There are blocks, but the last block has one coefficient
only. Since the number of coefficients of is

, the last block must contain the constraint. Thus,
the group delay is for . When

or , the minimal length is since
or . When for ,

due to , the minimal length degrades to
. Therefore, the case of is included

in that of .
To summarize the above discussion, the minimal length of

the generalized maxflat -regular FIR th-band filters is
, except for a special case where for

and then .
It is known in [12] that (14) is equivalent to

(17)

for and . It is obtained
from (7) and (17) that

( )

( )
(18)

which means that the magnitude response and group
delay of satisfy at

( )

( )
(19)

and

(20)

From the relationship between and in (5), we get

( )

( )
(21)

and

( )

( )
(22)

It is clear in (21) and (22) that has flat magnitude and
group delay responses at .

By using (13), the blockwise waveform moments are ob-
tained from the regularity condition in (17) and (18) as

( )
( )

(23)

According to the definition of the blockwise waveform moment
in (10), we derive a system of linear equations as follows:

( )

( )

(24)
Since and the minimal length is , we
have

( )

( )

(25)
which is rewritten in matrix form as

(26)

where ,
, and we have the equation shown at

the bottom of the page. It should be noted that is the
Vandermonde matrix with distinct elements. Therefore, there
is always a unique solution. By using Cramer’s rule, we can
obtain the presentation of the filter coefficient as a quotient of
two Vandermonde’s determinants. Therefore, a closed-form
solution is obtained as

(27)

Once , , and are given, a set of filter coefficients can be
easily calculated by using (27). It is seen that the resulting im-
pulse response satisfies the time-domain condition in (2). When

, a class of generalized maxflat FIR half-band filters pro-
posed in [17], [19], [21], and [22] can be obtained from (27).

...
...

. . .
...



4218 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 11, NOVEMBER 2006

Fig. 1. A new efficient structure for the polyphase component H (z) of the
generalized maxflat R-regular FIR M th-band filters.

The following relationship holds between the filter coefficients
in (27):

(28)

(29)

Note that . It is found that the filter
coefficients can be efficiently calculated by using (28)
and (29) instead of (27). Furthermore, (28) and (29) will
lead to a new efficient implementation of the proposed FIR

th-band filters. We consider the polyphase representation
. Except , the polyphase

component can be efficiently implemented as shown
in Fig. 1. The main advantage of the new structure is that
the dynamic range of the multiplication coefficients is greatly
reduced. For example, by using (27), the filter coefficients of
the third polyphase component of the maxflat -regular
FIR th-band filters with , , are

If the filter is implemented in the direct form, the ratio of the
largest amplitude of the multiplication coefficients to the least
one is . However, the multiplica-
tion coefficients in the proposed structure are

and then the ratio is .
In [25], a complete and explicit solution of systems for si-

multaneous Lagrangian upsampling and fractional-sample de-
laying has been provided. The generalized maxflat -regular
FIR th-band filters proposed in this paper are a special case
of the three-parameter family of systems proposed in [25] when
the group delay is integer (Nyquist solution). When the delay

is not integer, i.e., , the three-parameter family of
systems does not satisfy the time-domain condition of (2). If
the time-domain condition is relaxed, we can take advantage of
the generalization of the blockwise waveform moment around

and get the same solution as in (27) just by replacing with

Fig. 2. Magnitude responses of the maxflatR-regular FIRM th-band filters in
Example 1.

Fig. 3. Group delay responses of the maxflat R-regular FIR M th-band filters
in Example 1.

, since the frequency response of the three-parameter family
of systems meets (17) and (18). The four-parameter family of
systems has been also discussed in [25]. However, the design
method proposed in this paper is applicable to the design of in-
finite impulse response (IIR) th-band filters, since the wave-
form moment can be extended to IIR filters [10].

V. RELATIONSHIP WITH THE EXISTING LINEAR PHASE FIR
TH-BAND FILTERS

In this section, we examine the relationship between the
generalized maxflat -regular FIR th-band filters and
the existing maxflat -regular FIR th-band filters with
exactly linear phase responses. It is well known that the
filter coefficients of Type I linear phase FIR filters are sym-
metric, i.e., . Thus, its group delay is equal to

, where is an odd number. It is known in
[23] that for the maxflat -regular FIR th-band filters with
exactly linear phase responses, the filter length takes three
values 1, , and , depending on the parity of

and . When is even, the minimal length is .
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Fig. 4. Impulse responses of the maxflat R-regular FIR M th-band filters in
Example 1. (a)K = 25, (b) K = 28, and (c)K = 34.

We can take and then obtain the same solution
as in [23] from (27). When is odd, if is odd,
while if is even. In the case where and

are odd, due to , the solution in (27) becomes
the same as in [23] by taking . In the case

Fig. 5. Magnitude responses of the maxflatR-regular FIRM th-band filters in
Example 2.

Fig. 6. Group delay responses of the maxflat R-regular FIRM th-band filters
in Example 2.

where is odd and is even, however, we cannot get the
same solution. This is because the filter length is
in [23], while in this paper. The filter obtained from
(27) possesses only zeros at to meet the regularity
condition. Since is an odd number, Type I linear phase
FIR filters cannot be realized. To get an exactly linear phase
response, an even number of zeros must be located at ,
thus another zero at will be needed. We have also found
that if we take , the filter coefficients obtained
from (27) in this paper and [23, (34)] are the same, except
a set of coefficients . In [23], the coefficients are
symmetric, i.e., for , while it is
not so for ( ) from (27). To satisfy the
symmetry of , we need to add another coefficient .
By using the blockwise waveform moments, we can derive
the similar equation in (26), where ,

, and

...
...

. . .
...
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Fig. 7. Impulse responses of the maxflat R-regular FIR M th-band filters in
Example 2. (a) R = 7, (b) R = 8, and (c) R = 9.

Note that the matrix is of size . By imposing the
symmetry condition on and removing redundancies from

, we get the closed-form solution given by

(30)

Fig. 8. Magnitude responses of the maxflatR-regular FIRM th-band filters in
Example 3.

Fig. 9. Group delay responses of the maxflat R-regular FIRM th-band filters
in Example 3.

for . Therefore, we can obtain the same solution as
in [23] from (27) by choosing an appropriate , except for
when is odd and is even, which can be calculated by (30).

VI. DESIGN EXAMPLES

Many design examples of the generalized maxflat FIR half-
band filters, which are a special case of the generalized maxflat

-regular FIR th-band filters when , have been given
in [17], [19], and [21]. In this section, we present several nu-
merical examples to demonstrate the effectiveness of the gener-
alized maxflat -regular FIR th-band filters with and
compare the filter performance with the existing maxflat -reg-
ular FIR th-band filters with exactly linear phase responses.

1) Example 1: We consider the design of the generalized
maxflat -regular FIR th-band filters with and

. The filter length is . We first take
and get a set of filter coefficients by (27). The resulting magni-
tude and group delay responses are shown in the solid line in
Figs. 2 and 3, respectively, and its impulse response is shown
in Fig. 4(a). We have also designed five other filters with

. Their magnitude and group delay re-
sponses are also shown in Figs. 2 and 3. The impulse responses
with and are shown in Fig. 4(b) and (c), re-
spectively. When , and , their impulse responses
are the time-reversed versions of those with and

, so they are omitted here. It is then seen in Figs. 2 and 3
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Fig. 10. Impulse responses of the maxflat R-regular FIR M th-band filters in
Example 3. (a) N = 28 and (b) N = 29.

that those filters with have the same magnitude
responses as those with , while their group
delay responses are symmetric. As shown in Fig. 3, the two
filters with and have constant group delay
responses at all frequencies, i.e., their phase responses are
exactly linear. Thus the two filters have symmetric impulse
responses, as shown in Fig. 4(c), which are correponding to the
existing maxflat -regular FIR th-band filters with exactly
linear phase responses. Since when and

when , it is noted that these filters have the
actual filter length .

2) Example 2: We consider the design of the generalized
maxflat -regular FIR th-band filters with and

. We have taken and designed three filters with
. The resulting magnitude and group delay re-

sponses are shown in Figs. 5 and 6, respectively, while their im-
pulse responses are shown in Fig. 7. It is seen that the magnitude
response becomes more flat as increases. When , the
filter has a symmetric impulse response and an exactly linear
phase response.

3) Example 3: We consider the design of the generalized
maxflat -regular FIR th-band filter with , ,

and . The filter length is . The resulting mag-
nitude and group delay responses are shown in the solid line in
Figs. 8 and 9, respectively, while its impulse response is shown
in Fig. 10(a). It is seen in Fig. 10(a) that the filter coefficients are
symmetric except . To get the exactly linear phase response,
we add another coefficient ; then the filter length becomes

. By using (30), we calculate to get the linear phase
filter, whose magnitude, group delay, and impulse responses are
shown in Figs. 8–10(b), respectively.

VII. CONCLUSION

In this paper, the design problem of the generalized maxflat
-regular FIR th-band filters with an arbitrarily specified in-

teger group delay at has been considered. A new closed-
form expression for its impulse response has been presented. In
the proposed design method, the filter coefficients are directly
derived by solving a linear system of Vandermonde equations
that are obtained from the regularity condition of the maxflat

-regular FIR th-band filters via the blockwise waveform
moments. Differing from the conventional FIR th-band fil-
ters with exactly linear phase responses, the proposed maxflat

-regular FIR th-band filters have an arbitrarily specified in-
teger group delay at . Moreover, a new efficient imple-
mentation for the generalized maxflat -regular FIR th-band
filters has been presented. Finally, several examples have been
designed to demonstrate the effectiveness of the generalized
maxflat -regular FIR th-band filters.
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