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Abstract—In this paper, a new class of with im-
proved analyticity and frequency selectivity is proposed by using
general IIR filters with numerator and denominator of different
degree. In the common-factor technique proposed by Selesnick,
the maximally flat allpass filter was used to satisfy the half-sample
delay condition. Thus, to improve the analyticity of complex
wavelets, we present a method for designing allpass filters with
the specified degree of flatness and equiripple phase response
in the approximation band. Furthermore, to improve the fre-
quency selectivity of scaling lowpass filters, we locate the specified
number of zeros at and minimize the stopband error.
The design methods proposed in this paper use the well-known
Remez exchange algorithm to approximate the equiripple re-
sponse. Therefore, a set of filter coefficients can be easily obtained
by solving the eigenvalue problem. Finally, we investigate the
performance on the proposed through several design
examples. It is shown that the conventional proposed
by Selesnick are only the special cases of proposed in
this paper.

Index Terms—Allpass filter, analyticity, , frequency
selectivity, Hilbert transform pair, IIR digital filter.

I. INTRODUCTION

T HE dual tree complex wavelet transform was
originally proposed by Kingsbury [5], and has been used

in many applications of signal processing and image processing
[6]–[10]. employ two real wavelet transforms, where
one wavelet corresponds to the real part of complex wavelet and
the other is the imaginary part. Two wavelet bases are required
to be a Hilbert transform pair. Thus, are nearly shift
invariant and has a good directional selectivity in two or higher
dimensions with limited redundancies. It has been proved in [8],
[11] and [12] that the necessary and sufficient condition for two
wavelet bases to be a Hilbert transform pair is the half-sample
delay condition between the corresponding scaling lowpass fil-
ters.
Several design methods for have been proposed

in [5]–[14] by using FIR filters, which are corresponding to the
compactly supported wavelets. In [5]–[7], Kingsbury had pro-
posed FIR Q-shift filters, whose group delay is required to be
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sample to satisfy the half-sample delay condition. In [9], Se-
lesnick had proposed the common-factor technique, where the
scaling lowpass filters are constructed by using allpass filters to
satisfy the half-sample delay condition. This design method is
simple and effective, since the approximation accuracy of the
half-sample delay is controlled only by the allpass filter. Se-
lesnick had adopted the maximally flat allpass filter and given
a class of FIR orthonormal and biorthogonal solutions, and IIR
orthonormal solution, where the scaling lowpass filters have as
many zeros at as possible to obtain the maximum
number of vanishingmoments of wavelets, resulting in the max-
imally flat magnitude responses of the scaling lowpass filters.
However, the resulting IIR scaling lowpass filters have the nu-
merator and denominator of the (almost) same degree. It is also
known that the maximally flat allpass filter has a larger phase
error as increases, resulting in a poor analyticity of complex
wavelet. In [16], we had proposed a class of using
general IIR filters with improved frequency selectivity. In [17],
we had also proposed a class of FIR-based with im-
proved analyticity.
In this paper, we propose a new class of with im-

proved analyticity and frequency selectivity by using general
IIR filters with numerator and denominator of different degree.
First of all, to improve the analyticity of complex wavelet, we
present a method for designing allpass filters with the specified
degree of flatness at and equiripple phase response in
the approximation band [17]. It is known in [2] that frequency
selectivity is also a useful property for many applications of
signal processing. But the maximally flat filters have a poor fre-
quency selectivity in general. To improve the frequency selec-
tivity of the scaling lowpass filters, we specify the number of
zeros at from the viewpoint of vanishing moments
and then minimize the stopband error by using the remaining
degree of freedom. The proposed design procedures are based
on the well-known Remez exchange algorithm, thus, a set of
filter coefficients can be easily obtained by solving the eigen-
value problem. The optimal solution is attained through a few
iterations. It is also shown that the conventional FIR and IIR or-
thonormal solutions proposed in [16], [17] are only the special
cases of proposed in this paper. Finally, we investi-
gate the performance on the proposed and indicate
how to choose the approximation band properly. The main con-
tribution in this paper is that both the analyticity of
and frequency selectivity of IIR scaling lowpass filters can be
improved simultaneously.
This paper is organized as follows. Section II briefly reviews

and the half-sample delay condition. In Section III,
a class of is presented by using general IIR filters.
Section IV presents a design procedure for allpass filters with
the specified degree of flatness to improve the analyticity.
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Fig. 1. Dual tree complex wavelet filter bank.

Section V gives a design procedure for scaling lowpass filters
with the improved frequency selectivity. Section VI describes
the performance investigation on the proposed .
Finally, Section VII contains a conclusion.

II. DUAL TREE COMPLEX WAVELET TRANSFORM

It is well-known in [1] that orthonormal wavelet bases can be
generated by two-band orthogonal filter banks ,
where . We assume that and are lowpass
and highpass filters, respectively. The condition of orthonor-
mality for and is given by

(1)

We use the notation , to denote the scaling and
wavelet functions, respectively. Thus the corresponding dilation
and wavelet equations are expressed as

(2)

where , are the impulse responses of , ,
respectively.
In [5]–[7], Kingsbury had proposed the dual tree com-

plex wavelet transform , which is constructed by
two filter banks with real-coefficients, corresponding to the
real and imaginary parts of the complex wavelets, that is,

, as shown in Fig. 1. Generally, two
wavelet functions and are required to be a pair of
Hilbert transform. Thus the complex wavelet is analytic,
i.e., its spectrum is one-sided:

(3)

where is the Fourier transform of . However, the
ideal Hilbert transform pair cannot be achieved with realizable
filters. Therefore, to evaluate the analyticity, we use the -norm
of the spectrum to define an objective measure of quality
as

(4)

where

(5)

If , is the peak error in the negative
frequency domain[13]. If , is the square root of the
negative frequency energy. In this paper, we will use and
to evaluate the analyticity of the complex wavelet.
In [8], Selesnick had proved that two wavelet functions are a

Hilbert transform pair;

(6)

that is,

(7)

if and only if corresponding scaling lowpass filters satisfy

(8)

which is the so-called half-sample delay condition. It is the nec-
essary and sufficient condition for two wavelet bases to be a
Hilbert transform pair [11], [12]. It is seen in (8) that
needs to be approximated to . Thus, we define the
error function to evaluate the accuracy of approximation
as

(9)

III. THE COMMON-FACTOR TECHNIQUE

It is known [3] that the transfer function of an allpass filter
is defined by

(10)

where

(11)

where is the degree of and are real filter coeffi-
cients, .
In [9], Selesnick had proposed the common factor technique

where the scaling lowpass filters and are com-
posed of the allpass filter by

(12)

Since both of scaling lowpass filters have the same factor ,
we have

(13)
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It is clear that is expressed as the product of and
. The half-sample delay condition in (8) can be approx-

imately achieved if the allpass filter is an approximate half-
sample delay;

(14)

thus, two wavelet bases form an approximate Hilbert transform
pair.

A. FIR Orthonormal Solution

After is determined, needs to be constructed for
and . To obtain wavelet bases with vanishing

moments, is chosen as

(15)

Thus,

(16)

It is clear that and have the same product filter
;

(17)

Let be a FIR filter and defining

(18)

(19)

where for and for
, then (17) becomes

(20)

Therefore, we can rewrite the orthonormality condition in (1) as

(21)

where and
. Note that is a halfband filter. The

degree of is . Since ,
there are totally equations with respect to
unknown coefficients of in (21). Therefore, we can obtain
the only solution if . In [9], Selesnick had
chosen and obtained the filter of minimal
degree for given and , which corresponds to the maximal

for given and .
Thus the scaling lowpass filters have the maximally magnitude
responses, resulting in the maximum number of vanishing
moments. This is the FIR orthonormal solution proposed in [9].

B. IIR Orthonormal Solution

In general, IIR filters require a lower computational com-
plexity than FIR filters to achieve a sharp frequency response.
IIR filters can be also used to construct . In [9], Se-
lesnick has chosen

(22)

then

(23)

and have the same product filter ,

(24)

Defining

(25)

where for . From the orthonormality
condition in (1), we have

(26)

thus and

(27)

where means the largest integer not greater than . This is
the IIR orthonormal solution proposed in [9]. It is clear that the
numerator and denominator of are of degree
and respectively, which are almost the same.

C. General IIR Orthonormal Solution

In [16], we have proposed a new class of using
general IIR filters with numerator and denominator of different
degree. By combining FIR and IIR solutions proposed in [9],
we choose

(28)

then

(29)

where the degree of numerator is not less than the degree of
denominator, that is, . If ,
then is an odd number, whereas if , is an even
number.
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Thus, the product filter is

(30)

From the orthonormality condition, we have

(31)

We rewrite (31) in the matrix form as

(32)

and

(33)

where ,
, , and the elements of the matrices

and are given by

where , and

where . Note that
for .
Assuming without any loss of generality, there are

equations with respect to unknown coefficients
in (33). Therefore, it is clear that the only solution

exists if , and then can be obtained by
using (32). When , , since
is odd. If we choose , then , which

is correspondent to the FIR orthonormal solution in [9]. If we
choose , then . When is odd,

, while if is even, . Thus
, and it is the IIR orthonormal solution

in [9]. Therefore, it is clear that the FIR and IIR orthonormal
solutions proposed in [9] are only the special cases of general
IIR orthonormal solutions when or .
1) Example 1: We consider a class of using

IIR filters with numerator and denominator of different
degree. As proposed in [9], we have used the maximally
flat allpass filter with and . To obtain the
filters of minimal degree, we can choose we can choose

, where the degree
of numerators are , respectively. Note that the
filter with is FIR filter. We have designed
these four filters, and the resulting magnitude responses of

are shown in Fig. 2. It is seen that IIR filters have more
sharp magnitude responses than FIR filter. To get stable filters,

Fig. 2. Magnitude responses of scaling lowpass filters in Example 1.

Fig. 3. Group delays of scaling lowpass filters in Example 1.

the numerator and denominator are obtained by using the min-
imum-phase spectral factor [9]. Their group delay responses
are given in Fig. 3. It is seen that the group delay becomes more
flat as a decreasing , and the half-sample delay condition is
approximately achieved. Moreover, the magnitude responses
of are shown in Fig. 4. The maximum error of IIR filters
are smaller than the conventional FIR filter. Furthermore, the
spectrum and the spectrum are shown in Figs. 5
and 6 respectively. In Fig. 6, the complex wavelet constructed
by FIR filter has a bigger spectrum in the negative frequency
domain than that by IIR filters. In addition, the scaling and
wavelet functions are also shown in Fig. 7. Finally,
the filter coefficients of are given in Table I while the
analyticity measures of and are summarized in Table II
and both of and decrease as an increasing .

IV. WITH IMPROVED ANALYTICITY

In [9], Selesnick had used the maximally flat allpass filters
for . Since is chosen as the point of approximation,
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Fig. 4. Magnitude responses of in Example 1.

Fig. 5. Magnitude responses of in Example 1.

Fig. 6. Magnitude responses of in Example 1.

the phase error will increase as increases. Thus, has
a large error in transition band (see Fig. 4), resulting in a poor

analyticity of complex wavelet. In the following, wewill discuss
how to improve the analyticity. From (9) and (13), we have

(34)

thus

(35)

where is the phase response of . It is clear that
is dependent on both the magnitude response and the
phase error of . Since is a lowpass filter, we must
minimize the phase error not only in passband but also in transi-
tion band to improve the analyticity of complex wavelet. There
are many design methods for allpass filters to approximate a
fractional delay response, for example, the maximally flat [3],
equiripple approximations [4], and so on. It will be better if the
minimax (Chebyshev) phase approximation of allpass filters is
used, i.e., [4].
It is known that the wavelet function is defined by the infinite

product formula. Thus, it is necessary that has a certain
degree of flatness at to improve the analyticity. In [17],
we present a design method of allpass filters with the specified
degree of flatness at and equiripple phase response in the
approximation band.
The desired phase response is . The difference

between and is given by

(36)

where

(37)

Therefore, the problem is to satisfy the flatness condition and
minimize the phase error in the approximation band.
Firstly, we consider the flatness condition of the phase re-

sponse at . It is required that the derivatives of are
equal to that of at ;

(38)
where is a parameter that controls the degree of flatness, and

. Equation (38) is equivalent to

(39)

From (36), (39) can be reduced to

(40)

By substituting in (37) into (40), we can derive a system
of linear equations as follows;

(41)
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Fig. 7. Scaling and wavelet functions , in Example 1: (a) , (b) , .

TABLE I
FILTER COEFFICIENTS OF WITH IN EXAMPLE 1

TABLE II
ANALYTICITY MEASURES AND IN EXAMPLE 1

Note that if , we can solve the linear equations in (41) to
obtain the maximally flat allpass filters, due to .
Next, we consider the case of . We want to obtain

an equiripple phase response in the approximation band
by using the remaining degree of freedom. Let

be the extremal frequencies in the

approximation band. We apply the Remez exchange algorithm
and formulate as

(42)

where is an error. We then rewrite (41) and (42) in the matrix
form as

(43)

where , and the elements of the
matrices and are given by

(44)

(45)

It should be noted that (43) corresponds to a generalized
eigenvalue problem, i.e., is an eigenvalue, and is the
corresponding eigenvector. To minimize , we should choose
the absolute minimum eigenvalue by solving the eigenvalue
problem, thus the corresponding eigenvector give a set of filter
coefficients . To be an equiripple phase response in the
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Fig. 8. Phase responses of allpass filters and phase errors in the inset in
Example 2.

TABLE III
FILTER COEFFICIENTS OF WITH , , IN EXAMPLE 2

approximation band, we make use of an iteration procedure to
get the optimal filter coefficients [4], [17].
1) Example 2: We consider a class of with im-

proved analyticity. Firstly, we have designed allpass filters with
, , . Note that means the

maximally flat allpass filter, while is the equiripple all-
pass filter without the flatness condition proposed in [4]. The re-
sulting phase responses of are then shown in Fig. 8, where
the maximally flat allpass filter has a larger phase error com-
pared with other allpass filters. Next, we have used the method
proposed in Section III-C to construct the scaling lowpass fil-
ters with , , , where the filter
coefficients of with of are given in Table III.
The magnitude responses of are shown in Fig. 9 and are
almost the same. The magnitude responses of are also
shown in Fig. 10, and the maximum error of decreases
as an decreasing . However, the analyticity measures of
and become minimum when , not , as shown
in Table IV. It is seen in (35) that is mainly depen-
dent on the phase error of in the passband and the mag-
nitude response of in the stopband. Thus decreasing
reduces the maximum error of . However, the wavelet
function is defined by the infinite product formula;

, and the phase of is
a sum of the phase responses of and

Fig. 9. Magnitude responses of scaling lowpass filters in Example 2.

Fig. 10. Magnitude responses of in Example 2.

TABLE IV
ANALYTICITY MEASURES AND IN EXAMPLE 2

. If there is a larger phase error nearby be-
tween and , it will be added to result in a poor
analyticity. Therefore, a certain degree of flatness is required
to reduce the phase error nearby . Finally, the spectrum

and are also shown in Figs. 11 and 12, where the
proposed allpass filter has improved the analyticity, compared
with the maximally flat allpass filter used in [9].

V. WITH IMPROVED FREQUENCY SELECTIVITY

It is well-known that frequency selectivity is also a useful
property for many applications of signal and image processing.
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Fig. 11. Magnitude responses of in Example 2.

Fig. 12. Magnitude responses of in Example 2.

The maximally flat filters generally have a poor frequency selec-
tivity. In the above-mentioned , the scaling lowpass
filters have as many zeros at as possible to obtain the
maximum number of vanishing moments. In [15] and [16], we
have applied the Remez exchange algorithm to improve the fre-
quency selectivity of scaling lowpass filters. In this section, we
describe a design algorithm based on the eigenvalue problem.
We first specify the number of zeros at for

from the viewpoint of regularity. We assume where
. Then the remaining degree of

freedom is . Since zeros on the unit circle are com-
plex-conjugate pair except , should be even,
i.e., .
Next, we apply the Remez exchange algorithm in the stop-

band to get an equiripple magnitude response. We set
( to be a set of extremal
frequencies and formulate as

(46)

Fig. 13. Magnitude responses of scaling lowpass filters in Example 3.

where is an error. Note that we force to
permit spectral factorization of . From (46), we have

(47)

where

(48)

Thus, we rewrite (47) in the matrix form as

(49)

where the elements of the matrices and are given by

It should be noted that the orthonormality condition has been
given in (32) and (33). Hence, we use (32) to obtain

. Then we have

(50)

which is correspondent to a generalized eigenvalue problem.
We choose the minimum positive eigenvalue and the corre-
sponding eigenvector gives a set of filter coefficients . By
making use of an iteration procedure, we can obtain the optimal
filter coefficients . We then compute by (32).
1) Example 3: We consider a class of with im-

proved analyticity and frequency selectivity. Firstly, we have
used the allpass filter with , , , and
then designed the scaling lowpass filters with ,

, . We set and . The re-
sulting magnitude response of is shown in Fig. 13. For
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Fig. 14. Magnitude responses of in Example 3.

Fig. 15. Magnitude responses of in Example 3.

comparison, the scaling lowpass filter with the maximally flat
magnitude response , and the filter with two
equiripples in the stopband are also designed
and their magnitude responses are shown in Fig. 13. It is clear
that the magnitude responses of with improved frequency
selectivity are more sharp than the maximally flat filter. In ad-
dition, the magnitude responses of are shown in Fig. 14,
where the error decreases at the expense of decreasing vanishing
moments. The wavelet spectrum are shown in Fig. 15,
which are almost same. Furthermore, the spectrum are
shown in Fig. 16, where the spectrum is close to zero in the
negative frequency domain. Besides, the scaling functions
and wavelet functions are shown in Fig. 17. Finally, the
filter coefficients of with one equiripple in the stopband
are given in Table V. Table VI summarizes the analyticity mea-
sures of and . It is seen that the analyticity can be also im-
proved slightly by improving the frequency selectivity of .

VI. PERFORMANCE INVESTIGATION

In this section, we present several design examples to investi-
gate the performance on the proposed with improved

Fig. 16. Magnitude responses of in Example 3.

TABLE V
FILTER COEFFICIENTS OF WITH ,

, IN EXAMPLE 3

TABLE VI
ANALYTICITY MEASURES AND IN EXAMPLE 3

analyticity and frequency selectivity. First of all, we have de-
signed the allpass filters with , and the cutoff
frequency is chosen as . Then we
have constructed the scaling lowpass filters with ,

, and . The resulting magnitude re-
sponses of are shown in Fig. 18, and it is seen that themax-
imum error of is the minimum when . If is
chosen to be too small or too big, the maximum error of
will increase, resulting in a poor analyticity. That is to say, how
to determine the cutoff frequency influences as well
as the analyticity of complex wavelets. Next, we have varied
from to to investigate the relationship between the
analyticity measures of , and the cutoff frequency .
It is seen in Fig. 19 when is too small or too big, the an-
alyticity measures of , become larger, and the optimal
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Fig. 17. Scaling and wavelet functions in Example 3 (a) , (b) , .

Fig. 18. Magnitude responses of .

cutoff frequencies and are within .
Furthermore, we have also varied from to to in-
vestigate the relationship between the optimal cutoff frequency

and . It is clear in Fig. 20 that if the stopband is too wide,
i.e., is closer to , the optimal cutoff frequency is
larger, that is, the approximation band of allpass filter become
wider. It is because the stopband error of lowpass scaling filter
is larger in this case, requiring the allpass filter to improve the
error also in stopband. On other hand, the optimal cutoff
frequency is almost constant when the stopband band is
not too wide, since the stopband error of lowpass scaling filter
is small and has little effect on the analyticity.

Fig. 19. Relationship between , and .

VII. CONCLUSION

In this paper, we have proposed a new class of with
improved analyticity and frequency selectivity by using general
IIR filters with numerator and denominator of different degree.
The proposed include the conventional
proposed by Selesnick as special cases. First of all, we have
given a design method of allpass filters with the specified degree
of flatness and equiripple phase responses in the approximation
band to improve the analyticity of complex wavelets. Next, we
have specified the number of vanishing moments and applied
the Remez exchange algorithm to minimize the stopband error
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Fig. 20. Relationship between and .

in order to improve the frequency selectivity of scaling lowpass
filters. Finally, we have done the performance investigation on
the proposed , where a properly chosen approxima-
tion band can improve the analyticity of complex wavelets.
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