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Design of IIR Digital Filters
Based on Eigenvalue Problem

Xi Zhang, Member, IEEE, and Hiroshi Iwakura, Member, IEEE

Abstract— This paper presents a new method for design-
ing IIR digital filters with optimum magnitude response in the
Chebyshev sense and different order numerator and denom-
inator. The proposed procedure is based on the formulation
of a generalized eigenvalue problem by using Remez exchange
algorithm. Since there exist more than one eigenvalue in the
general eigenvalue problem, we introduce a very simple selection
rule for the eigenvalue to be sought for where the rational
interpolation is performed if and only if the positive minimum
eigenvalue is chosen. Therefore, the solution of the rational
interpolation problem can be obtained by computing only one
eigenvector corresponding to the positive minimum eigenvalue,
and the optimal filter coefficients are easily obtained through a
few iterations. The design algorithm proposed in this paper not
only retains the speed inherent in the Remez exchange algorithm
but also simplifies the interpolation step because it has been
reduced to the computation of the positive minimum eigenvalue.
Some properties of the filters such as lowpass filters, bandpass
filters, and so on are discussed, and several design examples are
presented to demonstrate the effectiveness of this method.

I. INTRODUCTION

LARGE number of procedures are available for design-

ing infinite impulse response (IIR) digital filters [1]-[15].
Some of them, like the bilinear transformation and impulse
invariant design [1]-[5], transform a given analog filter into
an equivalent digital filter. However, these techniques are
limited in that they are generally applied only to the case of
transforming standard analog filters. If it is desired to design a
digital filter with a nonstandard frequency response that cannot
be obtained using some of the above techniques, then it is
necessary to use some other procedures.

Design methods using linear programming and the dif-
ferential correction algorithm are described in [6]-[8]. Both
methods found the optimum rational approximation to the
squared magnitude response instead of the magnitude alone.
This is because in the form of squared magnitude, the de-
sign problem can be linearized, making it possible to apply
standard linear optimization techniques. Deczky [9] described
a very general design method that is solved by using the
Fletcher—Powell algorithm. This method often requires a large
amount of computer time, even for a moderate size problem.
Variations of the Remez exchange algorithm [10]-[15] have
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also been applied to the rational approximation problem. The
Remez exchange algorithm, while potentially the fastest of the
above procedures, suffers from some serious problems that are
not encountered in finite impulse response (FIR) applications.
Most of the difficulty is in the central part of the Remez
exchange algorithm, where a rational interpolation problem
must be solved to make the error oscillate with an equal
amplitude on the trial set of extremal frequencies. In [10] and
[13], the rational interpolation problem was solved by using the
Newton method. In [12], restricting all zeros of the filters on
the unit circle, the algorithm used two approximation intervals
and worked separately with the numerator and denominator
polynomials of the squared magnitude function. In [15], Jack-
son presented an improved algorithm of [12] that allows some
real zeros inside the unit circle.

In this paper, we consider design of IIR digital filters with
different order numerator and denominator, which are more
effective than elliptic filters in narrowband and wideband
applications [13]. Our purpose is to develop a new design
method based on the eigenvalue problem for IIR digital filters
with optimum magnitude response in the Chebyshev sense.
By applying the Remez exchange algorithm to the squared
magnitude function, we formulate the design problem in the
form of a generalized eigenvalue problem, which was already
proposed by Werner [17] in 1963. There exist more than one
eigenvalue in the general eigenvalue problem; therefore, we
must seek out one eigenvalue that corresponds to the solution
of the rational interpolation problem. However, Werner did
not give a selection rule for the eigenvalue to be sought
out. In this paper, we introduce a new and very simple
selection rule wherein the rational interpolation is performed
if and only if the positive minimum eigenvalue is chosen.
Therefore, we can obtain the solution of the rational interpo-
lation problem by finding only one eigenvector corresponding
to the positive minimum eigenvalue. In order to obtain an
equiripple magnitude response, we make use of an iteration
procedure to get the optimal filter coefficients. The new
algorithm proposed in this paper not only retains the speed
inherent in the Remez exchange algorithm but also simplifies
the interpolation step because it has been reduced to the
computation of the positive minimum eigenvalue. In general,
the design algorithm converges rapidly with a few iterations
and computes efficiently without any initial guess of the
solution. Some properties of the filters such as lowpass filters,
bandpass filters, and so on, are described, and several examples
are designed to demonstrate the effectiveness of this method.
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II. STATEMENT OF THE DESIGN PROBLEM

Let H(z) be the transfer function of an IIR digital filter with
numerator degree N and denominator degree M
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where filter coefficients a;, b; are real, and by = 1. The squared
magnitude function of H(z) is obtained by evaluating
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where ¢; = c;(i = 1,2,---,N), and d; = d_;(i =
1,2,--+, M) along the unit circle, giving

ey

H(z)H(z) = 2)

N(w) co+2 25\7:1 ¢; CoS iw
D(w)  dy+2 Ez\il d; cosiw

[H(e)|? = &)
Without any loss in generality, do can be set to 1. Equation
(3) shows that the squared magnitude function is a ratio of
trigonometric polynomials, whose numerator and denominator
polynomial are linear in the unknown filter coefficients c;
and d;. Hence, we take advantage of the squared magnitude
function of (3) to formulate the filter approximation problem.
Now, we state the design problem of IIR digital filters. When
numerator degree N and denominator degree M are given,
and the desired magnitude response |Hy(e?)] is specified in
the interest bands R € [0, 7] (e.g., passband and stopband),
the aim is to find a set of filter coefficients to minimize the
maximum error between the squared magnitude response of
the filter and the desired squared magnitude response:

Min{%aéiW(w) HH(@’”)‘2 - |Hd(e7“)|2] ‘} )
where W (w) is a weighting function. The filter coefficients
obtained in the above criterion are optimal in the Chebyshev
sense. Once the filter coefficients ¢; and d; are known, it is
necessary to find a stable transfer function H(z). H(z) has a
minimum phase response that can be completely determined
by retaining only zeros and poles that lie inside or on the unit
circle (see [6] and [12] in detail).

Suppose that 0 < |H (e?“)| < 1 is satisfied; then, there must
exist a filter G(z) that satisfies

|G(e7)|” + |H ()| = 1. (5)

In other words, H(z) and G(z) constitute a power-
complementary pair. In particular, if H(z) is a lowpass
filter, then G(z) is a highpass filter, and vice versa. Hence,
the squared magnitude response of G(z) can be obtained
from (5):

|2 _ (do —co) + 2Zle(di —¢;) cosiw ©)
do +2 Zf\il d; cos iw

where L = Max{N,M},d; = 0(i = M +1,---,N) when

N>M,and¢; =00 =N+1,---,M) when N < M. It

is clear from (3) and (6) that H(z) and G/(z) have the same

|G(e™)
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poles, whereas H (z) has fewer zeros than G(z) when N < M
and the same number of zeros when N > M. Therefore, we
can obtain simultaneously a complementary filter pair H (%)
and G(z) by designing only one filter H(z).

IIT. FORMULATION BASED ON THE EIGENVALUE PROBLEM

In this section, we describe the design of 1IR digital filters
based on the eigenvalue problem. In the above design problem,
we want to find the filter coefficients ¢; and d; in (3) in such
a way that the squared magnitude function with a positive
denominator satisfies

- 6max S VV((U)E((;J)
= W(wW)[[H()|* = |Ha(e)|"] < bmax (W€ R) (D)

where F(w) is an error function, and 8,4, (>0) is the maxi-
mum error to be minimized.

To solve the magnitude Chebyshev approximation problem,
we utilize the Remez exchange algorithm and formulate the
condition for |H(e/*)|? of (3) in the form of a generalized
eigenvalue problem. By selecting extremal frequené_ies wii =
1,2, . N+ M +2) in the bands R, we formulate |H (e7“)|?
as

W(wi)E(w;) = (-1)0+0§ ®)

where [ = 0 or 1 to guarantee § > 0, and the denominator
polynomial D(w) must satisfy the following condition:

D(w) #0 (for all w). 9)
Substituting (3) into (8), we get
N(w;) — |Ha(e™)|*D(w;) = %D(M) (10)
Then, we rewrite (10) in the matrix form as
[P-6QJA=0 11
where A = [cg,c1, - en,do,dy, -, da]T,00 =
[0.0,---,0]T, and the elements of the matrices P,Q

are given by (12) and (13), which appear at the bottom of the
next page. Once the desired magnitude response |Hy(ed)|
and the weighting function W (w) are given, it is seen from
(12) and (13) that the elements of the matrices P, Q are
known. Therefore, it should be noted that (11) corresponds
to a generalized eigenvalue problem, i.e., § is an eigenvalue,
and A is a corresponding eigenvector. It is well known that
there is a nontrivial solution A(#0) in (11) if and only if
the determinant satisfies

P - 5Q|=0. (14)

Since the order of the matrices P, Q is (N + M +2) x (N +
M + 2), (14) has more than one solution to ¢ in general.
Therefore, we can obtain at least two solutions by solving
the eigenvalue problem of (11). In order to guarantee the
stability of the filters and minimize the maximum magnitude
error, the filter coefficients must satisfy the condition of (9).
However, it is not guaranteed that the solutions obtained from
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(11) have satisfied (9), that is, the solutions may not satisfy
(9). The solutions that do not satisfy (9) are not required.
Therefore, we must seek out the solution that satisfies (9) in
the solutions of (11). Here, will we ask whether (11) has
a solution that satisfies (9). If it exists, which eigenvalue
corresponds to the solution? We see from (8) that the sign
change of E(w) is caused by the sign change of the numerator
or denominator polynomial. When the numerator polynomial
changes its sign, E(w) crosses 0 to change its sign. When
the denominator polynomial changes its sign, E(w) crosses
oo. Therefore, there exist more than one solution, depending
on the sign change of E(w) through 0 or co. To satisfy (9),
E(w) must change its sign through 0. When the optimum
Chebyshev approximation to the desired response exists, there
are (N + M + 2) extremal frequencies of E(w) [10], [18],
[19]. Hence, (11) has at least one solution that satisfies (9)
if the extremal frequencies are appropriately selected. By the
uniqueness of the optimal solution, the solution is unique. How
to select the extremal frequencies in the cases of lowpass
filters, bandpass filters, and so on will be discussed in the
following section. Now, we answer the second question. In
(8), we can choose [ = 0 or 1 to guarantee the solution that
satisfies (9) having a positive error 6. Therefore, we seek only
the positive eigenvalues.

Theorem I: The positive minimum eigenvalue corresponds
to the solution that satisfies (9) when the optimum Chebyshev
approximation exists.

Proof: Let Hy(w) = |H,(e?)|* be the solution with
61(>0) that satisfies (9), let Hy(w) = |H,(e/*)|? be another
solution with 8,(>0) that does not satisfy (9), and let H (w) =
Hi(w) — Hy(w) = Ey(w) — Ex(w).

a) Assume that §; = &s; therefore, we have (w;) = 0.
From (8), then H(w) has (N + M + 2) zeros in [0,
However, [ (w) has at most (N + M) zeros in [0,
Therefore, we can conclude that 61 # 0s.

b) Assume that §; > &5. It is seen in Fig. 1 that H(w) has
one zero in the interval [w;, w; 1] when Fa(w) crosses 0
to change its sign and two zeros when Es(w) crosses oo.
There are (N + M + 1) interpolated intervals in [0, 7]
(including the transition band). We suppose that there
are ] intervals where Ey(w) changes its sign through
co; hence, H(w) has (N + M + I + 1) zeros in [0, 7).
However, H(w) has at most (N + M) zeros in [0,7].
Hence, we can conclude that 6; < 6. The theorem is
proved.
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Fig. 1. Interpolation of E(w). ‘

We have proved that the positive minimum eigenvalue
corresponds to the solution that satisfies (9). Therefore, we can
obtain the solution that satisfies (9) by finding the eigenvector
corresponding to the positive minimum eigenvalue. When
the matrix P is a singular matrix, we can get § = 0 from
(14). Hence, a solution can be obtained by solving the linear
equations PA = 0. If the solution satisfies (9), then we have
obtained the desired response. However, it is generally im-
possible to obtain the desired response in the practical design
problem. Therefore, the matrix P is a nonsingular matrix in the
general case. Since we are interested in only one eigenvector
corresponding to the positive minimum eigenvalue, we have
found that the positive minimum eigenvalue is the absolute
minimum one in a large number of examples; therefore, this
computation can be done efficiently by using the iterative
power method [20] (without invoking general methods such
as the QR technique). In some other examples (e.g., lowpass
filters with N > M and M is odd), the absolute minimum
eigenvalue is negative, and we have to use other methods to
obtain the positive minimum eigenvalue. In order to obtain an
equiripple magnitude response, we make use of an iteration
procedure to get the optimal filter coefficients. Since we
have obtained the solution that satisfies (9), we assume that
the denominator polynomial is positive without any loss in
generality; therefore, we can consider it to be a weighting

1 j=1
) 2cos(j — Lw; j=23---,N+1
Fij = —|Ha(e?%)? J=N+2 .
~2|Hg(e?*)|%cos(j ~N —~2w; j=N+3,--- N+M+2
0o j=1,2,--,N+1
(=Dt i
Qij =S W@ J=N+2 (13)

2D (o~ N —2w; j=N+3,-- N+M+t2
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function in the FIR applications. Therefore, the algorithm
converges in general with a few iterations that are the same as
the design of the FIR filters. The design algorithm is shown
as follows:
Procedure {Design Algorithm of IIR Digital Filters}
Begin
1) Read numerator and denominator degree N, M,
the desired magnitude response | Hy(e/*)
and weighting function W (w).
2) Select initial extremal frequencies
Q:(i=1,2,---, N+ M + 2) equally spaced in
the interest bands R.
Repeat
3 Setw; =6 =1,2,---, N+ M+2).
4. Compute P, Q by using (12) and (13),
then find the positive minimum eigenvalue to obtain
the filter coefficients ¢; and d; that satisfies (9).
5) Search the peak frequencies w;(: = 1,2,---..J) of the
error function E(w) within R.
6) Reject the (J — N — M — 2) superfluous peak
frequencies and store the remaining frequencies
into the corresponding £2;.
Until Satisfy the following condition for
the prescribed small constant ¢
{1 —wi| <e (fori=1,2,--,N+M+2)}

>

End.

IV. FILTER PROPERTIES

In this section, we will discuss how to select the extremal
frequencies and describe some properties of lowpass filters,
bandpass filters, and so on.

A. Lowpass and Highpass Filters

First, we consider the design of lowpass filters. By selecting
extremal frequencies w,ip(wp = Wop > Wip > 0 > Winp 2
0),wis(ws = wos < wis < -+ < wps < 7) in the pass-
band [0, w,] and stopband [w,, 7], respectively, we formulate
|H(e#)|2 =1 for (i = 1,3, ) and |H(e/*»)|> = 1 - 6,
for (i = 0,2,-+) in the passband and |H(e/*)|?> = §, for
(1 =0,2,---) and |H(e?)?> = 0 for (i = 1,3,---) in the
stopband, where 6,(>0) and 6,(>0) are the passband and
stopband error. Now, we discuss the number of the extremal
frequencies in the passband and stopband. The number of the
unknown coefficients in (3) are (N + M + 1) due to dy = 1.
Hence, the number /m and n must be set to satisfy

m-+n=M-+N. (15

We know that the extremal frequencies w;s(i = 1,3,---) are
zeros of H(z). From (5), we see that the extremal frequencies
wip(i = 1,3,--+) are zeros of G(z). H(z) has at most [XF1]
zeros on the upper unit semicircle, and G/(2) has at most [ £
zeros, where [+] indicates the integral part of *. Hence, the
numbers m and n are limited in

m< L
{rzs a6)
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When N < M, we have L. = M. Then, from (15) and (16),
the numbers m and n must be

m=M
{n = N. (17
In other words, all zeros of H(z) and G(z) are on the unit
circle. Therefore, when N < M, the optimal filter H(z) has
all zeros on the unit circle, and there is no extra ripple filter.
If N < M and N is even, the extremal frequency may not
arise at w = 7, in particular, in the case with wide stopband
and N <« M (see [12], [15]).

We rewrite (3) as

. 1
Jey|2
H el TI1T KW
do—co+23 le(di — ¢;) cosiw

N ;
co+23 ;1 cicosiw

(18)

Kw) = (19)
When N < M, let & = ke¢; and d; = d; + (k — 1)e; (i =
0.1,--+.N). di = d;(i = N +1,---, M) be another set of
filter coefficients; then, K(w) = K(w)/k. In the passband,
K(w) — 0; then &, ~ 6,/k. In the stopband, 1/K{w) — 0;
then, &, ~ k6,. Therefore, we can adjust the passband and
stopband error by only one parameter k£ while all zeros of
H(z) and G(z) are kept fixed.
When N > M and L = N, we have

{MﬁmSN

M<n<N. (20)

In other words, H(z) has at least M zeros on the unit circle.
Let H(z) = |H(e?)|2__ . 1,, where H(x) can have at most
(M + N — 1) derivatives equal to 0. Hence the number of
extra ripple is at most one in the case of both lowpass and
highpass filters. When M is even, there exist (N — M) extra
ripple filters. When M is odd, it is proved in [12] that there
is no extra ripple filter with all zeros on the unit circle. When
H(z) has some zeros off the unit circle, we have found in
the practical designs that it is also impossible to obtain the
extra ripple filter (see Example 3). The same properties can
be obtained in the case of highpass filters.

B. Bandpass Filters and Bandstop Filters

We consider the design of bandpass and bandstop filters.
We select (m + 1) and (n + 1) extremal frequencies in
the passband(s) and stopband(s), respectively. In the case of
bandpass filters, the number m must be even. By the number
of zeros of H(z) and G(z), the number m and n are limited in

m < L

n<N+1.
In other words, there exists at least one extra ripple filter
regardless of M and N. In the practical computation, we
cannot set n = N + 1 because there is an extra ripple that

cannot be taken into account in the stopbands if n = N + 1.
When N < M, m and n must be

m =M
n=N.

2D

(22)



TABLE I
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NUMBER OF EXTREMAL FREQUENCIES AND ZEROS OFF THE UNIT CIRCLE FOR LOWPASS FILTERS WITH N = 6, M = 4,w, = 0.47,ws = 0.57

Weighting function = | Number of extremal Number of zeros
in stopband (W,(w)) frequencies off the unit circle
W, (@) > 70 12 0
70> Wa(w) > 212 12 (wpmp 7 0) 0
We(w) =21.2 13 (extra ripple) 0
91.2 > Wy(w) > 10 12 (wne Z7) 0
We(w) =10 12 0 (double zeros at z = —1)
10 > Wy(w) > 0.21 12 I (2, <0)
W,(w) = 0.21 2 0 (cx =0)
0.21 > W,(w) > 0.0031 12 1 (20, > 0)
0.0031 > W,(w) > 0.0016 | 12 (wmp £ 0) T (20, > 0)
Wy(w) = 0.0016 13 (extra ripple) I (zo0r > 0)
0.0016 > Wg(w) > 0.0003 12 ( Wps F T ) 2 (Z()M < 0, zgp2 > 0)
0.0003 > Wy(w) 12 2 (ZOTI < 0, zpr2 > 0)
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Therefore, the denominator of order M has to be even, H(z)
has at most one extra ripple in the stopbands, and G(z) has
all zeros on the unit circle. When N > M, we can get
M<m<N
{M < n<N (23)
and the number of extra ripples is at most three.
In the case of stopband filters, the number n must be even.
Similarly, m and n are limited in
m< L+1
{nSN : (24)
When N < M, m and n must satisfy (22). Hence, the
numerator order N has to be even, and H(z) has all zeros on
the unit circle and at most one extra ripple in the passbands.
When N > M, m and n must satisfy (23).

V. DESIGN EXAMPLES

In this section, we present several design examples to
demonstrate the effectiveness of the proposed method.

Example 1: We consider design of a lowpass filter with
the following specifications: N = 6, M = 4, and w, =
0.47,ws = 0.5m. By setting passband weighting function
W,(w) = 1, we have designed many filters with various stop-
band weighting functions W(w). The number and locations
of extremal frequencies and zeros off the unit circle of the
resulting filters are shown in Table I. We see from Table 1
that the filters with Wy(w) > 10 have all zeros on the unit
circle. In particular, there exist double zeros at z = —1 when
W(w) = 10. The filters have one real zero zo, in the interval
(—1,0) of the z plane when 10 > W (w) > 0.21 and one real
zero zg, in the interval (0,1) when 0.21 > W, (w) > 0.0016.
When W (w) = 0.21, the real zeros cancels each other out
with the pole at the origin due to ¢y = 0; hence, the filter
degenerates into the extra ripple filter with N = 5 and
M = 4 that has all zeros on the unit circle. The filters with
W(w) < 0.0016 have two real zeros zpry and zp.2 lying

in the intervals (—1,0) and (0, 1), respectively. We see also
that there are two extra ripple filters with W (w) = 21.2
and Ws(w) = 0.0016, which can be considered to be the
degenerate situations of the filter with N = 6 and M =5
when dpy = O or N = 7 and M = 4 when ¢y = O.
The extremal frequency wn,, does not arise at w = 0 when
70 > We(w) > 21.2 and 0.0031 > We(w) > 0.0016, and
wns does not arise at w == 7 when 21.2 > W(w) > 10 and
0.0016 > W,(w) > 0.0003, as shown in Fig. 2. It is clear
from Fig. 2 that the extra ripple filter with W (w) = 21.2 is
not the optimum filter with all zeros on the unit circle and the
minimum passband ripple. The proof of [12] is wrong when
N is even. Let Hi(w) = |H (e7*)|? be the extra ripple filter
with all zeros on the unit circle, let Ho(w) = |Ha(e/*)|? be
an optimum filter with all zeros on the unit circle and the
smaller passband ripple, and let H(w) = H,(w) — Hy(w). In
[12], it is proved that H (w) must have (M + 1) zeros in the
passband and N zeros in the stopband if Hy(w) exists. Hence,
it is impossible because H(w) has at most (M + N) zeros.
However, it is seen from Fig. 2 that H(w) has only (N — 1)
zeros in the stopband due to w,, # w. Therefore, we can
conclude that the optimum filter with the minimum passband
ripple and all zeros on the unit circle is the filter with double
zeros at z = —1 but not the extra ripple filter when N is
even. Since the extra ripple will arise when N > M and M is
even, the initial number n and m can be arbitrarily set between
M and N; then, n and m are automatically adjusted at each
iteration. The procedures of [12] and [13] can design only the
filters with Ws(w) > 21.2. The procedure of [15] improves
the algorithm of [12], and then, we can design the filters with
0.21 > We(w) > 0.0031 as well.

Example 2: We consider design of the lowpass filter of [15]
with N = 16, M = 2, and w, = 0.27,w, = 0.37 for
comparison purposes. The passband weighting function is set
to W,(w) = 1. First, we designed the filter with the stopband
weighting function W,(w) = 2.77 x 10°. The magnitude
response of the filter is shown in the solid line in Fig. 3, and
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Fig. 2. Magnitude responses of Example 1: (a) Log magnitude in decibels:
(b) passband detail.
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Magnitude responses of Example 2.

the passband and stopband attenuation are 1 and 61.3 dB,
respectively. The resulting filter is the same as that of [15],
and one real zero lies in the interval (0,1) of the z plane.
We have also designed two filters with W, (w) = 3 x 10°
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Fig. 4. Magnitude responses of Example 3: (a) Log magnitude in decibels;
(b) passband detail.

and W,(w) = 10*, and the magnitude responses are shown
in Fig. 3. The filter with W (w) = 3 x 10° has one real
zero in the interval (—1,0), and one of W (w) = 10* has
two real zeros, which cannot be designed by the procedure
of [15].

Example 3: We consider design of a lowpass filter with
N =9, M =35, and w, = 0.47,w, = 0.57. The passband
weighting function is set to Wy(w) = 1. First, we set the
initial number » = N and m = M and designed the filter
with the stopband weighting function W(w) = 6 x 10*. The
magnitude response is shown in the solid line in Fig. 4, and the
resulting filter has all zeros on the unit circle and one real pole
in the interval (—1,0) of the z plane as shown in Fig. 5. We
decreased the stopband weighting function W(w) to design
the filter. We found that the real pole moves forward to z = —1
with a decreasing W (w) and ultimately cancels with the zero
at z = —1, but it cannot produce an extra ripple. In order
to design the filter with smaller W,(w), we have to reset the
initial number n = N — 1 and m = M + 1. The filter with
W,(w) = 10° has been designed, and the magnitude response
is shown in the dashed line in Fig. 4. The filter has one real
zero zp, in the interval (0, 1) and one real pole z,, that lies in
the left of the real zero (i.e., z,, < 2o, ) as shown Fig. 5. When
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z-plane

unit circle 1

(b)
Fig. 5. Pole-zero location: (a) Ws = 6 x 10%; (b) W = 10°.

W(w) increases, the real pole and real zero move forward
to z = 1 and ultimately cancel each other at z = 1. When
W (w) decreases, the real pole moves forward to z = —1 and
ultimately cancels with the zero at z = —1, whereas the real
zero is kept in the interval (0,1). However, the extra ripple
cannot also arise. In other cases, we have observed similar
situations. Therefore, we can conclude that there is no extra
ripple filter when M is odd, and the initial number n and
m must be set according to the weighting function. It can
be explained that if there is an extra ripple filter when M is
odd, it must be the degenerate situation of the filter with the
numerator order N + 1 and the denominator order A/ when
en+1 = 0 or the numerator order N and the denominator
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Fig. 6. Magnitude responses of Example 4. (a) Log magnitude in decibels;
(b) passband detail.

order M +1 when dp;4+1 = 0. It is seen in the above examples
that the degeneration happens when the real zero or real pole
moves from the interval (—1,0) to (0,1) with a decreasing or
increasing W(w) and is located just at the origin. When the
denominator order M is odd, we have found that there is at
most one real zero inside the unit circle, which is kept in the
interval (0,1) regardless of W,(w). Hence, the filter with the
numerator order N + 1 and the denominator order M cannot
have one zero at the origin to produce cy1 = 0. In the case
of the filter with the numerator order N and the denominator
order M + 1, there are M + 1 complex poles because the
denominator order M + 1 is even. The complex poles cannot
move to the origin to produce djs41 = 0. Therefore, there is
no extra ripple filter when M is odd.

Example 4: We consider the design of bandpass filters with
N + M = 15, and the weighting function (10%,1,10°) in first
stopband [0, 0.37], passband [0.47, 0.6, and second stopband
[0.87, 7], respectively. Two filters with N = 7 and M = 8
or N = 9 and M = 6 are designed, and the magnitude
responses are shown in Fig. 6. The first stopband attenuation
of two filters is 54.58 and 51.36 dB respectively, and there is
difference of 3.22 dB. Their pole-zero diagrams are shown in
Fig. 7. It is seen in Fig. 7 that one real zero of the filter with
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Fig. 7. Pole-zero location: (a) N =7, M =8;(b) N =9.4 =6.

N =7 and M = 8 is located near the origin. Although this
real zero hardly ever contributes to the magnitude response,
the filter of N = 7 and M = 8 is better than one of N = 9 and
M = 6 because it has more poles off the origin. Therefore,
the filters with N < M are effective in the case with a
narrow passband. In the case with a wide passband, we have
also observed that the filters with N > M are effective. The
conclusion is the same with lowpass filters.

VI. CONCLUSION

In this paper, we have proposed a new method for designing
IIR digital filters with optimum magnitude response in the
Chebyshev sense and different order numerator and denom-
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inator. The design procedure is based on the formulation of
a generalized eigenvalue problem using a Remez exchange
algorithm. We have introduced a new and very simple selection
rule where the rational interpolation is performed if and only
if the positive minimum eigenvalue is chosen.. Therefore,
the solution of the rational interpolation problem can be
obtained by computing only one eigenvector corresponding
to the positive minimum eigenvalue, and the optimal filter
coefficients are easily obtained through a few iterations. The
design algorithm not only retains the speed inherent in the
Remez exchange algorithm but also simplifies the interpolation
step because it has been reduced to the computation of the
positive minimum eigenvalue. The proposed method can be
extended to the design of filters with arbitrary magnitude
response specifications and multiband.
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