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Note that popular adaptive algorithms can be naturally extended Design of IIR Digital Allpass Filters
to the FBT case. Those include single- or double-tree algorithms Based on Eigenvalue Problem

(3],

which can be described using a concept of tree-structured

basis libraries. Although we mainly considered audio signals, the Xi Zhang and Hiroshi lwakura
proposed framework, in its generality and the good results, suggest
the applications of FBT methods in other fields of signal processing.

Further research on FBT's anW-band wavelet packets is con-

Abstract—A new method is proposed for designing IIR digital allpass fil-
ers with an equiripple phase response that can be proven to be optimal in

ducted with specific interest in real-time signal compression and tf chebyshev sense. The proposed procedure is based on the formulation
construction of specific application-adapted FBT’s. The incorporati@ an eigenvalue problem by using the Remez exchange algorithm. Since
of more flexible psychoacoustic models [18] also seems promisiigre exists more than one eigenvalue in the general eigenvalue problem,
in denoising and compression applications and is currently beiwbmtroduce a new and very simple selection rule for the eigenvalue

e searched for, where the rational interpolation is performed if and

investigated. only if the real maximum eigenvalue is chosen. Therefore, the solution

of the rational interpolation problem can be gotten by computing only
REFERENCES one eigenvector cqrresponding to‘the rea! maximum eigenvalqe, ar!d the

optimal filter coefficients are easily obtained through a few iterations
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in this correspondence not only retains the speed inherent in the Remez
exchange algorithm but also simplifies the interpolation step because it
has been reduced to the computation of the real maximum eigenvalue.
Two examples are designed to demonstrate the effectiveness of this
method.
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least squares (WLS) algorithms are used to design allpass filtaissired phase response is required to satisfy the above properties and
However, the WLS algorithms must employ an iterative reweighteshnnot be arbitrarily specified.

procedure to obtain an equiripple phase response. There do ndtet #,(w) be the desired phase response; the differehde)

yet exist any well-established easy-to-use approaches for IIR digi[j@tween@(w) and 64(w) is

allpass filter design. N inr
The purpose of this correspondence is to develop a new design exp{jfe(w)} = exp{j(6(w) = a(w))}

method based on the eigenvalue problem for IIR digital allpass ol o Nw+04(w)

filters with an equiripple phase response. By using the Remez Z”’" xp {'7 <an— 2 )}
exchange algorithm, we formulate the design problem in the form = 7{0 N (4)
of an eigenvalue problem. The solution of the rational interpolation Z az exp {—j <7w _ Nw+ 94(»}))}
problem can be obtained by solving the eigenvalue problem, which - 2

was already proposed by Werner [21]. There exist more than oaed
eigenvalue in the general eigenvalue problem; then, we must search .

for one eigenvalue that corresponds with the solution of the rational > Aanr sin On(w) + ani cos On(w)}
interpolation problem. However, Werner did not give a selection rule 6. (w) =2 tan~"' ";O

N

for the eigenvalue to be searched for. In this correspondence, we Z [y 08 O (w) — an; sin O, (w))
introduce a new and very simple selection rule where the rational fopurd
interpolation is performed if and only if the real maximum eigenvalue =2 tan ! B(w) )

is chosen. Therefore, we can obtain the solution by computing only

one eigenvector corresponding to the real maximum eigenvalue. WR€reOn(w) = (n — N/2)w — (#a(w)/2). The phase Chebyshev
order to obtain an equiripple phase response, we make use ofa@Rroximation minimizes the maximum-phase erropafv) in the
iteration procedure so that the optimal filter coefficients can Heterest band(s). It has been shown in [2] that the equiripple solution
easily obtained. The new algorithm proposed in this paper not orily group delay approximation is not necessarily the optimal Cheby-
retains the speed inherent in the Remez exchange algorithm but &bkev solution. In the following, we will prove that the equiripple
simplifies the interpolation step because it has been reduced to piase response with at le&¢tV + 1) extremal points is optimal in
computation of the real maximum eigenvalue. In general, the desighe Chebyshev sense.

algorithm converges rapidly with a few iterations and computes Theorem I: The equiripple phase response with at I€4SY + 1)
efficiently without any initial guess of the solution. Two examplegxtremal points is the optimal Chebyshev solution.

are designed to demonstrate the effectiveness of this method. Proof: Let af be the equiripple solution and?, the optimal
Chebyshev solution®.(w) and ®,(w) are their error functions,
Il. DEFINITIONS AND PROPERTIES respectively. Since the equiripple solution has at le4s¥ + 1)
The transfer function of aWth-order IIR allpass filter is defined extremal points, there exist at lea&V + 1 frequency pointso;
as [1]-[9] that satisfy
N e (@i) = Do(@i). (6)
] Z n 2" Substituting (5) into (6), we can obtain
An(z) ="V 2= (1) N 7
Z atzn Z {ay, sin ©,(@;) + ap; cos O, (@)}
n=0
n=0

wherea, = anr + jan; are complex coefficients in general, and

N
\ . . . lay,,. cos O, (0;) — ap,; sin ©,,(w;
a;, denotes the complex conjugatewf. Whena,,; =0, i.e.,a,, are Z Wimr m(@i) = @i m(@i)}

real, An(z) is a real allpass filter, which is a special case of complex }0
allpass filters. All poles and zeros dfx () occur in mirror-image - Z {an, cos O (@) — ay; sin Oy (w;)}
pairs, and the frequency responde (¢’“) exhibits unit magnitude —
at all frequencies, i.e|An(e?*)| = 1 for all w. The phase response N
of Anx(z) is given by - {ap,, sin O, (&) + apy; cos O (@)}
N m=0
Z {anr sin nw + an; cos n“-"} a > e o e 0 N[ = 7
f(w) = —Nw+2 fan L n;o . © = 2 7;) (ag @y + ay i) {sin O, (2;) cos On (2;)
Z {anr cos nw — an; sin nw} — cos O, (0;) sin O,,(2;)}
n=0 N N
If all poles locate inside the unit circle, theAx(z) is stable. + Z Z (ar; @ — a5t ){cos ©n (@) cos O (@;)
The phase response decreases monotonically with an increasing n=0 m=0
frequency, and(r) = 6(—=) — 2N« [4]. When one pole locates at + sin O, (w;) sin O, (w:)}
the origin, it is seen thatiy(z) = z7'Ax_1(z) due toay = 0. N N
Then, the delay. =" is a special case ol (=) if all poles locate at = Z (Aqr iy F apiap,;) sin(n — m)o;
n=0 m=0

the origin. Whenk poles locate outside the unit circle, we can divide
An(z) into two stable allpass filterd v _«(z) and A (2), i.e.,

.

N N
D D (@hian, = ahean) cos(n —m)d;

An—k(2)
An(z) = —/———72, 3 n=0 m=0
’\( ) A],(Z) ( ) ~ N
The phase respongkw) of Ax(z) is the phase difference between = E by, sin nw,; + E ¢n cos nw; =0 7

An_r(z) andAi(z), andf(x) = §(—m) — 2(N — 2k)xw. Hence, the n=1 n=0
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where have satisfied (11). Therefore, we must search for the solution that
N—n satisfies (11) among the obtained solutions. Assuming Ehas a
b, = Z (afern)rd?nr = A ) singular matrix, we can get a solution by solvidgAd = o that
m=0 satisfies
+a'(>7n+n:)ia’(7’7’li - a:niafnz-‘,-n)i) N
Nen Z {an, sin O, (w) + an; cos O (w)}
Cn = Z (aEm+n)ia$nr + afnia€7n,+1l)r n=0 N
m=0
. o e o = [|an]|| sin(On(w) 4+ ¢n) =0 (weR) (16)
_a(rn-‘rni)r("ﬂ’” - a’mra(rn-&-ni)i)‘ T;)
(8) 2 1
— 2 2 (A — an L[ . i
It is clear that (7) has at mostV roots. To satisfy (6) ag¥ + 1 Where llanll = yai, +ay, and gn = tan™ (ani/an,). It is

required from (16) that,, = 0 or ©,,(w) + ¢, = mm (m: integey
for all n. Since at least one af,, is not equal td), we assume that
ar # 0; then,fq(w) = —(N — 2L)w + 2, — 2mm. It is a pure

frequency pointsy;, all b, and ¢, must be equal to 0. Therefore,
from (8), we get

a, = Cay, (for all n) (9  delay-—"—21) plus a constant phage-;.. This case does not need
where(C is a constant. We can conclude that the equiripple solutiéf be considered in practical designs. Therefdreis a nonsingular
is the optimal Chebyshev solution. The theorem is proven. matrix in general. Equation (12) can be rewritten into the standard

eigenvalue problem
Ill. FORMULATION BASED ON EIGENVALUE PROBLEM TA=)\A (17)

In this section, we describe design of IR allpass filters based on
the eigenvalue problem. When the desired phase resparise is WhereT = P~'Q, and\ = 1/6. Here, will we ask whether (17) has
specified in the interest band(&) € (—=. «] and the filter orderv @ solution that satisfies (11). If the solution exists, which eigenvalue
is reasonably selected, the aim is to find a set of filter coefficierg@responds to the solution? We see from (10) that the sign change
a, to minimize the maximum error of.(w). To solve the phase Of ®(w) is caused by the sign change of either the numerator or
Chebyshev approximation problem, we use the Remez exchafigg@ominator polynomial. When the numerator polynomial changes
algorithm and formulate the condition fa@¥(w) of (5) in the form its sign,®(w) crosses O to change its sign. When the denominator
of an eigenvalue problem. We selétV + 1) extremal frequencies Polynomial changes its sigi(w) crossesxc. Therefore, there exists
wi (i=0,1,---,2N + 1) in the band(s)k and formulated(w) as More than one solution, depending on the sign chang® (of)

through 0 orx. To satisfy (11)®(w) must change its sign through 0.
96(_°°'i) = (_1)("“)5 (10) When the optimum Chebyshev approximation to the desired response

2 exists, there are(N+1) extremal frequencies d(w) [2], [20]-[23].
where W(w) is a weighting function, and = 0 or 1 to guarantee Hence, (17) has at least one solution that satisfies (11) if the extremal
6 > 0. The denominator polynomial ¢b(w) must satisfy frequencies are appropriately selected. By the uniqueness of the

N optimal solution, the solution is unique. Now, we answer the second

Z {tny cos On(w) — an; sin Op(w)} £0 (w € R). (11) question. In (10), we can chooge= 0 or 1 to guarantee that the

n=0 solution that satisfies (11) and has a positive efrofherefore, we
seek only the positive and real eigenvalues.

Theorem II: The real maximum eigenvalue corresponds to the so-
PA=6QA (12) Iution that satisfies (11) when the optimum Chebyshev approximation
exists.

Proof: Let ay be the solution withb, (>0) that satisfies (11),
and leta; be another solution with,, (>0) that does not satisfy

W(wi)®(wi) = W(w;) tan

Substituting (5) into (10), we can rewrite (10) in matrix form as

where A = [ag,, a1y, -\ aNrs Gois G146y - - ani]?, and the ele-
ments of the matrice® andQ are given by

o { W(w;) sin O;(w;), (0<j<N) (13) (11). ®,(w) and ®,(w) are their error functions, respectively, and
YW (W) cos OG- n1)(wi), (N<j<2N41) E(w) = ®o(w) — Pn(w).
} A) Assume thaté, = é,. We have F(w;) = 0 from (10).
B (—=1)4*D cos ©(wi), (0<j<N) There ar@(N + 1) extremal frequencies; within (-, =].
Qij = (=1)H i Oy (wi). (N <j<2N +1). However, we know from (7) thaE(w) has at mos2N zeros
(14) within (==, «]; then, it is impossible to hav& N + 1) zeros.

Therefore, we conclude that # 6,..
Oncefq(w) andW(w) are given, it is seen from (13) and (14) that B) Assume thats, > 6,. It is seen in Fig. 1 that£'(w) has

the elements of” and@ are known. Therefore, it should be noted one zero in the intervalw;, w;4+1] when ®,,(w) crosses 0
that (12) corresponds to a generalized eigenvalue problem,i.e., to change its sign and two zeros whén, (w) crossesco.
is an eigenvalue, and is a corresponding eigenvector. It is well There ar& N +1 interpolated intervals ifi—, =]. We assume
known that there is a nontrivial solutiod in (12) if and only if the that ®,, (w) changes its sign througk within I interpolated
determinant satisfies intervals; then,E(w) has2N + I + 1 zeros. However, it is
P —5Q| =0 (15) impossible thatE'(w) has more tha N zeros. Therefore, we
’ : can conclude thdt, < é,,, and\, = 1/6, is the real maximum
SinceP andQ are2(N+1) x 2(N+1) matrices, (15) has more than eigenvalue. The theorem is proven.

one solution of6 in general. We can obtain at least two solutions by We have proven that the real maximum eigenvalue corresponds to
solving the eigenvalue problem of (12). To minimize the maximunthe solution that satisfies (11). Therefore, we can obtain the solution of
phase error, the filter coefficients must satisfy the condition of (11he rational interpolation problem by computing only one eigenvector
However, it is not guaranteed that the solutions obtained from (1&rresponding to the real maximum eigenvalue without solving all
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eigenvalues and eigenvectors. To obtain an equiripple phase response, T 0 W
we make use of an iteration procedure so that the optimal filter w h
- - ! . . . o -0.03}
coefficients can be easily obtained. The design algorithm is shown < 0 - Ref.[12]
as follows. a 006 '
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IV. DESIGN ALGORITHM

Fig. 3. Phase errors of Hilbert transformer.

Procedure {Design Algorithm of IIR Digital Allpass Filters

Begin V. DESIGN EXAMPLES
1) ReadN, 64(w), and W (w).
2) Select the initial extremal frequenci@s (i =0, 1, ---, 2N+ A Hilbert Transformers

1) in the band(s)R.
) (SR Hilbert transform operations are useful in communication appli-

cations like modulation and demodulation [12]. The ideal frequency

Repeat response of a discrete-time Hilbert transformer is given by
3) Setw; =Q; fori =0,1,---,2N + 1.
4) ComputeP, @ by using (13) and (14), and then, find the real Jy (=T <w<0)
maximum eigenvalue to obtain a set of filter coefficieats Hi(e**)=40, (w=0andn) (18)
that satisfies (11). -7, (0<w<m).
5) Search the peak frequenciés(i = 0, 1, ---, .J) of ®(w)
within R. This ideal response can be approximated by using IIR allpass filters.

6) Reject(J — 2N — 2) superfluous peak frequencies, and storghe desired phase response of allpass filters is required to be
the remaining frequencies into the correspondihg

fi(w)=—-Kw — T (wi K w < wy) (29)
. 2
Until
Satisfy the following condition for the prescribed small constant \yhere K is the integer, andv; and w, are bandedge frequencies
2N+1 of the “care” band, respectively. It is the phase sum of the Hilbert
Z Qi —wi| <€ transformer and a delay sectien . From the properties of allpass
n=0 filters, the filter order must be chosen As,in = & and Npax =
K + 1 to obtain stable allpass filters. Therefore, we can approximate
End. ; ;
. . . - this phase response by using the proposed method.
In the above algorithm, a possible choice of the initial extremal Example 1: We consider the design of the Hilbert transformer of
frequencies is to pick these frequencies equally spaced. i®ther 12] with K = 5, w; = 0.067, andw, = 0.947 for comparison

distributions may also be preferred to decrease the number of ite ?l'rposes The filter order i& = 6. The obtained phase response

tions. A major part of the computational time for our design method Sithout linear-phase- K'wv) and phase error are shown in the solid
spentin th_e computation of the eigenvector. Since we are in_tereste -% in Figs. 2 and 3, respectively. It is seen that the phase response
only one eigenvector corresponding to the real maximum e'genval?keequiripple. The result of [12] is shown in Figs. 2 and 3 as well. It
this computation can be done efficiently by using the iterative POWRS Ljaar that both are almost same.

method without invoking general methods such as the QR technique

[24]. In each iteration, we have obtained the solution that satisfies ) ) ) ) )

(11) by computing the real maximum eigenvalue. We assume ifBt!/IR Complimentary Filters with Approximately Linear Phase

the denominator polynomial cb(w) is positive without any loss in It is known in [13] and [14] that the parallel interconnections of a
generality. Then, we can consider it to be a weighting function idelay section and an allpass filter can yield an approximately linear
the FIR applications. Therefore, the algorithm converges, in genenahase. However, this class of filters is restricted to have an integer
with a few iterations that are the same as the design of linear-phasgay. Here, we consider design of IIR filters with arbitrary delay, i.e.,
FIR filters. noninteger delay [19] using two allpass filters. IIR filters composed
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of two allpass filters are presented in [10]. Their transfer functions are

H(z) = L [An(2) + Am(2)]
{ G(z) = $[An(2) — Am(2)]
where Ax(z) and Ays(z) are theNth and Mth-order real allpass

filters, respectively. Letn(w), #1/(w) be the phase responses of
An(z) and Ay (z). The frequency responses Hf(z) andG(z) are

On(w) + B.M(Uv'):| On(w) — Oar(w)
j 5 cos -

(20)

(21)
+0m (w)} n On(w) = (7)M(¢U).

2 2
In the case of lowpass and highpass filter pai¥s,and A/ must
satisfy N = M =+ 1, and the phase responsesAf (=) and Ay ()
must satisfy

07 (0 S W S ;""77)

91\‘(@’) - 91\/1 (OU) = {:l:ﬂ'_/ (ws S " S ﬂ_).
The phase responses Hf(z) and G(z) are required to be linear in
both the passband and the stopband, i.e.,

On(w) + 0 (w) _ (0<w <wy)

2 - (ws <w <)

wherer is group delay, and = (7 — (N + M)/2)x sincefn () =

—Nm andfy (7) = —Mn for stableAn(z) and Ay (). Then, we
can obtain the desired phase responsed ofz) and A (z) as

Hc((w) _ —(A+ IxiA)w. ) (0<w < wy)
AT —(A+ Ka)w+ Kam, (ws <w<m)

G(e') = j exp {J’e‘w(w)

(22)

—Tw,

—TWw + €,

(23)

(A =N, M)
(24)

where Ky = 7 — A. We have designed many allpass filters with
various iK'y and observed that only wher2 < K, < T, the
stable allpass filter can be obtained. WherR < —2, the obtained
solution is unstable, and whekix > T'x, the allpass filter cannot be
designedI', is decided by the ordet and the width(ws — wy) of

the transition band. It is also because the phase response of the stable
allpass filters must satisfy the property of monotonically decreasing
in the transition band, i.efa(w,) > fa(ws). Then, we have

el S (25)

wp)
Therefore, the group delay dff (z) is restricted toMmax — 2 <

7T < Mmin + Ty Where Miax = Max{N, M}, and Mmin =
Min{N, M}. When A 10, wp, = 04w, w, = 0.6m, and
W(w) = 1, the curve of the maximum phase error verdus is
shown in Fig. 4, and’'y = 2.6. Itis seenin Fig. 4 thatwhef', > 0,

the phase error increases rapidly with an increading and when

K\ < 0, the phase error is much smaller and has a peak nearby
Ky = —0.6. When Ky, = 0 or —2, the allpass filter degenerates
into a delayz~" or z=(*=2), Hence, the interconnection of a delay
section and an allpass filter is included in the parallel structure of
two allpass filters as a special case.

Example 2: We consider design of a lowpass and highpass filter
pair with N = 11 and M = 10, w, = 0.47, andw, = 0.67. The
weighting function is set td1 (w) = 1 in the passband and stopband.
The range of the group delay in which the stable filter can be designed
is9 < 7 < 12.6. We have selected = 10.5 and designedd v (z)
and A (z). The resulting phase responses and errors are shown in
Figs. 5 and 6, respectively. The magnitude and phase responses of
H(z) and G(z) are shown in Fig. 7. It is seen that the equiripple
magnitude and phase responses are simultaneously obtained. In the
above design examples, we needed about 4-6 iterations to obtain the
equiripple phase responses.

F,\ ~

T — (ws —

PHASE ERROR (X 7)

PHASE RESPONSE (X 7)

0 0.1 0.2 0.3 0.4 0.5

NORMALIZED FREQUENCY

Fig. 5. Phase responses afy(z) and A (z).
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Fig. 4. Maximum phase error versus, when A = 10,w, = 0.4m,
ws = 0.6m, andW(w) = 1.
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In this correspondence, we have proposed a new method for

VI. CONCLUSIONS [17] X. Zhang and H. lwakura, “Design of IIR digital filters based on
eigenvalue problem,”IEEE Trans. Signal Processingyol. 44, pp.
1325-1333, June 1996.

designing IIR allpass filters with an equiripple phase response basgg| A. Antoniou, Digital Filters: Analysis, Design, and Applications New
on the eigenvalue problem. We have proven that the equiripple phase York: McGraw-Hill, 1993.

solution is optimal in the Chebyshev sense. By using the RemB#] S. K. Mitra and J. F. Kaiserfandbook for Digital Signal Processing.

exchange algorithm, we have formulated the phase approximatri?a]
problem of IIR allpass filters in the form of an eigenvalue proble

New York: Wiley, 1993.
H. Werner, “Tschebyscheff—Approximation im bereich der rationalen
funktionen bei vorliegen einer guten ausgaraggrung,”Arch. Rational

and introduced a new and very simple selection rule for the eigenvalue Mech. Anal.,vol. 10, pp. 205-219, 1962.
to be searched for, where the rational interpolation is performed[#1] —, “Rationale Tschebyscheff—Approximation, eigenwerttheorie und
and only if the real maximum eigenvalue is chosen. Therefore, the differenzenrechnungArch. Rational Mech. Analyol. 13, pp. 330-347,

solution of the rational interpolation problem can be obtained by fin?z-z]

1963.
T. J. Rivlin, An Introduction to the Approximation of FunctionsNew

ing the eigenvector corresponding to the real maximum eigenvalue,” vyork: Dover, 1969.
and the optimal filter coefficients are easily computed through a fei@3] P. J. Davisnterpolation and Approximation. New York: Dover, 1975.
iterations without any initial guess of the solution. The new desig@4] G. Strang, M. Yamaguti, and A. Inoukjnear Algebra and its Applica-

algorithm not only retains the speed inherent in the Remez exchange

tions. Tokyo; Japan: Sangyotosyo, 1978.

algorithm but also simplifies the interpolation step because it has been
reduced to the computation of the real maximum eigenvalue.
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