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Note that popular adaptive algorithms can be naturally extended
to the FBT case. Those include single- or double-tree algorithms
[3], which can be described using a concept of tree-structured
basis libraries. Although we mainly considered audio signals, the
proposed framework, in its generality and the good results, suggest
the applications of FBT methods in other fields of signal processing.

Further research on FBT’s andM -band wavelet packets is con-
ducted with specific interest in real-time signal compression and the
construction of specific application-adapted FBT’s. The incorporation
of more flexible psychoacoustic models [18] also seems promising
in denoising and compression applications and is currently being
investigated.
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Design of IIR Digital Allpass Filters
Based on Eigenvalue Problem

Xi Zhang and Hiroshi Iwakura

Abstract—A new method is proposed for designing IIR digital allpass fil-
ters with an equiripple phase response that can be proven to be optimal in
the Chebyshev sense. The proposed procedure is based on the formulation
of an eigenvalue problem by using the Remez exchange algorithm. Since
there exists more than one eigenvalue in the general eigenvalue problem,
we introduce a new and very simple selection rule for the eigenvalue
to be searched for, where the rational interpolation is performed if and
only if the real maximum eigenvalue is chosen. Therefore, the solution
of the rational interpolation problem can be gotten by computing only
one eigenvector corresponding to the real maximum eigenvalue, and the
optimal filter coefficients are easily obtained through a few iterations
without any initial guess of the solution. The design algorithm proposed
in this correspondence not only retains the speed inherent in the Remez
exchange algorithm but also simplifies the interpolation step because it
has been reduced to the computation of the real maximum eigenvalue.
Two examples are designed to demonstrate the effectiveness of this
method.

Index Terms—Digital allpass filter, eigenvalue problem, Remez ex-
change algorithm.

I. INTRODUCTION

In many signal processing applications, it is necessary to design an
allpass filter whose phase approximates the specified phase response
in the Chebyshev sense. IIR digital allpass filters possess unit
magnitude response at all frequencies and are a basic scalar lossless
building block. One of the most widely used applications of allpass
filters is phase or group delay equalizers. In recent years, the
interconnections of allpass filters have found numerous applications
in many practical filtering problems such as low-sensitivity filter
structures, complementary filter banks, multirate filtering, and so
on [1]–[19]. Although it has been shown in [2] that the equiripple
solutions to group delay approximation are not necessarily the optimal
minimax (Chebyshev) solution, we can prove in this correspondence
that the equiripple phase approximations are optimal in the Chebyshev
sense. In this correspondence, we present a new method for designing
IIR digital allpass filters with an equiripple phase response based on
the eigenvalue problem.

The problem of designing allpass filters to approximate the spec-
ified phase response in the Chebyshev sense has no solutions in an
explicit form. Several methods have been proposed based on the
minimump-error criterion approximation [1], a generalized exchange
method [2], and linear programming algorithm [3]. However, the
disadvantages of these approaches include the need of strict initial
conditions and/or heavy computational burden. In [4], a method
of iteratively linearizing the nonlinear constraints required in the
nonlinear programming problem and applying the Remez exchange
algorithm to the amplitude error function between the desired and
designed frequency responses is presented, but it is not guaranteed
that the convergent solution can be obtained. In [6]–[9], the weighted
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least squares (WLS) algorithms are used to design allpass filters.
However, the WLS algorithms must employ an iterative reweighted
procedure to obtain an equiripple phase response. There do not
yet exist any well-established easy-to-use approaches for IIR digital
allpass filter design.

The purpose of this correspondence is to develop a new design
method based on the eigenvalue problem for IIR digital allpass
filters with an equiripple phase response. By using the Remez
exchange algorithm, we formulate the design problem in the form
of an eigenvalue problem. The solution of the rational interpolation
problem can be obtained by solving the eigenvalue problem, which
was already proposed by Werner [21]. There exist more than one
eigenvalue in the general eigenvalue problem; then, we must search
for one eigenvalue that corresponds with the solution of the rational
interpolation problem. However, Werner did not give a selection rule
for the eigenvalue to be searched for. In this correspondence, we
introduce a new and very simple selection rule where the rational
interpolation is performed if and only if the real maximum eigenvalue
is chosen. Therefore, we can obtain the solution by computing only
one eigenvector corresponding to the real maximum eigenvalue. In
order to obtain an equiripple phase response, we make use of an
iteration procedure so that the optimal filter coefficients can be
easily obtained. The new algorithm proposed in this paper not only
retains the speed inherent in the Remez exchange algorithm but also
simplifies the interpolation step because it has been reduced to the
computation of the real maximum eigenvalue. In general, the design
algorithm converges rapidly with a few iterations and computes
efficiently without any initial guess of the solution. Two examples
are designed to demonstrate the effectiveness of this method.

II. DEFINITIONS AND PROPERTIES

The transfer function of anN th-order IIR allpass filter is defined
as [1]–[9]

AN(z) = z�N

N

n=0

anz
n

N

n=0

a�nz�n

(1)

where an = anr + jani are complex coefficients in general, and
a�n denotes the complex conjugate ofan. Whenani = 0, i.e.,an are
real,AN (z) is a real allpass filter, which is a special case of complex
allpass filters. All poles and zeros ofAN (z) occur in mirror-image
pairs, and the frequency responseAN (e

j!) exhibits unit magnitude
at all frequencies, i.e.,jAN (e

j!)j � 1 for all !. The phase response
of AN (z) is given by

�(!) = �N! + 2 tan�1

N

n=0

fanr sin n! + ani cos n!g

N

n=0

fanr cos n! � ani sin n!g

: (2)

If all poles locate inside the unit circle, thenAN (z) is stable.
The phase response decreases monotonically with an increasing
frequency, and�(�) = �(��)� 2N� [4]. When one pole locates at
the origin, it is seen thatAN (z) = z�1AN�1(z) due toaN = 0.
Then, the delayz�N is a special case ofAN (z) if all poles locate at
the origin. Whenk poles locate outside the unit circle, we can divide
AN (z) into two stable allpass filtersAN�k(z) andAk(z), i.e.,

AN (z) =
AN�k(z)

Ak(z)
: (3)

The phase response�(!) of AN (z) is the phase difference between
AN�k(z) andAk(z), and�(�) = �(��)� 2(N � 2k)�. Hence, the

desired phase response is required to satisfy the above properties and
cannot be arbitrarily specified.

Let �d(!) be the desired phase response; the difference�e(!)

between�(!) and �d(!) is

expfj�e(!)g= expfj(�(!)� �d(!))g

=

N

n=0

an exp j n! �
N! + �d(!)

2

N

n=0

a�n exp �j n! �
N! + �d(!)

2

(4)

and

�e(!) = 2 tan�1

N

n=0

fanr sin �n(!) + ani cos �n(!)g

N

n=0

fanr cos �n(!)� ani sin �n(!)g

=2 tan�1 �(!) (5)

where�n(!) = (n � N=2)! � (�d(!)=2). The phase Chebyshev
approximation minimizes the maximum-phase error of�e(!) in the
interest band(s). It has been shown in [2] that the equiripple solution
to group delay approximation is not necessarily the optimal Cheby-
shev solution. In the following, we will prove that the equiripple
phase response with at least2(N + 1) extremal points is optimal in
the Chebyshev sense.

Theorem I: The equiripple phase response with at least2(N +1)

extremal points is the optimal Chebyshev solution.
Proof: Let aen be the equiripple solution andaon the optimal

Chebyshev solution.�e(!) and �o(!) are their error functions,
respectively. Since the equiripple solution has at least2(N + 1)

extremal points, there exist at least2N + 1 frequency points�!i
that satisfy

�e(�!i) = �o(�!i): (6)

Substituting (5) into (6), we can obtain
N

n=0

faenr sin �n(�!i) + aeni cos �n(�!i)g

�

N

m=0

faomr cos �m(�!i)� aomi sin �m(�!i)g

�

N

n=0

faenr cos �n(�!i)� aeni sin �n(�!i)g

�

N

m=0

faomr sin �m(�!i) + aomi cos �m(�!i)g

=

N

n=0

N

m=0
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o
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o
mi)fsin �n(�!i) cos �m(�!i)
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+
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+ sin �n(�!i) sin �m(�!i)g
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mi) cos(n�m)�!i

=

N

n=1

bn sin n�!i +

N

n=0

cn cos n�!i = 0 (7)



556 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 2, FEBRUARY 1999

where

bn =

N�n

m=0

ae(m+n)ra
o
mr � aemra

o
(m+n)r

+ae(m+n)ia
o
mi � aemia

o
(m+n)i

cn =

N�n

m=0

ae(m+n)ia
o
mr + aemia

o
(m+n)r

�ae(m+n)ra
o
mi � aemra

o
(m+n)i :

(8)

It is clear that (7) has at most2N roots. To satisfy (6) at2N + 1
frequency points�!i, all bn and cn must be equal to 0. Therefore,
from (8), we get

aen = Caon (for all n) (9)

whereC is a constant. We can conclude that the equiripple solution
is the optimal Chebyshev solution. The theorem is proven.

III. FORMULATION BASED ON EIGENVALUE PROBLEM

In this section, we describe design of IIR allpass filters based on
the eigenvalue problem. When the desired phase response�d(!) is
specified in the interest band(s)R 2 (��; �] and the filter orderN
is reasonably selected, the aim is to find a set of filter coefficients
an to minimize the maximum error of�e(!). To solve the phase
Chebyshev approximation problem, we use the Remez exchange
algorithm and formulate the condition for�(!) of (5) in the form
of an eigenvalue problem. We select2(N + 1) extremal frequencies
!i (i = 0; 1; � � � ; 2N + 1) in the band(s)R and formulate�(!) as

W (!i)�(!i) = W (!i) tan
�e(!i)

2
= (�1)(i+l)� (10)

whereW (!) is a weighting function, andl = 0 or 1 to guarantee
� > 0. The denominator polynomial of�(!) must satisfy

N

n=0

fanr cos �n(!)� ani sin �n(!)g 6= 0 (! 2 R): (11)

Substituting (5) into (10), we can rewrite (10) in matrix form as

PAPAPA = �QAQAQA (12)

whereAAA = [a0r; a1r; � � � ; aNr; a0i; a1i; � � � ; aNi]
T , and the ele-

ments of the matricesPPP andQQQ are given by

Pij =
W (!i) sin �j(!i); (0 � j � N)

W (!i) cos �(j�N�1)(!i); (N < j � 2N + 1)
(13)

Qij =
(�1)(i+l) cos �j(!i); (0 � j � N)

(�1)(i+l+1) sin �(j�N�1)(!i); (N < j � 2N + 1).

(14)

Once�d(!) andW (!) are given, it is seen from (13) and (14) that
the elements ofPPP andQQQ are known. Therefore, it should be noted
that (12) corresponds to a generalized eigenvalue problem, i.e.,�
is an eigenvalue, andAAA is a corresponding eigenvector. It is well
known that there is a nontrivial solutionAAA in (12) if and only if the
determinant satisfies

jPPP � �QQQj = 0: (15)

SincePPP andQQQ are2(N+1)� 2(N+1) matrices, (15) has more than
one solution of� in general. We can obtain at least two solutions by
solving the eigenvalue problem of (12). To minimize the maximum-
phase error, the filter coefficients must satisfy the condition of (11).
However, it is not guaranteed that the solutions obtained from (12)

have satisfied (11). Therefore, we must search for the solution that
satisfies (11) among the obtained solutions. Assuming thatPPP is a
singular matrix, we can get a solution by solvingPAPAPA = o that
satisfies

N

n=0

fanr sin �n(!) + ani cos �n(!)g

=

N

n=0

kank sin(�n(!) + 'n) = 0 (! 2 R) (16)

where kank = a2nr + a2ni and 'n = tan�1(ani=anr). It is
required from (16) thatan = 0 or �n(!) + 'n = m� (m: integer)
for all n. Since at least one ofan is not equal to0, we assume that
aL 6= 0; then,�d(!) = �(N � 2L)! + 2'L � 2m�. It is a pure
delayz�(N�2L) plus a constant phase2'L. This case does not need
to be considered in practical designs. Therefore,PPP is a nonsingular
matrix in general. Equation (12) can be rewritten into the standard
eigenvalue problem

TATATA = � AAA (17)

whereTTT = PPP�1QQQ, and� = 1=�. Here, will we ask whether (17) has
a solution that satisfies (11). If the solution exists, which eigenvalue
corresponds to the solution? We see from (10) that the sign change
of �(!) is caused by the sign change of either the numerator or
denominator polynomial. When the numerator polynomial changes
its sign,�(!) crosses 0 to change its sign. When the denominator
polynomial changes its sign,�(!) crosses1. Therefore, there exists
more than one solution, depending on the sign change of�(!)
through 0 or1. To satisfy (11),�(!) must change its sign through 0.
When the optimum Chebyshev approximation to the desired response
exists, there are2(N+1) extremal frequencies of�(!) [2], [20]–[23].
Hence, (17) has at least one solution that satisfies (11) if the extremal
frequencies are appropriately selected. By the uniqueness of the
optimal solution, the solution is unique. Now, we answer the second
question. In (10), we can choosel = 0 or 1 to guarantee that the
solution that satisfies (11) and has a positive error�. Therefore, we
seek only the positive and real eigenvalues.

Theorem II: The real maximum eigenvalue corresponds to the so-
lution that satisfies (11) when the optimum Chebyshev approximation
exists.

Proof: Let aon be the solution with�o (>0) that satisfies (11),
and let ann be another solution with�n (>0) that does not satisfy
(11). �o(!) and�n(!) are their error functions, respectively, and
E(!) = �o(!) � �n(!).

A) Assume that�o = �n. We haveE(!i) = 0 from (10).
There are2(N + 1) extremal frequencies!i within (��; �].
However, we know from (7) thatE(!) has at most2N zeros
within (��; �]; then, it is impossible to have2(N +1) zeros.
Therefore, we conclude that�o 6= �n.

B) Assume that�o > �n. It is seen in Fig. 1 thatE(!) has
one zero in the interval[!i; !i+1] when �n(!) crosses 0
to change its sign and two zeros when�n(!) crosses1.
There are2N+1 interpolated intervals in(��; �]. We assume
that �n(!) changes its sign through1 within I interpolated
intervals; then,E(!) has2N + I + 1 zeros. However, it is
impossible thatE(!) has more than2N zeros. Therefore, we
can conclude that�o < �n, and�o = 1=�o is the real maximum
eigenvalue. The theorem is proven.

We have proven that the real maximum eigenvalue corresponds to
the solution that satisfies (11). Therefore, we can obtain the solution of
the rational interpolation problem by computing only one eigenvector
corresponding to the real maximum eigenvalue without solving all
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Fig. 1. Interpolation of�(!).

eigenvalues and eigenvectors. To obtain an equiripple phase response,
we make use of an iteration procedure so that the optimal filter
coefficients can be easily obtained. The design algorithm is shown
as follows.

IV. DESIGN ALGORITHM

Procedure fDesign Algorithm of IIR Digital Allpass Filtersg
Begin

1) ReadN , �d(!), andW (!).
2) Select the initial extremal frequencies
i (i = 0; 1; � � � ; 2N+

1) in the band(s)R.

Repeat

3) Set!i = 
i for i = 0; 1; � � � ; 2N + 1.
4) ComputeP;QP;QP;Q by using (13) and (14), and then, find the real

maximum eigenvalue to obtain a set of filter coefficientsan
that satisfies (11).

5) Search the peak frequencies!i(i = 0; 1; � � � ; J) of �(!)
within R.

6) Reject(J � 2N � 2) superfluous peak frequencies, and store
the remaining frequencies into the corresponding
i.

Until
Satisfy the following condition for the prescribed small constant�:

2N+1

n=0

j
i � !ij � �

End.
In the above algorithm, a possible choice of the initial extremal

frequencies is to pick these frequencies equally spaced inR. Other
distributions may also be preferred to decrease the number of itera-
tions. A major part of the computational time for our design method is
spent in the computation of the eigenvector. Since we are interested in
only one eigenvector corresponding to the real maximum eigenvalue,
this computation can be done efficiently by using the iterative power
method without invoking general methods such as the QR technique
[24]. In each iteration, we have obtained the solution that satisfies
(11) by computing the real maximum eigenvalue. We assume that
the denominator polynomial of�(!) is positive without any loss in
generality. Then, we can consider it to be a weighting function in
the FIR applications. Therefore, the algorithm converges, in general,
with a few iterations that are the same as the design of linear-phase
FIR filters.

Fig. 2. Phase responses of Hilbert transformer.

Fig. 3. Phase errors of Hilbert transformer.

V. DESIGN EXAMPLES

A. Hilbert Transformers

Hilbert transform operations are useful in communication appli-
cations like modulation and demodulation [12]. The ideal frequency
response of a discrete-time Hilbert transformer is given by

Hd(e
j!) =

j; (�� < ! < 0)
0; (! = 0 and�)
�j; (0 < ! < �).

(18)

This ideal response can be approximated by using IIR allpass filters.
The desired phase response of allpass filters is required to be

�d(!) = �K! �
�

2
(!l � ! � !u) (19)

whereK is the integer, and!l and !u are bandedge frequencies
of the “care” band, respectively. It is the phase sum of the Hilbert
transformer and a delay sectionz�K . From the properties of allpass
filters, the filter order must be chosen asNmin = K andNmax =
K +1 to obtain stable allpass filters. Therefore, we can approximate
this phase response by using the proposed method.

Example 1: We consider the design of the Hilbert transformer of
[12] with K = 5, !l = 0:06�, and!u = 0:94� for comparison
purposes. The filter order isN = 6. The obtained phase response
(without linear-phase�K!) and phase error are shown in the solid
line in Figs. 2 and 3, respectively. It is seen that the phase response
is equiripple. The result of [12] is shown in Figs. 2 and 3 as well. It
is clear that both are almost same.

B. IIR Complimentary Filters with Approximately Linear Phase

It is known in [13] and [14] that the parallel interconnections of a
delay section and an allpass filter can yield an approximately linear
phase. However, this class of filters is restricted to have an integer
delay. Here, we consider design of IIR filters with arbitrary delay, i.e.,
noninteger delay [19] using two allpass filters. IIR filters composed
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of two allpass filters are presented in [10]. Their transfer functions are

H(z) = 1

2
[AN(z) +AM(z)]

G(z) = 1
2
[AN (z)� AM (z)]

(20)

whereAN (z) andAM (z) are theN th andM th-order real allpass
filters, respectively. Let�N(!); �M(!) be the phase responses of
AN (z) andAM (z). The frequency responses ofH(z) andG(z) are

H(ej!) = exp j
�N(!) + �M(!)

2
cos

�N(!)� �M(!)

2

G(ej!) = j exp j
�N(!) + �M(!)

2
sin

�N(!)� �M(!)

2
:

(21)

In the case of lowpass and highpass filter pairs,N and M must
satisfyN =M � 1, and the phase responses ofAN (z) andAM (z)

must satisfy

�N (!)� �M(!) =
0; (0 � ! � !p)
��; (!s � ! � �).

(22)

The phase responses ofH(z) andG(z) are required to be linear in
both the passband and the stopband, i.e.,

�N(!) + �M(!)

2
=

��!; (0 � ! � !p)
��! + �; (!s � ! � �)

(23)

where� is group delay, and� = (� � (N +M)=2)� since�N (�) =

�N� and�M(�) = �M� for stableAN (z) andAM (z). Then, we
can obtain the desired phase responses ofAN (z) andAM (z) as

�d�(!) =
�(� +K�)!; (0 � ! � !p)
�(� +K�)!+K��; (!s � ! � �)

(� = N;M)

(24)

whereK� = � � �. We have designed many allpass filters with
variousK� and observed that only when�2 � K� � ��, the
stable allpass filter can be obtained. WhenK� < �2, the obtained
solution is unstable, and whenK� > ��, the allpass filter cannot be
designed.�� is decided by the order� and the width(!s � !p) of
the transition band. It is also because the phase response of the stable
allpass filters must satisfy the property of monotonically decreasing
in the transition band, i.e.,��(!p) > ��(!s). Then, we have

�� �
!s � !p

� � (!s � !p)
�: (25)

Therefore, the group delay ofH(z) is restricted toMmax � 2 �

� � Mmin + �M , whereMmax = MaxfN; Mg, andMmin =

MinfN; Mg. When � = 10, !p = 0:4�, !s = 0:6�, and
W (!) = 1, the curve of the maximum phase error versusK� is
shown in Fig. 4, and�� = 2:6. It is seen in Fig. 4 that whenK� > 0,
the phase error increases rapidly with an increasingK�, and when
K� < 0, the phase error is much smaller and has a peak nearby
K� = �0:6. WhenK� = 0 or �2, the allpass filter degenerates
into a delayz�� or z�(��2). Hence, the interconnection of a delay
section and an allpass filter is included in the parallel structure of
two allpass filters as a special case.

Example 2: We consider design of a lowpass and highpass filter
pair with N = 11 andM = 10, !p = 0:4�, and!s = 0:6�. The
weighting function is set toW (!) = 1 in the passband and stopband.
The range of the group delay in which the stable filter can be designed
is 9 � � � 12:6. We have selected� = 10:5 and designedAN (z)

andAM (z). The resulting phase responses and errors are shown in
Figs. 5 and 6, respectively. The magnitude and phase responses of
H(z) andG(z) are shown in Fig. 7. It is seen that the equiripple
magnitude and phase responses are simultaneously obtained. In the
above design examples, we needed about 4–6 iterations to obtain the
equiripple phase responses.

Fig. 4. Maximum phase error versusK� when � = 10; !p = 0:4�;
!s = 0:6�, andW (!) = 1.

Fig. 5. Phase responses ofAN (z) andAM (z).

Fig. 6. Phase errors ofAN (z) andAM (z).

Fig. 7. Magnitude and phase responses ofH(z) andG(z).
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VI. CONCLUSIONS

In this correspondence, we have proposed a new method for
designing IIR allpass filters with an equiripple phase response based
on the eigenvalue problem. We have proven that the equiripple phase
solution is optimal in the Chebyshev sense. By using the Remez
exchange algorithm, we have formulated the phase approximation
problem of IIR allpass filters in the form of an eigenvalue problem
and introduced a new and very simple selection rule for the eigenvalue
to be searched for, where the rational interpolation is performed if
and only if the real maximum eigenvalue is chosen. Therefore, the
solution of the rational interpolation problem can be obtained by find-
ing the eigenvector corresponding to the real maximum eigenvalue,
and the optimal filter coefficients are easily computed through a few
iterations without any initial guess of the solution. The new design
algorithm not only retains the speed inherent in the Remez exchange
algorithm but also simplifies the interpolation step because it has been
reduced to the computation of the real maximum eigenvalue.
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Design of Efficient FIR Filters for the Amplitude
Response: by Using Universal Weights1

Balbir Kumar and Ashwani Kumar

Abstract—An efficient design of a linear-phase, FIR structure yielding
optimal amplitude response approximatingj1=!j for midband frequency
range has been proposed. Mathematical formulas for computation of
weights have been derived. These weights turn out to be universal. Using
this property, a versatile structure performing optimally for various
orders has been proposed.

Index Terms—FIR filters, integrators, optimum filters.

I. INTRODUCTION

In a number of signal processing systems, we are required to
approximate the ideal amplitude response:j1=!j over the frequency
range0 < ! � �: Such an ideal amplitude response may be called a
“zerophase integrator” or even an “integrating Hilbert transformer.”
[Note that an ideal integrator has the frequency response1=(j!)].
Typically, in instrumentation, where the transducer senses the ac-
celeration/velocity, the displacement is computed by double/single
integration [1]. In biomedical measurements, the essential require-
ment of integration is well known. There are host of other applications
where the realization or approximation of the amplitude response
j1=!j is called for.

Digital filters are obviously preferred to the analog ones. The
finite impulse response (FIR) filters are extensively used due to their
guaranteed stability and linear phase characteristics [2]. Theoretically,
the ideal amplitude responsej1=!j cannot be realized by any FIR
filter due to a pole at! = 0: However, if we confine ourselves to
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