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Design of FIR Nyquist Filters with Low Group Delay response is easily obtained through a few iterations. Although the pro-
posed Nyquist filters have an approximate linear phase response, their
Xi Zhang and Toshinori Yoshikawa group delay is lower than the conventional FIR Nyquist filters. The
proposed method is computationally efficient because it only solves
a set of linear equations. Finally, we examine the characteristics of
_ Abstract—A new method is proposed for designing FIR Nyquist the low-delay FIR Nyquist filters and compare the performance with
filtlers with zero-crossing impulse response and low group delay. It the conventional FIR Nyquist filters to demonstrate the effectiveness
is first shown that FIR Nyquist filters that satisfy the zero-crossing of the proposed method
time-domain condition have a frequency response property where both prop ’
the magnitude and phase responses in the passband are dependent on
the stopband response. Therefore, the design problem will become a Il
magnitude approximation in the stopband. The proposed procedure is ) o )
based on the formulation of a linear problem by using the multiple Let the transfer functiod (=) of a FIR digital filter of orderV be
Remez exchange algorithm in the stopband directly. Hence, the filter
coefficients can be computed by solving linear equations, and the optimal N _n
solution with an equiripple stopband response is easily obtained after H(z) = Z 2 (1)
applying an iteration procedure. Although the proposed Nyquist filters n=0

. PROPERTY OFFIR NYQUIST FILTERS

have an approximate linear phase response, its group delay is lower . . . .
than the conventional FIR Nyquist filters. The proposed procedure is Whereh,, are real filter coefficients. Whefl (z) is designed as a
computationally efficient because it only solves a set of linear equations. Nyquist filter, its impulse response is required to be exactly zero-

Finally, the characteristics of the low-delay FIR Nyquist filters are  crossing at the Nyquist rate except for one pdifti.e.,
examined, and the performance is compared with the conventional FIR

Nyquist filters. i = 1
ot i ST M
Index Terms—FIR Nyquist filter, low group delay, Remez exchange
algorithm. a group g ’ hiyrma =0 (k= +£1,£2,--) (2

where K and M are integers, and/ is the Nyquist interval;K
. INTRODUCTION corresponds to the desired group delay in the passband. In the case

In recent years, Nyquist filters have been found numerous apF%EFIR filters with exact linear phase, the filter coefficients have to
Ad

cations in perfect reconstruction filter banks, nonuniform samplin
interpolation filters, and so on. Its impulse response is required
be exactly zero-crossing at the Nyquist rate, except for one po
Nyquist filters can be realized by using either FIR or IIR filters. FI
Nyquist filters can be designed with an exact linear phase, and

design problem has been exhaustively studied in [1]-[14]. Howev

when the sharp magnitude specifications are required, higher or %?ar-phase constraint. Hence, the proposed Nyquist filters have an

FIR filters are generally needed, and a larger delay results. Tﬁgpr_oximate linear-phase response. In gener_al, Nyquist filte_rs are
is because the group delay is equal to half the filter order for tﬁ%quwed to be lowpass, and the desired magnitude response is given

exact linear-phase FIR filters. In some applications of real-time sigr@f

processing, a lower delay is generally required. In this paper, we will o 1, (0<w<w,)

consider the design of FIR Nyquist filters with low group delay. There |Ha(e™)] = {0‘ (ws w <) ®)

are also several design methods for IR Nyquist filters in [15]-[22]. )

IR Nyquist filters have two shortcomings in general; one is th&here the passband and stopband cut-off frequencies.are=

stability that must be considered in the design procedure, and anothler- #/M)m andws = (1 + p/M)m, and p is a rolloff rate. Let

is that the existing design methods are generally time consuming® Noncausal shifted version of (z) be H(z) = < H(z). By
In this correspondence, we propose a new method for designﬂ@bsmunng the time-domain condition of (2) into (1), we have

symmetric, i.e., = hy—_,, and then, its group delay equals

= N/2. Hence, K increases with an increasing filter ordar.

:ﬁ.‘lresults in a larger delay when higher order FIR filters are needed.
"some applications of real-time signal processing, a lower delay is
erally required. In this correspondence, we consider the design
FIR Nyquist filters with low group delay and without the exact

FIR Nyquist filters with zero-crossing impulse response and low 1 N
group delay. First, we investigate the frequency response property H(z)=:"H(z)= it Z Ty 27T (4)
of FIR Nyquist filters with zero-crossing impulse response. Both the v n=0

magnitude and phase responses in the passband are dependent on the FER

stopband response, and then, only the stopband response is negfigfle £/ (-) is more suitable for approximation, where#>) is

in the approximation. Hence, the design problem will become thgually implemented. Therefore, the design problem becomes the
minimization of the magnitude error in the stopband. By applyingpproximation of (=) in (4) to the desired magnitude response of
the multiple Remez exchange algorithm in the stopband directbg)_

we formulate the design problem in the form of a linear problem. Before designing? (), we investigate the property of FIR Nyquist
Therefore, a set of filter coefficients can be computed by solving thgers with zero-crossing impulse response. It can be seen from (4)
linear equations, and the optimal solution with an equiripple stopbafi¢ht the frequency response Bf(>) always satisfies
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to one, regardless of what the filter coefficierits are. Due to and

H(e??m=)) = H*(e7*), we have
N

L—1 M—1 : T\ — — e Jo)
B =1- 3 8= 3 B ZO hsin(K —n)m; =0 (i=1,2,---,J2)  (11)

i=1 i=L SR AM

(0 < wo < wp) (6)

where.J, = |I/2] because whed is odd, (9) has only the real
. . art and not the imaginary part at;, = . Therefore, there are
w; = M — LY AN <,’<_/,/_.,* . p . ' 1 . 3
andw; = (2(M l)W/M). wo for L.— isM-1la and_ L2 a total of I equations in (10) and (11), whethéris odd or even.
denote the complex conjugate and integer part:pfrespectively. . . . ) .
) . By solving the above linear equations, we can easily obtain a set of
This means that the responsecat is dependent on the responses®.” "~ _ .
. , . . initial filter coefficientsh, whose independent zeros are located on
atw; (i = 1,2,---,M — 1). If its stopband response is 0, then o ; L h .
2 A . .~ the unit circle. Since the initial locations of the independent zeros
the frequency response df (z) will be 1 in the passband, i.e., . .
.are manually selected, the obtained magnitude response may not be

the magnitude response @&f(z) is 1, and the phase response is .. . . .
linear, that is,— Kw in the passband. Therefore, both the passbau?ﬂumpple in the stopband. Therefore, we directly apply the multiple

magnitude and phase error are decided by the stopband errd, Le emez exchange algorithm in the stopband to obtain an equiripple
. i . .~ “stopband response.
be the maximum magnitude error in the stopband, and the maximum
magnitude and phase errors in the passband are
6p < (M —1)6s
Af < sin” ' (M - 1)6,. )

whereL = |[M + 1/2|,wi = (2in/M) 4+ wo for 0 < i < L -1,

B. Formulation

Since all the initial independent zeros are guaranteed to be located
on the unit circle, we can search the magnitude response in the
In practical designst, andA# are usually much smaller than thesestopband, and gef; + 1 extremal frequencies; as
upper limits. Since’, and A# are guaranteed to be relatively small
for a small value of5,, the filter design can concentrate on shaping ws=wo<w1 < e <wy, < (12)
the stopband response. It can also be explained according to the zero
Iocati_o_ns. Sinc_e there afe(= N—_LK/MJ — | N—K/M]|) unknown wherew, < 7 when is odd due taz;, = r, andw,, = = when
coefficientsh,, in (4), H(=) hasI independent zeros that are used tq s even. We apply the multiple Remez exchange algorithm in the
provide the desired stopband response. These independent zeros Q?Hﬁ[)and and formulate the condition fffr(e"'“) as
exist on the unit circle to minimize the stopband error, whereas the
remaining zeros off the unit circle are used for satisfying the time-
domain condition of (2) so that the passband response is naturally
formed. In the following, we will directly apply the multiple Remez
exchange algorithm in the stopband to design FIR Nyquist filtetéheres.(>0) is the stopband magnitude error to be minimized, and
with low group delay. ¢(w;) is the phase response &f(z) atw; and computed by using
the previous filter coefficients,,. SubstitutingH (¢’*) of (4) into
(13), we divide (13) into the real and imaginary parts as

ﬁ(ejwi) = 5,000 (13)

Ill. DESIGN OF FIR NYQuIST FILTERS

In this section, we describe the complex Chebyshev approximation N
of FIR Nyquist filters with zero-crossing impulse response and low Z By, cos(K — n)w; — 8. cos B(w;)
group delay by directly using the multiple Remez exchange algorithm n=o
in the stopband. #EARM )
=3 (i=0,1,---,J2) (14)
A. Initial Choice -
It is known thatH (=) hasI independent zeros that have to beynd
located on the unit circle to minimize the stopband magnitude error.
First, we assume that an initial location 6findependent zeros on N
the unit circle is Z hn sin(K — n)w; — &5 sin 6(w;)
=Y (0, <TI <D< - <@y <) (8) AR
=0  (i=0,1,---,J; —1). (15)

whereJ; = |I +1/2|,w,, # = whenI is even, andv,, = «

when I is odd. This stems from the fact that the zeros on the unit . . .

circle must occur in complex conjugate pairs, exceptfoe +1. Note that (13) has no imaginary partay, = = when[ is even.
A possible choice ofy; is to pick these frequencies to be equall))t Is clear that there are a total df+ 1 equations in (14) and (15)

spaced in the stopband. Other distributions may also be preferr 'etherI 1S odd or even, and hence, Wwe can obta|_n a set of new
From (4), we have ilter coefficients by solving the above linear equations. By using

the obtained filter coefficients, we compute the frequency response
of H(z) in the stopband to find the peak frequency poifttsand
~ compute the corresponding phase respaofi$e;). As a result, the
£ Kk obtained peak frequency poinfs;, may not be consistent with the
which can be divided into the real and imaginary parts as extremal frequencies;. We then use the obtained peak frequency
N points as the extremal frequencies in the next iteration and solve the
Z Ton cos(K — n)@; = _i/ (i=1,2,--,J1) (10) !lnear equa’qons of (1_4) and (15) to obtdip again. The_algorlthm is
o M iterated until the equiripple stopband response is attained. The design
AK+HEM algorithm is shown in detail as follows.

N

f{(ci]?i) — ﬁ Z hncij(Kfn)Ei -0 (9)
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Fig. 1. Magnitude responses of FIR Nyquist filters: (a) Log magnitude in decibels. (b) Passband detail.

C. Design Algorithm 35 — T .
Procedure { Design algorithm of FIR Nyquist filter$ e
Begin > 30k i
1) Read the design specifications M, K and p. é s —  K=24
2) Select the initial locations; o K=31
(fori=1,2,---,.J;) of the independent zeros 5
equally spaced in the stopband as shown in (8). L 25t .
3) Solve the linear equations of (10) and (11) o "
to obtain a set of initial filter coefficients,, .
4) Compute the frequency responsefbf:)
by using the initial coefficients, then search for 0002 o1 606 008
the peak frequencie8; fori =0,1,---,.J3) NORMALIZED FREQUENCY
in the stopband and compute the corresponding Fio. 2. Groun del ¢ FIR Nvauist filt
phase(?(Qz) g. <. p aelay responses 0 yquist Titers.
Repeat
5) Setw; = Q; fori =0,1,---, J. Fig. 2 that although the filter o’ = 24 has an approximate linear-
6) Solve the linear equations of (14) and (15) to phase response, its group delay is lower than thak'of 31. The
obtain a set of filter coefficients,. stopband attenuations of two filters wifk = 24 and K = 31 are
7) Compute the frequency responseff=), 39.6 and 35.7 dB, respectively, and there is difference of 3.9 dB,
then search for the peak frequencies whereas their maximum magnitude errors are 0.0202 and 0.0429 in
fori=0,1,---.J2) . the passband. We have designed many filters with varisuand
in the stopband and compute the corresponding  jhyestigated the influence df on the frequency response. The chart
phasef (£2;). _ - of the maximum magnitude and phase errors vedsus shown in
Until Satisfy the following condition for a Fig. 3. It is seen in Fig. 3 that the magnitude and phase error curves
prescribed small constant are symmetric tokK = N/2 = 31, i.e., two filters with &' and
(€ —wil < e (fori=0.1,---.J2)} N — K have the same magnitude and phase errors. This is because
End. the zeros of two filters satisfy the mirror-image relation with respect
to the each other’'s unit circle. The maximum magnitude error in
IV. DESIGN EXAMPLE the stopband periodically varies with a peridfl and increases a&

In this section, we present one design example to demonstréfiates fromi” = /2 = 31. When &' = N/2+ kM, the stopband
the effectiveness of the proposed method and then examine EABgNitude error attains to the peak; then, a smaller stopband error
characteristics of the low-delay FIR Nyquist filters and compare ti§@n be acquired nearbf( = N/2 &+ kM £ M/2. The maximum

performance with the exact linear-phase FIR Nyquist filter. magnitude and phase errors in the passband also increagé as

Example: We consider the design of FIR Nyquist filter withdeviates fromk” = N/2 = 31. In Table |, we have summarized

the following specificationsV = 62, M = 5,K = 24, and the zero distribution of FIR Nyquist filters with various. It can

p = 0.15. The magnitude response and group delay obtained bg seen that the exact linear-phase filter with= N/2 = 31 has
using the proposed method are shown in the solid line in FigsSix zeros both inside and outside the unit circle and 50 zeros on the
and 2, respectively. It is clear in Fig. 1 that the stopband magnitudsit circle. As k' decreases tdi = 30, one zero outside the unit
response is equiripple. Since the time-domain condition of (2) haiscle moves to: = co due toho = 0; then, there are only five zeros
been included in (4), the resulting impulse response must be exactlytside the unit circle. WheR” = 29 and K™ = 28, these filters have
zero crossing. For comparison purposes, we have also designeehe@ more zero on the unit circle than other filters. This is why the
FIR Nyquist filter with K’ = N/2 = 31, which is an exact linear- filters with K' = N/2 £ kM £ M /2 have a smaller stopband error.
phase filter. The magnitude response and group deldy of 31 are As I decreases t& = 27, one zero on the unit circle moves to the
shown in the dashed line in Figs. 1 and 2, respectively. It is clear dmigin = = 0 and cancels the other out with the poles at the origin due
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Fig. 3. Plot of maximum magnitude and phase errors versus group Belay Fig- 4. Plot of maximum magpnitude error in stopband versus filter aider
with M = 5 andp = 0.15.

TABLE |
ZERO DIsTRIBUTION OF FIR NyYQuIST FILTERS OF
ORDER N = 62 witTH M = 5, AND p = 0.15

responses at some related frequencies are equal to one, regardless
of what the filter coefficients are. Therefore, both the magnitude

Group delay | Number of zeros | Number of zeros Number of reros and phase responses in the passband are dependent on the stopband
K inside the unit circle | on the unit circle | outside thel unit. circle response, and then, the design problem has become the minimization
Iéf;é g 55]8 = (hsfo) of the stopband. mag'nitude error. By applying the multiple Remez
K =29 5 51 5 exchange algorithm in the stopband directly, we have formulated
K =28 6 51 5 the design problem in the form of linear problem. Hence, the filter
K--27 6 (v —0) 50 5 coefficients can be computed by solving a set of linear equations, and
K =26 ! 50 o the optimal solution with an equiripple stopband response is easily

obtained through a few iterations. Although the proposed Nyquist

filters have an approximate linear-phase response, its group delay is
IJower than the exact linear-phase FIR Nyquist filters. The proposed

Srtnethod is computationally efficient because it needs only the solution
of a set of linear equations.

to hy = 0; then, the filter degenerates into one of order 1. When
K = 26, this filter has two more zeros inside the unit circle than
does on the outside. Therefore, As decreases, each of the zero
outside the unit circle moves first to= oc, then on the unit circle,
then the originz: = 0, and, finally, into the inside of the unit circle.
When K increases, the zeros just inversely move from the inside to

the outside. The movement of the zeros decides the variability of1] L. R. Rabiner and B. GoldTheory and Application of Digital Signal
the frequency response (e.g., group delay). Next, we consider the Processing. Englewood Cliffs, NJ: Prentice-Hall, 1975.

; N ; ; i 2] A. Antoniou, Digital filters: Analysis, Design, and Applications New
influence of N on the maximum magnitude and phase errors. It id York: McGraw-Hill, 1993,

seen in Fi'g. 3 that the maximum magnitude error in the stopband i[%] S. K. Mitra and J. F. KaisertHandbook for Digital Signal Processing
larger atk” = N/2. Here, we ask whether the stopband error always = New York: Wiley, 1993.

attains the peak al’ = N/2. To answer this question, we have [4] P. P. VaidyanathanMultirate Systems and Filter BanksEnglewood
designed many filters with variou$ and found that there are a total Cliffs, NJ: Prentice-Hall, 1993.
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operation fora = 0; therefore, Fig. 1(c) reduces to Fig. 1(a) for
a = 0. Likewise, it reduces to the ordinary Fourier transformation
for « = 1 so that in this case, Fig. 1(c) reduces to Fig. 1(b). In
[1]-[4] it is shown that the added degree of freedom offered by the
order parametet allows improved performance (e.g., smaller mean-
square error) in a variety of circumstances including restoration of
time-varying signals degraded by nonstationary noise. Furthermore,
since both the digital [5] and optical [6]-[8] implementations of the
fractional Fourier transformation do not imply extra work compared
with the ordinary Fourier transformation, these improvements are
achieved at no additional cost.

We can further generalize the concept of single fractional Fourier
domain filtering [Fig. 1(c)] to repeated filtering in consecutive frac-
tional Fourier domains [Fig. 1(d)]. Here, we apply the first filter
in the Oth fractional domain (the time domain), the second filter
in the a,st fractional domain, the third filter in thénr, + a2)nd
fractional domain, and so on. This generalization was first mentioned
; X JA ) RS ARG IS ) Wy WV in [1] and [8]. However, in those papers, the problem of finding
this operationmultiplicative filtering in the time domairSimilarly, e filter profiles for a specified application has not been addressed.
we refer to the operation in Fig. 1(b) asultiplicative filtering in the | this correspondence, we discuss the applications of this filtering
frequency domairinote that we are using the same dummy variablg,hfiguration to signal restoration. More specifically, we seek the

u in_bc_)th _the Fime_ an_d frequency domain_S)- In Fig._l(c), we ShOWptimau filter profiles resulting in the minimum mean-square estimate
multiplicative filtering in theath-order fractional Fourier transform ¢ e original signal.

domain. In this configuration, first theh fractional Fourier transform

of the input is obtained, and then, a multiplicative filtefu) is
applied in this domain. Finally, the resulting waveform is transformed
with order—a in order to obtain the output profile in the time domain Theath-order fractional Fourier transform (u) of p(u) is defined
(the —ath transform is the inverse of the-ath transform). The for 0 < [a] < 2 as

ath-order fractional Fourier transformation reduces to the identity -
palu) = /1 —jcotd)/ expljm(cot du’

— 2csc puu’ + cot pu'>)p(u') du’

Repeated Filtering in Consecutive Fractional Fourier
Domains and Its Application to Signal Restoration

M. Fatih Erden, M. Alper Kutay, and Haldun M. Ozaktas

Abstract—Filtering in a single time domain or in a single frequency
domain has recently been generalized to filtering in a single fractional
Fourier domain. In this correspondence, we further generalize this to
repeated filtering in consecutive fractional Fourier domains and discuss
its applications to signal restoration through an illustrative example.

. INTRODUCTION

Fig. 1(a) shows multiplication of an input signgi, («) with a
multiplicative filter h(u) to obtain the output signagl..(«). We call

Il. FRACTIONAL FOURIER TRANSFORMATION
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