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ABSTRACT

This paper presents an efficient method for designing com-
plex IIR digital filters in the complex Chebyshev sense. The
proposed method is based on the formulation of a gener-
alized eigenvalue problem by using the Remez multiple ex-
change algorithm. Hence, the filter coefficients can be easily
obtained by solving the eigenvalue problem to find the abso-
lute minimum eigenvalue, and then the complex Chebyshev
approximation is attained through a few iterations starting
with a given initial guess. The proposed algorithm is com-
putationally efficient. One example is designed and com-
pared with one proposed by Chen and Parks. It is shown
that the results obtained by using the method proposed in
this paper are better than the conventional methods.

1. INTRODUCTION

It is well-known [1] that the Remez exchange algorithm is
an efficient tool for designing FIR filters with linear phase,
where the design problem is a real Chebyshev approxima-
tion. In many applications such as equalization and beam-
forming, the design of filters with arbitrary magnitude and
phase responses is needed, which results in a complex Cheby-
shev approximation problem [1]-[6]. The Remez exchange
algorithm has also been generalized to the complex case and
used to design complex FIR filters [2),[3]. Compared with
FIR digital filters, IIR filters tend to be of much lower or-
der for meeting the same specifications. However, IIR filter
design is more difficult than FIR design because it is a ra-
tional approximation. In [7] and [8], the Remez exchange
algorithm has been applied to the real Chebyshev approxi-
mation for IIR filters, where the interpolation problem has
been reduced to the generalized eigenvalue problem, thus
the solution can be easily obtained by finding the absolute
minimum eigenvalue in most cases. In this paper, we wish
to generalize the method in [7] to the complex Chebyshev

approximation of IIR filters. Several methods have been -

suggested to design complex IIR filters in the complex do-
main also (4]-[6]. However, the major disadvantage of these
methods is quite computationally expensive.

In this paper, we consider the complex Chebyshev ap-
proximation problem of IIR digital filters, and propose an
efficient method to attain the specified magnitude and phase
responses in the complex Chebyshev sense. The proposed
method is based on the formulation of a generalized eigen-
value problem by using the Remez multiple exchange algo-
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rithm. Hence, the filter coefficients can be easily obtained
by solving the eigenvalue problem to find the absolute min-
imum eigenvalue, and then the complex Chebyshev approx-
imation is attained through a few iterations starting with a
given initial guess. The proposed algorithm is computation-
ally efficient because it not only retains the speed inherent
in the Remez exchange algorithm, but also simplifies the
interpolation step. Finally, one example is presented and
compared with the method proposed by Chen and parks
in [5]. It is shown that the results obtained by using the
proposed method are better than the conventional methods.

2. PROBLEM STATEMENT

Let H(z) be the transfer function of an IR digital filter
with numerator degree N and denominator degree M:

N
—-_n
E anZ
__ n=0
- M
E bz™™
m=0

where filter coefficients a., b, are complex, and bp = 1. The
frequency response of H(z) is generally a complex-valued
function of the normalized frequency w:

H(z) ) (1)
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The complex Chebyshev approximation problem may be
briefly stated as follows. Let Ha(e’”) be the desired fre-
quency response:

Hy(e) = |Ha(&)€%)  (weR), (3

where |Hy(e?*)| is the desired magnitude response, fa(w)
the desired phase response and R C (—w, ] the interest

_ bands (e.g., passband and stopband). The approximation

problem consists in finding the filter coefficients an, b that
will minimize the Chebyshev norm

EW)I = max | E(w)| (4)



of the weighted error

E(w) = W (w)[H(e") — Ha(e’*)] (5)
among all possible choices of an, bm. The weighting W (w)
must be a real and strictly positive function.

In order to guarantee the filter causality and stability,
the poles are required to locate inside the unit circle. It is
known in [5] that the optimal complex Chebyshev approx-
imation may not exist when the poles are restricted inside
the unit circle. In some applications such as image pro-
cessing, it is not necessary for the filter to be causal since
the signal length is finite. Therefore, the constraint can
be relaxed and only the stability remains to be considered.
In this case, the poles will be required only not to locate
on the unit circle. It was pointed out in [5] that there is
no guarantee of the uniqueness of the complex Chebyshev
approximation problem, and the number of the optimal ap-
proximation may be arbitrarily large. The characterization
of the optimal rational complex Chebyshev approximation
is available as sufficient conditions for the general approx-
imation without pole restrictions. One sufficient condition
is that |E(w)| has at least N + M +2 extremal points [5]. In
the following, we will make use of this sufficient condition
in the problem formulation without any pole restrictions.
The filter stability issue is addressed in Section 6.

3. FORMULATION BASED ON EIGENVALUE
PROBLEM

In this section, we describe the design of IIR digital fil-
ters based on the eigenvalue problem by using the Remez
multiple exchange algorithm. Our aim is to find the filter
coefficients an, bm, in such a way that the error function in
Eq.(5) satisfies

|B(w)| < 6maa (w e R), (6)
where §mqz (> 0) is a maximum error to be minimized.

To solve the above complex Chebyshev approximation
problem, we use the Remez multiple exchange algorithm
and formulate the condition for H(e’*) of Eq.(2) in the form
of a generalized eigenvalue problem. By selecting N+ M +2
extremal frequencies w; (i = 0,1,---,N + M + 1) in the
bands R, we formulate H(e’) as

E(wi) = W(wi)[H(e) — Ha(e??)] = de7% 1),

where § is error magnitude and 6.(w) is phase of the er-
ror function E(w). Note that the denominator polynomial
D(w) of H(e’*) must satisfy

M
D(w) = Z bme 7 £ 0

(w € R). (8)
m=0
Substituting Eq.(2) into Eq.(7), we get
. eIfe(wi)
N(ew) = Hale**)Dw) = 65 Dlei). - (9)
Then we rewrite Eq.(9) in the matrix form as
Pa = 4§ Qa, (10)

™
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where @ = [a0, a1, -+, an,bo, b1, - - -, bp]T, and the elements
of the matrices P, Q@ are given by

g Imem (n=0,1,---,N)
Pmn — _Hd(ejwm)e“j(n_N_l)Wm
(n=N+1,---,N+M+1)
(11)
0 (’n’:O»l:"')N)
O = eIfe(wm)—(n=N—-1)wn)
W(wm)
n=N+1--- N+ M+1)
(12)

Once N + M + 2 extremal frequencies w; and its phase
. (w;) are given, it is seen from Egs.(11) and (12) that the
elements of the matrices P, Q@ are known. Therefore, it
should be noted that Eq.(10) corresponds to a generalized
eigenvalue problem, i.e., § is an eigenvalue and a is a cor-
responding eigenvector. In order to minimize 8§, we raust
find the absolute minimum eigenvalue by solving the above
eigenvalue problem {7], which can be done efficiently by us-
ing the iterative power method, so that the corresponding
eigenvector gives a set of filter coefficients. By using the
obtained filter coefficients, we compute the error function
E(w) and search for the peak frequencies ; of | E(w)| in the
bands R. It is found that the obtained [E(w)| may not be
equiripple. Thus, we use these peak frequencies (2; as the
extremal frequencies w; in next iteration and compute the
phase response of E(w) to obtain #.(w;). The eigenvalue
problem is then solved to obtain a set of filter coefficients
again. The above procedure is iterated until the equiripple
response is attained. Note that in the above-mentioned iter-
ation procedure, an initial value of the extremal frequencies
w; and its phase 8(w;) will be needed. The selection of the
initial extremal frequencies w; and its phase &(w;) will di-
rectly influence the convergence of the iteration procedure.
In the following, we will discuss how to select the initial
extremal frequencies w; and its phase 6(w;).

4. SELECTION OF INITIAL VALUE

In the proposed iteration procedure, arbitrarily selecting a
set of initial extremal frequencies w; and its phase 8(w;)
cannot guarantee the algorithm to converge to the optimal
solution. Hence, it is very important how to select the ini-
tial value. We must select an initial value enough close to
the optimal solution to guarantee the convergence of the
algorithm. It is known that the aim of the filter design is to
minimize the error 8. Therefore, we firstly select N+ M + 1
frequency points &; within R and then force F(w) equal to
zero at these frequency points @;:

E(@) =

W (@) [H (") = Ho(e™™)] =0,  (13)
where a possible choice of @; is to pick these frequency
points equally spaced in the bands R. Other distributions
may also be preferred to decrease the number of iterations.

The denominator polynomial D{w) must satisfy Eq.(8) also.



Substituting Eq.(2) into Eq.(13), we have

N M
D ane T~ Ho(¢®) D bne ™ =0, (14)
n=0 m=0

which is a set of linear equations. Since bo = 1, there is a
unique solution. Hence, we can obtain an initial solution of
filter coefficients an,bm by solving the linear equations of
Eq.(14). By using the obtained initial filter coefficients, we
compute E(w) and search for the peak frequencies of |E(w)]
in the bands R. Since we have forced E(w) equal to zero at
N + M + 1 frequency points, there always exist more than
N+M+1 peak frequencies. We then select the first N+AM+
2 peak frequencies €; in descending order of magnitude as
-the initial extremal frequencies w; and compute the phase
response of E(w) to obtain 6(w;). The design algorithm is
shown as follows.

5. DESIGN ALGORITHM

Procedure {Design Algorithm of IIR Digital Filters}
Begin

1. Read N, M, Hu(¢’*) and W(w).

2. Select N + M + 1 frequency points @; equally spaced
within R.

3. Solve Eq.(14) to obtain an initial solution of filter
coefficients an, bm.

4. Compute E(w) by using the initial filter coefficients,
then search for the first N + M + 2 peak frequencies
; in R and compute its phase ().

Repeat

5. Setw; =€ fori=0,1, -, N+M+1.

6. Compute P and @ by using Eqs.(11) and (12), and

then find the absolute minimum eigenvalue of Eq.(10)
to obtain a set of filter coefficients an, bm.

7. Compute E(w), then search for the peak frequencies
Q; in R and compute its phase 6(;).

Until Satisfy the following condition for a prescribed
small constant e:

N4+M41
{ > lﬂi—wiQSe}

i=0

End.

6. STABILITY ISSUE

In the above design algorithm, the obtained filter H(z) may
not be stable. The stability must be checked by finding the
pole location. To guarantee the filter stability, we have to
avoid the poles located on the unit circle, i.e, Eq.(8) must be
satisfied for all w. In section 3, we have chosen the absolute
minimum eigenvalue, which ensures that Eq.(8) is satisfied
in the bands R. However, Eq.(8) may not be satisfied in
the “don’t care” band. For example, IIR lowpass filters
with nearly linear phase always have a pair of poles in the
transition band near the passband edge. This pair of poles
maybe move toward the unit circle as the desired group

delay varies [5]. It was shown in [5] that the stability of H(z)
is mainly dependent on the specifications, i.e., the filter
degree N, M and the desired frequency response Hg(e’™).
Therefore, the specifications should be carefully chosen to
guarantee the filter stability. See [5] in detail.

7. DESIGN EXAMPLE

For comparison purposes, we have designed a real-valued
IIR lowpass filter with the same specifications as Ezample
1 in [5] by using the proposed method. The specification is
N =M =4, )
. e (0<w<027)
Hy(e?") =
0 (04 <w <)

The weighting is W{(w) = 1 in both passband and stopband.
The initial guess of &; is shown in Fig.1. Note that since
the frequency response of the real filter is complex con-
jugate between positive and negative frequencies, we only
show the positive one. We then selected the initial extremal
frequencies w; as shown in Fig.1, and obtained the equirip-
ple solution after six iterations. The resulting magnitude
response of F(w) is shown in Fig.2, and the maximum error
is 6maz = 0.0234 whereas bma. = 0.0420 in [5]. The magni-
tude response and group delay of H(z) are shown in Fig.3
and Fig.4, respectively. The results in [5] are also shown
in the dotted line for comparison. The magnitude error is
0.0233 in passband and 0.0234 (32.6dB) in stopband, while
the error in [5] is 0.0420 and 0.0420 (27.5dB) respectively.
The group delay in passband is between 4.83 and 5.97, and
its maximum deviation from the desired group delay is 0.97
in the passband edge. In [5], the group delay is between 4.65
and 6.34 and its maximum deviation is 1.34. The pole-zero
location of the obtained filter is shown in Fig.5 and it is
clear that it is causal and stable. To examine the rela-
tionship. between the specifications and stability, we show
the plot of the maximum pole radius versus group delay
in Fig.6. It is seen in Fig.6 that when the group delay is
2.5, the maximum pole radius is equal to 1, i.e., this pair
of poles locate on the unit circle, thus the filter is unstable. -
When the group delay is larger than 2.5, the maximum pole
radius is smaller than 1, then the filter becomes causal and
stable. Therefore, we should specify a larger group delay to
guarantee the causality and stability.

8. CONCLUSION

In this paper, we have proposed an efficient method for de-
signing complex IIR digital filters in the complex Chebyshev

~sense. The proposed method is based on the formulation of

a generalized eigenvalue problem by using the Remez multi-
ple exchange algorithm. Hence, the filter coefficients can be
easily obtained by solving the eigenvalue problem to find the
absolute minimum eigenvalue, and the complex Chebyshev
approximation is attained through a few iterations starting
with a given initial guess. The proposed algorithm is com-
putationally efficient because it not only retains the speed
inherent in the Remez exchange algorithm, but also simpli-
fies the interpolation step. It is shown through design exam-
ple that the results obtained by using the method proposed
in this paper are better than the conventional methods.
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