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Abstract— Q-shift filters have been proposed by Kingsbury for
DTCWTs (Dual Tree Complex Wavelet Transforms), and are
required to have linear phase responses. This paper proposes a
new method for designing Q-shift filters with flat group delay
responses. The proposed design method make use of the transfer
function proposed by Gopinath, which satisfies both the specified
degree of flatness for the group delay and the specified number
of vanishing moments, i.e., the specified number of zeros atz =
−1. Therefore, the design is reduced to how to force the filter
to satisfy the condition of orthogonality. The design problem
is linearized, and then an iterative procedure is used to obtain
the filter coefficients. Finally, some examples are presented to
demonstrate the effectiveness of the proposed design method.

I. I NTRODUCTION

The Dual Tree Complex Wavelet Transforms (DTCWTs)
were originally proposed by Kingsbury in [3], and have
been found to be successful in many applications of signal
processing and image processing [3]∼[11]. DTCWTs have the
following significant properties over DWTs (Discrete Wavelet
Transforms); approximate shift invariance, and good direc-
tional selectivity for multidimensional signals. It has been
shown in [6] that two scaling lowpass filters are required to
satisfy the half-sample delay condition, thus the corresponding
wavelet bases form a Hilbert transform pair.

Several design procedures for DTCWTs had been presented
in [3]∼[8]. In [7], Selesnick had proposed a common-factor
design technique based on the maximally flat allpass filters.
This method is simple and effective, but the resulting filters
have non-linear phase responses. In [4] and [5], Kingsbury
introduced Q-shift filters in order to provide the improved
symmetry property. Q-shift filters are required to have linear
phase responses. The design technique proposed in [4] and [5]
was based on the optimization of a set of rotationsθi in the
polyphase structure, but this is a highly non-linear problem and
only works well for relatively short filters. In [8], Kingsbury
had proposed an alternative technique for optimizing Q-shift
filters, which works effectively for filters of length up to 50
or more taps. This method was based on the minimization
of energy ofHL2(z) in [π3 , π], instead of the approximation
of group delay forH0(z). In [12], we have proposed a
design method of Q-shift filters with improved vanishing
moments, where a set of equations is derived directly from
the flatness condition of group delay, vanishing moments and
orthogonality condition, and then linearized to obtain the filter
coefficients. However, the proposed iterative procedure needs

a good initial solution to converge to the optimal solution,
particularly if the filter is of higher degree.

In this paper, we propose a new method for designing Q-
shift filters with flat group delay responses. We make use of
the transfer function proposed by Gopinath in [2] to satisfy
the specified degree of flatness for the group delay response at
ω = 0 and the specified number of zeros atz = −1. Therefore,
the design is reduced to how to force the filter to satisfy
the condition of orthogonality only. We can derive a set of
non-linear equations from the condition of orthogonality. The
number of equations is less than half that in the conventional
method [12]. Moreover, we linearize the non-linear problem
and use an iterative procedure to obtain the filter coefficients.
As a result, the Q-shift filters have flat group delay responses
and the specified number of vanishing moments. Finally, some
examples are presented to demonstrate the effectiveness of the
proposed design method.

II. Q-SHIFT FILTERS FORDTCWTS

It is well-known that the DTCWT employs two real DWTs;
the first DWT gives the real part of DTCWT and the second
DWT is the imaginary part. The second wavelet basis is
required to be the Hilbert transform of the first wavelet basis.

Let ϕH(t), ϕG(t) and ψH(t), ψG(t) be the scaling and
wavelet functions of two DWTs, respectively. It has been
proven in [6], [9] and [10] that two wavelet functionsψH(t)
andψG(t) form a Hilbert transform pair;

ψG(t) = H{ψH(t)}, (1)

that is

ΨG(ω) =

{
−jΨH(ω) (ω > 0)

jΨH(ω) (ω < 0)
, (2)

if and only if two scaling lowpass filters satisfy

G(ejω) = H(ejω)e−j ω
2 (−π < ω < π), (3)

where ΨH(ω) and ΨG(ω) are the Fourier transforms of
ψH(t), ψG(t), respectively. This is the so-called half-sample
delay condition between two scaling lowpass filtersH(z) and
G(z). Equivalently, the scaling lowpass filters should be offset
from one another by a half sample. Eq.(3) is the necessary and
sufficient condition for two wavelet bases to form a Hilbert
transform pair [10].



In [4] and [5], Kingsbury had proposed Q-shift filters in
order to provide the improved orthogonality and symmetry
properties. One scaling lowpass filter is chosen to be the time
reverse of another filter;

G(z) = z−NH(z−1), (4)

whereH(z) is FIR filter of degreeN . Its transfer function is
given by

H(z) =
N∑

n=0

h(n)z−n, (5)

whereh(n) are real filter coefficients andN is an odd number.
Q-shift filters are required to have linear phase responses.

That is, the desired phase response ofH(z) is

θd(ω) = −(
N

2
− 1

4
)ω. (6)

Therefore, the phase response ofG(z) will be −(N2 + 1
4 )ω,

and then two scaling lowpass filters satisfy the half-sample
delay condition in Eq.(3).

In addition to the phase condition given in Eq.(6),H(z)
is also required to satisfy the conditions of regularity and
orthonormality of wavelets. From the viewpoint of regularity,
H(z) must haveK zeros atz = −1;

H(z) = Q(z)(1 + z−1)K . (7)

When the maximumK is chosen, the maximum number of
vanishing moments can be obtained.

Moreover, the condition of orthonormality forH(z) is given
by

H(z)H(z−1) +H(−z)H(−z−1) = 2, (8)

which means that the product filterP (z) = H(z)H(z−1) must
satisfy

p(2n) = δ(n) =

{
1 (n = 0)

0 (n > 0)
, (9)

wherep(n) = p(−n) is the impulse response ofP (z).

III. D ESIGN OFQ-SHIFT FILTERS

In this section, we discuss the design of Q-shift filters with
flat group delay responses. The group delay responseτ(ω) is
required to have the specified degree of flatness atω = 0;

τ(0) = τ0

∂2kτ(ω)

∂ω2k

∣∣∣∣
ω=0

= 0 (k = 1, 2, · · · , L− 1)
, (10)

whereτ0 = N/2−1/4 andL (> 0) is a parameter that controls
the degree of flatness.

It is known in [1] that the transfer function satisfying the
condition of flatness in Eq.(10) can be given by

FL,τ0(z) =
1

β
[1 +

L∑
n=1

(−1)n
(
L

n

) L−1∏
i=0

i− 2τ0
i+ n− 2τ0

z−n],

(11)

where the real coefficientβ ̸= 0 can be arbitrarily chosen. To
ensureFL,τ0(1) = 1, we choose

β = 1 +
L∑

n=1

(−1)n
(
L

n

) L−1∏
i=0

i− 2τ0
i+ n− 2τ0

. (12)

By using Eq.(11), Gopinath had proven inLemma 2of [2]
that the transfer function satisfying the condition of flatness
in Eq.(10) and havingK zeros atz = −1 is of the form

H(z) =
N−L−K∑

k=0

αkz
−k(

1 + z−1

2
)KFL,τ0−k−K

2
(z), (13)

whereαk are the real filter coefficients. By using the transfer
function in Eq.(13) to design Q-shift filters, thus, we need only
to consider the condition of orthonormality in Eq.(8).

By substitutingH(z) in Eq.(13) into Eq.(8), we have the
product filterP (z) = H(z)H(z−1) as

P (z) =
N−L−K∑
k1=0

N−L−K∑
k2=0

αk1αk2Dk1,k2(z), (14)

where

Dk1,k2(z) = z−k1+k2(
1 + z−1

2
)K(

1 + z

2
)K

×FL,τ0−k1−K
2
(z)FL,τ0−k2−K

2
(z−1).

(15)

Let dk1,k2(n) is the impulse response ofDk1,k2(z), where
dk1,k2(n) = 0 for n < −(K + L) + k1 − k2 andn > (K +
L) + k1 − k2. We can derive a set of equations as follows;

N−L−K∑
k1=0

N−L−K∑
k2=0

αk1αk2dk1,k2(2n) = δ(n). (16)

It is clear that there are(N + 1)/2 equations with respect to
(N − L−K + 1) unknownsαk. If N = 2(L+K)− 1, then
we can obtain the filter of minimal degree for givenL andK,
which corresponds to the maximalK (Kmax = (N+1)/2−L)
for givenN andL. Therefore, we consider the case ofN =
2(L + K) − 1 to obtain the maximum number of vanishing
moments.

Let α̃k = αk/αM . From Eq.(16), we have

α2
M =

1
L+K−1∑
k1=0

L+K−1∑
k2=0

α̃k1 α̃k2dk1,k2(0)

, (17)

and
L+K−1∑
k1=0

L+K−1∑
k2=0

α̃k1 α̃k2dk1,k2(2n) = 0 (n > 0). (18)

Note thatα̃M = 1. Thus, we firstly solve Eq.(18) to obtain
α̃k, and then computeαM by Eq.(17) to getαk = αM α̃k.
M can be arbitrarily chosen between0 ≤ M ≤ L +K − 1.
In this paper, we chooseM = ⌊L+K

2 ⌋, where⌊x⌋ means the
largest integer not greater thanx. It should be noted that the
number of equations in Eq.(18) is(N − 1)/2 = L +K − 1,
and is less than half that in [12].



It is seen that Eq.(18) is a set of quadratic constraints
on the filter coefficients̃αk. It is difficult to solve the non-
linear problem in Eq.(18), particularly if the filter is of higher
degree. We have used the functionsolve() in the Symbolic
Math Toolbox of MATLAB to solve Eq.(18), but it only works
well for the filters of degreeN ≤ 9.

IV. A N ITERATIVE PROCEDURE

In this section, we firstly linearize the non-linear problem
in Eq.(18), and then use an iterative procedure to obtain a set
of filter coefficientsα̃k.

Let α̃(i)
k be the filter coefficients atith iteration, and is given

by

α̃
(i)
k = α̃

(i−1)
k +∆α̃

(i)
k (k ̸=M). (19)

Then, Eq.(18) becomes

L+K−1∑
k1=0

L+K−1∑
k2=0

[α̃
(i−1)
k1

α̃
(i−1)
k2

+ α̃
(i−1)
k1

∆α̃
(i)
k2

+ α̃
(i−1)
k2

∆α̃
(i)
k1

+∆α̃
(i)
k1
∆α̃

(i)
k2
]dk1,k2(2n) = 0 (n > 0).

(20)

If ∆α̃
(i)
k is assumed to become small asi increases,

∆α̃
(i)
k1
∆α̃

(i)
k2

can be neglected. Thus, we have

L+K−1∑
k1=0

̸=M

{
L+K−1∑
k2=0

[dk1,k2(2n) + dk2,k1(2n)]α̃
(i−1)
k2

}∆α̃(i)
k1

= −
L+K−1∑
k1=0

L+K−1∑
k2=0

α̃
(i−1)
k1

α̃
(i−1)
k2

dk1,k2(2n) (n > 0).

(21)

Note that∆α̃(i)
M = 0, sinceα̃(i)

M = 1. Therefore, we can get
∆α̃

(i)
k by solving this system of linear equations in Eq.(21),

if α̃(i−1)
k are previously known. The filter coefficients̃α(i)

k are
updated by∆α̃(i)

k in Eq.(19).
To converge to the optimal solution, a set of good initial

coefficientsα̃(0)
k is needed. In this paper, we use the filter

coefficients of the obtained Q-shift filters of degreeN − 2 or
the same degreeN but with differentK,L as a set of initial
coefficientsα̃(0)

k .

V. DESIGN EXAMPLES

In this section, we present two design examples and com-
pare it with the Q-shift filter designed by Kingsbury in [8] to
demonstrate the effectiveness of the proposed design method.

Example 1 We have designed the Q-shift filters withN =
13 by using the proposed design method. Firstly,K = 3 and
L = 4 has been chosen, and then the resulting magnitude and
group delay responses are shown in solid line in Fig.1 and
Fig.2, respectively. For comparison, the magnitude and group
delay responses of the Q-shift filters withK = 2, L = 5 and
designed by Kingsbury are shown in Fig.1 and Fig.2 also. It is
seen in Fig.1 that the magnitude responses become more sharp
asK increases. It is noted that the Q-shift filter designed by
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Fig. 1. Magnitude responses of Q-shift filters withN = 13.

Kingsbury has a sharp magnitude response, but only one zero
at z = −1, which means the wavelet has only one vanishing
moment. It is clear in Fig.2 that the group delay responses
become more flat asL increases, and it is better than the Q-
shift filter designed by Kingsbury.

It is clear in Eq.(3) thatG(ejω) needs to be approximated
toH(ejω)e−j ω

2 . For the purpose of comparison, we define the
error functionE(ω) as

E(ω) = G(ejω)−H(ejω)e−j ω
2 . (22)

The magnitude|E(ω)| of these Q-shift filters are shown in
Fig.3.

Example 2 We have designed Q-shift filters of degree
N = 35 with K = 16, 15, 14 andL = 2, 3, 4. The resulting
magnitude and group delay responses are shown Fig.4 and
Fig.5, respectively. It is seen in Fig.4 and Fig.5 that the
magnitude responses are more sharp asK increases, while
the group delay responses are more flat asL increases.

VI. CONCLUSION

In this paper, we have proposed a new method for designing
Q-shift filters with flat group delay responses. We have used
the transfer function proposed by Gopinath to satisfy both
the specified degree of flatness for the group delay response
at ω = 0 and the specified number of zeros atz = −1
for the regularity of wavelets. Therefore, the design problem
can be reduced to how the condition of orthonormality to
be satisfied. We have derived a set of non-linear equations
from the condition of orthonormality, and then linearized
the non-linear problem. Since the number of equations is
less than half that in the conventional method [12], we can
obtain efficiently the filter coefficients by using an iterative
procedure. As a result, the obtained Q-shift filters have flat
group delay responses and the specified number of vanishing
moments. Finally, some examples are presented to demonstrate
the effectiveness of the design method proposed in this paper.
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Fig. 2. Group delay responses of Q-shift filters withN = 13.
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Fig. 3. Magnitude responses of error functionsE(ω) of Q-shift filters.
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