Design of Q-Shift Filters With Flat Group Delay
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Abstract— Q-shift filters have been proposed by Kingsbury for a good initial solution to converge to the optimal solution,
DTCWTs (Dual Tree Complex Wavelet Transforms), and are particularly if the filter is of higher degree.
required to have linear phase responses. This paper proposes a In this paper, we propose a new method for designing Q-

new method for designing Q-shift filters with flat group delay o .
responses. The proposed desigh method make use of the transferSh'ft filters with flat group delay responses. We make use of

function proposed by Gopinath, which satisfies both the specified the transfer function proposed by Gopinath in [2] to satisfy
degree of flatness for the group delay and the specified number the specified degree of flatness for the group delay response at

of vanishing moments, i.e., the specified number of zeros at= , = ( and the specified number of zeros:at —1. Therefore,
—1. Therefore, the design is reduced to how to force the filter the design is reduced to how to force the filter to satisfy

to satisfy the condition of orthogonality. The design problem " . .
is linearized, and then an iterative procedure is used to obtain the condition of orthogonality only. We can derive a set of

the filter coefficients. Finally, some examples are presented to NON-linear equations from the condition of orthogonality. The
demonstrate the effectiveness of the proposed design method. number of equations is less than half that in the conventional

method [12]. Moreover, we linearize the non-linear problem

and use an iterative procedure to obtain the filter coefficients.
The Dual Tree Complex Wavelet Transforms (DTCWTsAs a result, the Q-shift filters have flat group delay responses

were originally proposed by Kingsbury in [3], and havend the specified number of vanishing moments. Finally, some

been found to be successful in many applications of sigretamples are presented to demonstrate the effectiveness of the

processing and image processingBl1]. DTCWTs have the proposed design method.

following significant properties over DWTs (Discrete Wavelet

Transforms); approximate shift invariance, and good direc- Il. Q-SHIFT FILTERS FORDTCWTS

tional selectivity for multidimensional signals. It has been |t is well-known that the DTCWT employs two real DWTS;

shown in [6] that two scaling lowpass filters are required the first DWT gives the real part of DTCWT and the second

satisfy the half-sample delay condition, thus the correspondiDyvT is the imaginary part. The second wavelet basis is

wavelet bases form a Hilbert transform pair. required to be the Hilbert transform of the first wavelet basis.
Several design procedures for DTCWTs had been presentedet ¢ (t), o (t) and ¥ (t),vc(t) be the scaling and

in [3]~[8]. In [7], Selesnick had proposed a common-factagavelet functions of two DWTSs, respectively. It has been

design technique based on the maximally flat allpass filteggroven in [6], [9] and [10] that two wavelet functions (t)

This method is simple and effective, but the resulting filtergnd ¢ (¢) form a Hilbert transform pair;

have non-linear phase responses. In [4] and [5], Kingsbury

introduced Q-shift filters in order to provide the improved Ya(t) = H{vut)}, 1)

symmetry property. Q-shift filters are required to have line i

phase responses. The design technique proposed in [4] and [5]

was based on the optimization of a set of rotati@psn the _ { —j¥n(w) (w>0)

o - - VYe(w) = . ;

polyphase structure, but this is a highly non-linear problem and JU g (w) (w<0)

only works well for relatively short filters. In [8], Kingsbury ) ) ] )

had proposed an alternative technique for optimizing Q-shiftand only if two scaling lowpass filters satisfy

filters, which works effectively for filters of length up to 50 G(e?®) = H(e?*)e 7% (—m<w<m) 3)

or more taps. This method was based on the minimization ’

of energy of Hy»(z) in [§, 7], instead of the approximationwhere ¥y (w) and Vg (w) are the Fourier transforms of

of group delay for Hy(z). In [12], we have proposed awvg(t),vq(t), respectively. This is the so-called half-sample

design method of Q-shift filters with improved vanishinglelay condition between two scaling lowpass filtéféz) and

moments, where a set of equations is derived directly froG(z). Equivalently, the scaling lowpass filters should be offset

the flathess condition of group delay, vanishing moments afrdm one another by a half sample. Eq.(3) is the necessary and

orthogonality condition, and then linearized to obtain the filtegufficient condition for two wavelet bases to form a Hilbert

coefficients. However, the proposed iterative procedure neadmsform pair [10].

I. INTRODUCTION

)



In [4] and [5], Kingsbury had proposed Q-shift filters inwhere the real coefficient # 0 can be arbitrarily chosen. To
order to provide the improved orthogonality and symmetmnsurefFy, ., (1) = 1, we choose
properties. One scaling lowpass filter is chosen to be the time

L L—-1 .
reverse of another filter; 1 _ym L 1— 279 12
N e e (75, 62
G(z) == NH(=Y), @) n=l =0
. i .. By using Eq.(11), Gopinath had proven liiemma 20of [2]
W_here;{(z) is FIR filter of degreeN'. Its transfer function is that the transfer function satisfying the condition of flatness
given by in Eq.(10) and having{ zeros atz = —1 is of the form
N
N—-L-K
H(z) = h - 5 142t
(2) ngo (n)z"", ®) Hiz) = Y aw ™™ - V< Fy s (2), (13)
k=0

whereh(n) are real filter coefficients anl¥ is an odd number.
Q-shift filters are required to have linear phase respons
That is, the desired phase responseddk) is

whereay, are the real filter coefficients. By using the transfer
fihction in Eq.(13) to design Q-shift filters, thus, we need only
to consider the condition of orthonormality in Eq.(8).

N 1 By substituting H(z) in Eq.(13) into Eq.(8), we have the
6 =—(%—-)w. 6 : ’
@) =G — 3 ©) " product filter P(=) = H(z)H(>1) as
Therefore, the phase responsecfz) will be —(§ + 1)w, N-L-KN-L-K
and then two scaling lowpass filters satisfy the half-sample P(z) = Z Z Otky Oy Doy 15 (2), (14)
delay condition in Eq.(3). E1=0  k2=0

In addition to the phase condition given in Eq.(@)(z) \where
is also required to satisfy the conditions of regularity and

-1
orthonormality of wavelets. From the viewpoint of regularity, Diy 1y (2) = Z—k1+k2(1 tz )K(l Ak
H(z) must haveK zeros atz = —1; 2 2 (15)
-1
H(z) = Q(z)(1 + 2~ Y. ) XEyp oy~ () Fp gy (7).

When the maximum¥k is chosen, the maximum number of Let dy, ,(n) is the impulse response @y, 1, (z), where

vanishing moments can be obtained. iy () = 0 fOr 0 < —(K + L) + k1 — k2 andin > (K + _
Moreover, the condition of orthonormality fdf (=) is given L) + k1 — k. We can derive a set of equations as follows;
by N-L-K N-L-K

> Dk andk k(2n) =6(n).  (16)

HH((z Y4+ H(-2)H(—2"1) =2, (8) = s
which means that the product filtét(z) = H(z)H(z~") must |t is clear that there aréN -+ 1)/2 equations with respect to
satisfy (N — L — K +1) unknownsay. If N = 2(L + K) — 1, then
{ 1 (n = 0) we can obtain the filter of minimal degree for givérand K,
p(2n) = d(n) = , (9) which corresponds to the maxim&l (K,,q, = (N+1)/2—L)
0 (n>0) for given N and L. Therefore, we consider the case /&§f=
wherep(n) = p(—n) is the impulse response &f(z). 2(L + K) — 1 to obtain the maximum number of vanishing
moments.
[1l. DESIGN OFQ-SHIFT FILTERS Let Gy = o, /car. From Eq.(16), we have
In this section, we discuss the design of Q-shift filters with 1
flat group delay responses. The group delay respofisg is s, = TR ILTR1 , a7)
required to have the specified degree of flatness at0; Z Z Gk, Gy i, ey (0)
7.(0) =10 k1=0 ko=0
2k , 10) and
0 72(;:;) =0 (k=1,2,---,L—-1) o) L+K-1L+K-1
™ =0 S Y Gk Gredr gk (20) =0 (n>0). (18)
wherery = N/2—1/4andL (> 0) is a parameter that controls k1=0  ka=0
the degree of flatness. _ o Note thatda,, = 1. Thus, we firstly solve Eq.(18) to obtain
Itis known in [1] that the transfer funptlon satisfying the;, and then computes; by Eq.(17) to getu, = aasds.
condition of flatness in Eq.(10) can be given by M can be arbitrarily chosen betweén< M < L + K — 1.
1 L A= - In this paper, we choos#/ = |££X |, where|z| means the
Fr.(2) = B[l + Z(—l)”( ) H ﬁz*"], largest integer not greater than It should be noted that the
n=1 nJ g bR 2T number of equations in Eq.(18) {&V —1)/2 = L + K — 1,

(11) and is less than half that in [12].



It is seen that Eq.(18) is a set of quadratic constraints 1-6_
on the filter coefficientsy,. It is difficult to solve the non- 1.4
linear problem in Eq.(18), particularly if the filter is of higher &J -
degree. We have used the functiealve] in the Symbolic % 1.2
Math Toolbox of MATLAB to solve Eq.(18), but it only works % 1'_
well for the filters of degreéVv < 9. IéI:J L
0.81
IV. AN ITERATIVE PROCEDURE LéJ L
In this section, we firstly linearize the non-linear problem F_’ 0-6_' oot
in Eq.(18), and then use an iterative procedure to obtain aset Z g4l ¢t
of filter coefficientsdy. 2 L 0.1f
Leta'") be the filter coefficients ath iteration, and is given = 02r o
by O 035 04 045 05
. . (i L | L | L | ! | !
a) =ay™" + Aay (k # M). (19) 0O 01 02 03 04 05
L+K—-1L+K-1 . . [ .
i~ 1) - (i— i ; - ; Fig. 1. Magnitud f Q-shift filt ith = 13.
Z Z [&’(;1 1)&1(;2 1) +&§€z1 1)Ad](€’;) n d](;Q 1)A&’(€? [¢] agnitude responses of Q-shift filters wi

k1=0 ko=0
+Ad,(jl)Ad,(;)]dkl,k2 (2n)=0 (n>0). Kingsbury has a sharp magnitude response, but only one zero
(20) atz = —1, which means the wavelet has only one vanishing
) . moment. It is clear in Fig.2 that the group delay responses
If Ad,~ is assumed to become small &s increases, pecome more flat ag increases, and it is better than the Q-

A& Aay) can be neglected. Thus, we have shift filter designed by Kingsbury.

LiK-1 LiK—1 . ' It is plear ‘iD EQ.(3) thatG(e’*) needs to .be approximated
Z { Z (i, ks (20) + de,k1(2n)}d§;—”}Ad,§? to H(e? )e. 7z, For the purpose of comparison, we define the
F=0  ha—0 error functionE(w) as

#M
L+K—1L+K-1 _ E(w) = G(e¥) — H(e/¥)e ™%, (22)
_ ~(1—1) ~(i—1)
== > > & Ve V(@) (n>0). . o |
PR — The magnitude E(w)| of these Q-shift filters are shown in

(21) Fig.3.

, _ Example 2 We have designed Q-shift filters of degree
Note thatAay) = 0, sincea)} = 1. Therefore, we can get N' — 35 with K — 16,15, 14 and L — 2,3, 4. The resulting
Aal) by solving this system of linear equations in Eq.(21)nagnitude and group delay responses are shown Fig.4 and
if &kl_l) are previously known. The filter coefficienﬁs(kl) are Fig.5, respectively. It is seen in Fig.4 and Fig.5 that the
updated byAd,(j) in Eq.(19). magnitude responses are more sharpkasncreases, while

To converge to the optimal solution, a set of good initidhe group delay responses are more flafascreases.

coefficientsd,(co) is needed. In this paper, we use the filter
coefficients of the obtained Q-shift filters of degre— 2 or
the same degre&’ but with different K, L as a set of initial  In this paper, we have proposed a new method for designing

VI. CONCLUSION

Coeﬁicients&l(co)_ Q-shift filters with flat group delay responses. We have used
the transfer function proposed by Gopinath to satisfy both
V. DESIGNEXAMPLES the specified degree of flatness for the group delay response
In this section, we present two design examples and coat-w = 0 and the specified number of zeros at= —1

pare it with the Q-shift filter designed by Kingsbury in [8] tofor the regularity of wavelets. Therefore, the design problem
demonstrate the effectiveness of the proposed design methmah be reduced to how the condition of orthonormality to
Example 1 We have designed the Q-shift filters wifti = be satisfied. We have derived a set of non-linear equations
13 by using the proposed design method. Firsty= 3 and from the condition of orthonormality, and then linearized
L = 4 has been chosen, and then the resulting magnitude @hd non-linear problem. Since the number of equations is
group delay responses are shown in solid line in Fig.1 afeks than half that in the conventional method [12], we can
Fig.2, respectively. For comparison, the magnitude and groaptain efficiently the filter coefficients by using an iterative
delay responses of the Q-shift filters wilti = 2, L = 5 and procedure. As a result, the obtained Q-shift filters have flat
designed by Kingsbury are shown in Fig.1 and Fig.2 also. It ggoup delay responses and the specified number of vanishing
seen in Fig.1 that the magnitude responses become more smapments. Finally, some examples are presented to demonstrate
as K increases. It is noted that the Q-shift filter designed kihe effectiveness of the design method proposed in this paper.
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Fig. 3. Magnitude responses of error functiai§w) of Q-shift filters. Fig. 5. Group delay responses of Q-shift filters with= 35.
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