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ABSTRACT

This paper gives a new class of real-valued symmetric
orthonormal wavelet filters by using a single complex
allpass filter. Firstly, the conditions that the complex
allpass filter has to satisfy are derived from the sym-
metric and orthonormal conditions of wavelets. Then,
from the viewpoint of the wavelet regularity, a new
method is proposed for designing the proposed sym-
metric orthonormal wavelet filters with the maximally
flatness. In the proposed method, the maximally flat
solutions can be easily obtained by solving a set of lin-
ear equations only.

1. INTRODUCTION

It is well known [1],[3],[4] that orthonormal wavelets
can be generated by two-band paraunitary filter banks.
Symmetric orthonormal wavelets require all filters in
two-band paraunitary filter banks to have an exact
linear phase response. It is widely appreciated that
the only FIR solution that produces a real-valued sym-
metric orthonormal wavelet basis is the Haar solution,
which is not continuous. To obtain a real-valued sym-
metric orthonormal wavelet basis with more regularity
than the Haar solution, Herley and Vetterli had pro-
posed a class of IIR solutions in [4]. In [4], Herley
and Vetterli discussed two cases: half sample symmet-
ric (HSS) and whole sample symmetric (WSS). In the
HSS case, the scaling and wavelet functions are sym-
metric and antisymmetric, respectively, while in the
WSS case, both the scaling and wavelet functions are
symmetric. Herley and Vetterli had shown in [4] that
the HSS wavelet filters can be constructed by using real
allpass filters. However, the WSS wavelet filters is not
as easy as in the HSS case, and Herley and Vetterli
showed one example only.

In this paper, we will discuss the WSS case and
give a new class of real-valued symmetric orthonor-
mal wavelet filters by using a single complex allpass
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filter. Firstly, we construct a two-band paraunitary fil-
ter bank by using a single complex allpass filter, and
then derive the conditions that the complex allpass fil-
ter has to satisfy from the symmetric and orthonormal
conditions of wavelets. Secondly, from the viewpoint
of the wavelet regularity, we propose a new method for
designing the proposed symmetric orthonormal wavelet
filters with the maximally flatness. In the proposed
method, the maximally flat solutions can be easily ob-
tained by solving a set of linear equations only. Finally,
some design examples are presented to demonstrate the
effectiveness of the proposed method.

2. SYMMETRIC ORTHONORMAL IIR
WAVELET FILTERS

It is well known [1],[3],[4] that an orthonormal wavelet
basis can be generated by a two-band paraunitary filter
bank {H(z),G(z)}, where H(z) is a lowpass filter and
G(z) is highpass. The orthonormal condition that H(z)
and G(z) have to satisfy is

H()H("Y+ H(—2)H(-2"Y) =1

G(2)G(z Y+ G(—2)G(-z"H) =1 . (1)

H(2)G(z™Y) + H(=2)G(-z"1) =0
When the orthonormal wavelet basis is required to be
symmetric, H(z) and G(z) must have an exact linear
phase response. In [4], Herley and Vetterli had given a
class of linear phase IIR solutions by using real allpass
filters, which is the HSS case, i.e., the numerator degree
of H(z) and G(z) is odd. Now, we will consider the
WSS case, i.e., the numerator degree of H(z) and G(z)

must be even. According to [2], we construct H(z) and
G(z) by using a single complex allpass filter as follows;

H(z) = 5{A() + A:)
z—l - 3 (2)
Glz) = S={A(2) - A(2))
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where A(z) is a complex allpass filter, and A(z) has a
set of filter coefficients that are complex conjugate with
ones of A(z). One can verify that H(z) and G(z) have
a set of real-valued filter coefficients and the numerator
degree is even. To satisfy the orthonormal conditions
in Eq.(1), A(z) must satisfy [2]

A(z) = £jA(-2), )

which means that if « is a pole of A(z), then —a™ is
also a pole of A(z). Consequently, A(z) has a pair of
poles (o, —a*) and/or one pole j3, where o is complex,
B is real, and a* denotes the complex conjugate of c.
To force H(z) and G(z) to have an exact linear phase
response, A(z) must satisfy also

1
AP =15 @)

It should be noted that A(z) and A(z) satisfy the fol-
lowing relation;
1

Az) = A(z‘l) .

(5)

Thus, the condition of Eq.(4) becomes
A(2) = A(z7Y), (6)

which means that if « is a pole of A(z), then 1/« is
also a pole of A(z). Therefore, A(z) has a quadruplet
of poles (@, 1/a,—~a*,—1/a*) and/or a pair of poles
(jB8,1/7B), and can be expressed as

_NH (14 jBrz)(1 = jBg'2)
(1= 3Bz (1482

N, (L= aj2)(1— =)+ agz)(1 + —)
o ap

Y- T+ age 1+ )

k=1 (1 — agz”

il
(7)
where N = 2N; + 4N,, and n = +exp{+jr/4}. By

expanding Eq.(7), we get

A(z)y =qz7N ap + jayz + a2’ + - -
ag—jarz7l4+agz=2 4.

(8)

vt azeN =2 4 jag 2Nt 4oag eV
s agz=N+2 — jay 2N+ gy~ N’

where a,, are real filter coefficients, and ag = 1. There-
fore, to use the transfer function of A(z) in Eq.(8) im-
plies that the symmetric and orthonormal conditions
have been satisfied. In the following section, we will
consider how to design H(z) and G(z), i.e., A(z).

3. DESIGN OF WAVELET FILTERS WITH
MAXIMALLY FLATNESS

In this section, we describe the design of the proposed
symmetric orthonormal IIR wavelet filters with the max-
imally flatness, from the viewpoint of the wavelet reg-

ularity [3]~[5].

3.1. Frequency Response

Let 6(w) be the phase response of A(z). From Eq.(8),
we have

(w) = b + 2p(w), )
+7/4 or 37 /4, and when N/2 is even,
N/a-1
Z Gont1 COS(% —2n— 1w
p(w) =tan~1 —2=0

where 6y =

. N74<1 N
];/2 + Z Gan cos(— — 2n)w
( ) n=0
N(w
=t -1/
an D)’ 0
and when N/2 is odd,
(N—6)/4
an N
B 2/2 + Z Aont1 cos(— —2n — Dw
p(w) =tan e 2)74
aon cos(—Q— - 2n)w
n=0
-1 V)
— 1
= tan D)’ W
From Eq.(2), we have
H(e!) = cos f(w) (12)
G(e') = e7¥ sinf(w)

It is clear that both H(z) and G(z) have an exact linear
phase response, and their magnitude responses satisfy
the following power-complementary relation;

[H(e)? + |G(7)* = 1, (13)

which means that either H(2) or G(z) needs to be de-
signed. In the following, we will consider the design of
G(z) for convenience.

3.2. Desired Phase Response

H(z) and G(z) are required to be a pair of lowpass and
highpass filters. The desired magnitude responses are

1 (0<w<wy)

|Hd(ef“>l={ oy

0 (ws <w<m)
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0 (0<w<wy)

(Galel = { 1 (wy<w<m) (1>

where w, and w; are the cutoff frequencies of passband
and stopband of H(z), respectively, and w, + w, = 7.
Therefore, from Eq.(12), the desired phase response of
A(z) is
0 (0<w<wp)
Bi(w) = , 16

o) +2 (@ Sw<m) (19

which means from Eq.(9) that the desired response of

p(w) is 0o

<pd(w) = r ) . (17)
;-5 @<w<n)

When N/2 is even, it can be seen from Eq.(10) that
o(r/2) = 0 and p(w) = —p(7 — w), then we must
choose 8y = £n/4. When N/2 is odd, it is clear from
Eq.(11) that ¢(7/2) = £7/2 and ¢(w) = 7 — (7 —
w), thus 8y = +37/4. Therefore, the design problem
of H(z) and G(z) will become the approximation of
©(w). Due to the symmetry of ¢(w), ¢(w) is needed to
approximate only in the passband.

3.3. Formulation

From the regularity condition of wavelets, H(z) and
G(z) are required to meet the following maximally flat-
ness constraint [3],[4];

7 Jw
GIHE (i=0,1,---,N—1), (18)
Ouw? e
&G ()] :
_ = = e, N =1 1
I L 0 (:i=0,1,---, ), (19)
which implies that H(z) and G(z) contain N zeros lo-
cated at z = —1 and z = 1, respectively. For conve-

nience, we consider the design of G(z). Directly using
the condition of Eq.(19) will result in a set of nonlin-
ear equations to be solved, which is difficult when N is
large. To avoid this problem, we decompose |G(e/*)]
as

; . . 0w f(w
|G(&8¥)] = sinf(w) = 2sin (2 ) cos L22 (20)
= 2|Gi(e7)]|Ga(e7)],
where
|G1(e?*)| =sin 5 cos o(w) + cos —sin p(w)

21
sin %OD(w) + cos %QN(w) (21)

{N(w)? + D(w)?}#

bl

G2 (/)]

6
= cos %0 cos p(w) — sin ?0 sin p(w)

22
cos %OD(W) — sin %N(w) (22)

{N()* + D(w)?}
By differentiating Eq.(20), we have

oG] _ QZZ: it OMGi(f?)| 0" FIGa(e??)]
Ow? - ot k(i — k)! Ouwk Qwi-k ’

(23)
Therefore, due to |G2(1)] = 1 ideally, the condition of
Eq.(19) is equivalent to

G| P
60_}’ wzo b b y

Similarly, from Eq.(21), the condition of Eq.(24) can
be reduced to

N —1). (24)

&' {sin %(-)-D(w) + cos %QN(w)}

o =0, (25

w=0

fori=0,1,---,N—1. When N/2 is even, we substitute
Eq.(10) into Eq.(25) and get
. NJ4-1
sin %2 .
aN/2— 2 4 Z {agn sin _92£ + @gp41 COS 92—"} =0
n=0
N/4-1
Z {aZ,,(% — 2n)% sin %Q + a2n+1(%’- —2n — 1)2i
n=0
cos%g}zo (i:l,?,‘--,%—l)

(26)
which Is a set of linear equations. Due to ap = 1, we
can solve Eq.(26) to obtain a set of filter coefficients.
When N/2 is odd, by substituting Eq.(11) into Eq.(25),
we can get a set of linear equations similarly, which is
omitted here. Therefore, the maximally flat solutions
can be easily obtained by solving the above linear equa-
tions only.

4. DESIGN EXAMPLES

In this section, we have designed the symmetric or-
thonormal IIR wavelet filters with the maximally flat-
ness by using the proposed method. The phase re-
sponses of A(z) with N = 4,6, 8 are shownin Fig.1, and
the magnitude responses of H(z) and G(z) are shown
in Fig.2, respectively. The scaling and wavelet func-
tions generated by the wavelet filters with N = 6 are
shown in Fig.3 and Fig.4, respectively. It can be seen
in Fig.3 and Fig.4 that both the scaling and wavelet
functions are symmetric.
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5. CONCLUSION

In this paper, we have given a new class of real-valued
symmetric orthonormal IIR wavelet filters by using a
single complex allpass filter. Firstly, from the symmet-
ric and orthonormal conditions of wavelets, we have de-
rived the conditions that the complex allpass filter has
to satisfy. Secondly, from the viewpoint of the wavelet
regularity, we have proposed a new method for design-
ing the proposed symmetric orthonormal wavelet filters
with the maximally flatness. In the proposed method,
the maximally flat solutions can be easily obtained by
solving a set of linear equations only. Finally, some de-
sign examples have been presented to demonstrate the
effectiveness of the proposed method.
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Fig.1 Phase responses of A(z).
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Fig.2 Magnitude responses of H(z) and G(z).
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