·論 文-

全域通過フィルタを用いた画像ウェーブレット符号化

上村 晴 u^{\dagger} 張 熙 $^{\dagger a}$ 吉川 敏則 †

Wavelet-Based Image Coding Using Allpass Filters

Seiya KAMIMURA[†], Xi ZHANG^{†a)}, and Toshinori YOSHIKAWA[†]

あらまし 従来の画像ウェーブレット符号化では、FIR ウェーブレットフィルタが主に使用されている.しか し、FIR フィルタの場合,Haar ウェーブレット以外は,完全直線位相と正規直交条件を同時に満たすことがで きない.例えば,よく知られている Daubechies-9/7 ウェーブレットは双直交である.本論文では,画像ウェー ブレット符号化に全域通過フィルタより構成されたウェーブレットフィルタを適用し,その有効な実現方法を提 案する.全域通過フィルタはIIR フィルタであるので,完全直線位相と直交条件を同時に満たすことができ,よ り良い圧縮性能が期待できる.また,FIR フィルタに比べて少ない演算量で実現可能である.最後に,SPIHT を用いて実際に画像圧縮を行い,提案したIIR ウェーブレットフィルタを評価し,全域通過フィルタと遅延器の 次数が圧縮性能に与える影響を明らかにする.実験結果からわかるように,本論文で提案したIIR ウェーブレッ トフィルタは Daubechies-9/7 ウェーブレットと比較すると,少ない演算量で同等以上の圧縮性能が得られる. キーワード 画像圧縮,ウェーブレット,全域通過フィルタ,IIR フィルタ

1. まえがき

近年,画像ウェーブレット符号化に関する研究は盛 んに行われており, JPEG と MPEG に応用されてい る[1]~[13].画像ウェーブレット符号化では,2チャ ネル完全再構成フィルタバンクが重要な役割を果たし ている.2チャネル完全再構成フィルタバンクに対し, サブバンド信号間の冗長性を無くすために,正規直交 条件が必要である.また,繰返し分割した後,画素数 を増やさないために一般に対称拡張法が用いられてい る[5].そのため,分割と合成フィルタに対して完全直 線位相特性が要求される.しかし,従来よく使われて いる FIR ウェーブレットフィルタでは, Haar ウェーブ レットを除いてこの二つの条件を同時に満たすことは 不可能であった[1]. Haar ウェーブレットは不連続で あるため,自然画像の圧縮には適していない[6],[13]. よって,自然画像の圧縮において,Haarウェーブレッ ト以上のレギュラリティ条件が必要となる.例えば, Daubechies-9/7 ウェーブレットはより多くのレギュ ラリティを得るために正規直交性を犠牲にした[6].す

なわち, Daubechies-9/7 ウェーブレットは双直交で ある.一方,文献[8]では,全域通過フィルタを用い てこの二つの条件を同時に満たす IIR ウェーブレット フィルタを構成した.また,この IIR ウェーブレット フィルタの設計に関しては,最大平たん特性を有する フィルタの設計法が文献[11],[12]で提案され,閉じた 形の解が与えられている.文献[12]では,任意の平た ん度をもつフィルタの設計法も示されており,遅延器 の次数がフィルタの周波数特性に与える影響も調査さ れた.

本論文では、画像ウェーブレット符号化に全域通過 フィルタより構成された IIR ウェーブレットフィルタ を適用し、その有効な実現方法を提案する、IIR フィ ルタを使用することにより、完全直線位相と正規直交 条件を同時に満たすことができ、より良い圧縮性能が 期待できる.また、IIR フィルタは FIR フィルタに比 べて、低い次数で同等な特性を実現することが可能 である、よって、従来の FIR ウェーブレットより、演 算量の低減も期待できる、最後に、SPIHT を用いて 実際に画像圧縮を行い、提案した IIR ウェーブレット フィルタを評価する、全域通過フィルタと遅延器の次 数が圧縮性能に与える影響を調べ、最適なパラメータ を明らかにする、また、圧縮性能と演算量の両方で、 画像圧縮によく使われている Daubechies-9/7 ウェー

[†] 長岡技術科学大学工学部電気系,長岡市

Department of Electrical Engineering, Nagaoka University of Technology, Nagaoka-shi, 940–2188 Japan

a) E-mail: xiz@nagaokaut.ac.jp

ブレットと比較を行う.

2. ウェーブレットに基づく画像符号化

まず,図1に示されるサブバンド符号化の原理につ いて説明する.分割側では,入力信号を分割フィルタ によりいくつかのサブバンド信号に分割する.得られ たサブバンド信号をそれぞれ量子化し,そのエントロ ピーに応じて圧縮する.合成側では,圧縮したサブバ ンド信号を伸長し,合成フィルタを用いて信号の再構 成を行う.ここで,サブバンド符号化の目的は,与え られた圧縮率で再構成信号と原信号の誤差をできるだ け小さくすること,または,与えられた誤差範囲内で できるだけ圧縮率を高くすることである.

ウェーブレットによる画像符号化では,2 チャネル 完全再構成フィルタバンクが重要な役割を果たしてい る.2 チャネルフィルタバンクより,入力信号を低域 と高域の周波数成分に分割する.次に,低域周波数成 分に対して同じフィルタバンクを用いて同様に分割を 行う.これを低域周波数成分に対して繰り返すことに より,オクターブ分割が得られる.例として,1次元 の3レベルまでの分割を図2に示す.合成側では,分 割側と逆の順序で処理を行う.画像のような2次元の 場合は,縦方向と横方向に対してそれぞれ分割を行い,

図1 サブバンド符号化 Fig.1 Subband coding.

図 2 ウェーブレット分割 Fig. 2 Wavelet decomposition.

4 個のサブバンド画像が得られる.そして,低域周波 数成分に対して同様な分割を繰り返す.図3は,2次 元の3レベルまでの分割の例である.

- 3. 全域通過フィルタを用いたウェーブレッ トフィルタ
- 3.1 IIR ウェーブレットフィルタの設計

画像ウェーブレット符号化では,2 チャネル完全再 構成フィルタバンクが重要な役割を果たしている.2 チャネル完全再構成フィルタバンクに対して,サブバ ンド信号間の冗長性を無くすために,正規直交条件が 必要である,また,繰返し分割した後,画素数を増や さないために一般に対称拡張法が用いられている[5]. そのため,分割と合成フィルタに対して完全直線位相 特性が要求される.しかし,従来の FIR ウェーブレッ トフィルタでは, Haar ウェーブレットを除いてこの二 つの条件を同時に満たすことは不可能であった.Haar ウェーブレットは不連続であるので,自然画像の圧縮 には適していない[6],[13].よって,自然画像の圧縮 において, Haar ウェーブレット以上のレギュラリティ 条件が必要となる.例えば,Daubechies-9/7ウェー ブレットはより多くのレギュラリティを得るために正 規直交性を犠牲にしている.一方, IIR フィルタを用 いると、この二つの条件を同時に満たすことができ る[8].ウェーブレットフィルタが満たすべき正規直交 条件は,

$$H_0(z)H_0(z^{-1}) + H_0(-z)H_0(-z^{-1}) = 1$$

$$H_1(z)H_1(z^{-1}) + H_1(-z)H_1(-z^{-1}) = 1 \quad (1)$$

$$H_0(z)H_1(z^{-1}) + H_0(-z)H_1(-z^{-1}) = 0$$

である.ここで, *H*₀(*z*) は低域フィルタ, *H*₁(*z*) は高 域フィルタである.文献 [8], [11], [12] では, 全域通過

LL ³ HL ³ LH ³ HH ³	HL^2	ш ¹
LH ²	ΗH ²	
LH ¹		ΗΗ ¹

図 3 2次元ウェーブレット分割 Fig. 3 2-D decomposition.

フィルタを用いて,以下のように *H*₀(*z*) と *H*₁(*z*) を 構成している.

$$\begin{cases}
H_0(z) = \frac{1}{2} \{A(z^2) + z^{-2K-1}A(z^{-2})\} \\
H_1(z) = \frac{1}{2} \{A(z^2) - z^{-2K-1}A(z^{-2})\}
\end{cases}$$
(2)

ここで, K は整数であり, N 次の全域通過フィルタ A(z) は次式のように定義されている.

$$A(z) = z^{-N} \frac{\sum_{n=0}^{N} a_n z^n}{\sum_{n=0}^{N} a_n z^{-n}}$$
(3)

ここで,フィルタ係数 a_n は実数である A(z) の位相 特性を $\theta(\omega)$ とすると,

$$\theta(\omega) = -N\omega + 2\tan^{-1}\frac{\sum_{n=0}^{N}a_n\sin n\omega}{\sum_{n=0}^{N}a_n\cos n\omega}$$
(4)

よって, $H_0(z)$ と $H_1(z)$ の周波数特性は,

$$\begin{cases} H_0(e^{j\omega}) = e^{-j\frac{2K+1}{2}\omega} \cos\left[\theta(2\omega) + \left(K + \frac{1}{2}\omega\right)\right] \\ H_1(e^{j\omega}) = je^{-j\frac{2K+1}{2}\omega} \sin\left[\theta(2\omega) + \left(K + \frac{1}{2}\omega\right)\right] \end{cases}$$
(5)

となる.よって,完全直線位相であることがわかる. また,式(2)の $H_0(z)$ と $H_1(z)$ は式(1)の正規直交 条件を満たしている.すなわち, $H_0(z)$ と $H_1(z)$ は 次のパワーコンプリメンタリ関係を有する.

$$|H_0(e^{j\omega})|^2 + |H_1(e^{j\omega})|^2 = 1$$
(6)

 $H_0(z)$ と $H_1(z)$ を低域と高域フィルタとして設計するための A(z) の所望位相特性は,

$$\theta_d(\omega) = -\frac{2K+1}{4}\omega \qquad (0 \le \omega \le 2\omega_p) \qquad (7)$$

である.ここで, ω_p は $H_0(z)$ の通過域端周波数である.ウェープレットのレギュラリティ条件から,平たんな周波数特性が要求される.最大平たんフィルタの場合は,フィルタ係数 a_i が解析的に求められる [11], [12].その閉じた形の解は,

$$a_n = (-1)^n \binom{N}{n} \prod_{i=1}^n \frac{i-1-N+\frac{K}{2}+\frac{1}{4}}{i+\frac{K}{2}+\frac{1}{4}} \quad (8)$$

である.また,文献 [12] に指摘されたように,全域通 過フィルタの次数 N が偶数のとき,遅延器の次数が K = 4k + 1 若しくは K = 4k + 2 となると,図 4 に 示されるように,フィルタの振幅特性は遷移域におい て余分なリプルをもつ.これは,フィルタの特性にとっ て望ましくないことである.一方,N が奇数のとき, K = 4k 若しくは K = 4k + 3 となると,同様に余分 なリプルが存在する.したがって,この余分なリプル を避けるために,N が偶数のとき,K = 4k 若しくは K = 4k + 3,また,N が奇数のとき,K = 4k 若しくは K = 4k + 3,また,N が奇数のとき,K = 4k + 1若しくは K = 4k + 2 にする必要がある.ここで, $k = 0, 1, \dots, |\frac{N}{2}|$ である.

3.2 IIR ウェーブレットフィルタの実現

ここでは,画像ウェーブレット符号化のために,3.1 で述べた IIR ウェーブレットフィルタの実現について 説明する.式(2)の伝達関数は図5に示されたポリ フェーズ構成で実現できる[2].以下は,図5のポリ

図4 $H_0(z)$ の振幅特性(N=2) Fig.4 Magnitude responses of $H_0(z)$ (N=2).

図 5 全域通過フィルタを用いたフィルタバンク Fig. 5 Allpass-based filter banks.

フェーズ構成を用いた IIR ウェーブレットフィルタの 実現について述べる.入力信号 x(n) の長さを M と し,対称拡張法により拡張した信号を $\tilde{x}(n)$ とする. このとき, $\tilde{x}(n)$ は,周期 2M の周期信号である.ま た,その z 変換を $\tilde{X}(z)$ とする.以下,小文字は時間 信号,大文字はその z 変換として表し,上付チルダは 周期信号を意味する.次に,M = 8,遅延器の次数 K = 0 の場合を例にして,サブバンド分割過程につい て説明する.図6に示されるように,まず, $\tilde{x}(n)$ をダ ウンサンプリングし,周期 M をもつ周期信号 $\tilde{u}_0(n)$ と $\tilde{u}_1(n)$ を得る.図6 からわかるように, $\tilde{u}_0(n)$ と $\tilde{u}_1(n)$ は x(n) の偶数番目と奇数番目を並び替えるだ けで得られる.よって,

$$\tilde{u}_0(n) = \tilde{u}_1(M - 1 - n)$$
 (9)

となり、すなわち、

$$\tilde{U}_0(z) = z^{-M+1} \tilde{U}_1(z^{-1}) \tag{10}$$

の対称関係がある.また, $K \neq 0$ の場合,Kが偶数 なら信号の偶数番目を間引き,Kが奇数なら奇数番目 を間引く.そのとき,対称の中心は異なるが,同様な 対称関係が存在する.一般には, $\tilde{u_0}(n)$ と $\tilde{u_1}(n)$ をそ

図 6 サブバンド分割過程 Fig. 6 Decomposition process.

れぞれ A(z) と $A(z^{-1})$ に通して $\tilde{v}_0(n)$ と $\tilde{v}_1(n)$ を得る. すなわち,

$$\tilde{V}_{0}(z) = A(z)\tilde{U}_{0}(z)
\tilde{V}_{1}(z) = A(z^{-1})\tilde{U}_{1}(z)$$
(11)

となる.したがって,式(11)から,

$$\tilde{V}_0(z) = z^{-M+1} \tilde{V}_1(z^{-1}) \tag{12}$$

という関係が成り立つ.すなわち,

$$\tilde{v}_0(n) = \tilde{v}_1(M - 1 - n)$$
 (13)

である.サブバンド信号 $\tilde{y}_0(n)$ と $\tilde{y}_1(n)$ は,

$$\begin{cases} \tilde{y}_0(n) = \tilde{v}_0(n) + \tilde{v}_1(n) = \tilde{v}_0(n) + \tilde{v}_0(M - 1 - n) \\ \tilde{y}_1(n) = \tilde{v}_0(n) - \tilde{v}_1(n) = \tilde{v}_0(n) - \tilde{v}_0(M - 1 - n) \end{cases}$$
(14)

で求められ, $\tilde{v}_0(n)$ のみに依存する.したがって, $\tilde{u}_0(n)$ をA(z)に通して, $\tilde{v}_0(n)$ を求めるだけでよい.

次に,全域通過フィルタA(z)の実現について説明 する.A(z)は一般に,実係数をもつ1次または2次の 全域通過フィルタにより構成できる.本論文では,画 像圧縮のために,最大平たん特性をもつ全域通過フィ ルタA(z)を使用する.最大平たんフィルタの場合, すべて1次の全域通過フィルタより構成できる.すな わち,

$$A(z) = \prod_{i=1}^{N} A_i(z) = \prod_{i=1}^{N} \frac{z^{-1} - \alpha_i}{1 - \alpha_i z^{-1}}$$
(15)

ここで, α_i はフィルタの極であり,実数である.文献 [12] で設計された最大平たんフィルタは一般に不安定であり,その極は単位円内外の両方に存在する.不安定な全域通過フィルタは,単位円内の極から構成される $A^S(z)$ と単位円外の極から構成される $A^U(z)$ に分解できる. $A^U(z^{-1})$ は

$$A^{U}(z^{-1}) = \prod_{i=1}^{N_{1}} \frac{z^{-1} - \frac{1}{\alpha_{i}}}{1 - \frac{1}{\alpha_{i}}z^{-1}}$$
(16)

となり,安定である.よって,図7に示されるように, 不安定な $A^{U}(z)$ は,入力信号を反転させてから安定 な $A^{U}(z^{-1})$ を通して処理を行い,出力信号を再度反 転させることにより,実現できる.

全域通過フィルタは, すべて1次のフィルタより構

図 7 全域通過フィルタの縦続接続構成 Fig. 7 Cascade of allpass filters.

図 8 1次全域通過フィルタの構成 Fig. 8 Structure of first-order allpass filters.

成されるので,1次の全域通過フィルタの実現につい て説明する.1次の全域通過フィルタの代表的な構成 は図8に示されている.この三つの構造において,必 要な乗算器,加算器と遅延器の数が異なるが,それぞ れ実際の応用に応じて選ぶ必要がある.本論文では, 演算量を考慮し,図8(a)の構成を用いた.その入出 力関係は,

$$\begin{cases} \tilde{d_0}(n) = \tilde{u_0}(n) + \tilde{d_1}(n-1) \\ \tilde{d_1}(n) = \alpha_i \tilde{d_0}(n) \\ \tilde{w_0}(n) = \tilde{d_0}(n-1) - \tilde{d_1}(n) \end{cases}$$
(17)

/

であり,ただ一つの乗算器と二つの加算器で構成される.ここで,入力信号が周期信号であるので,初期値 $\tilde{d_0}(-1)$ と $\tilde{d_1}(-1)$ の計算が必要である.その初期値は,

$$\begin{split} \tilde{d_0}(-1) \\ &= \tilde{u_0}(-1) + \alpha_i \tilde{u_0}(-2) + \alpha_i^2 \tilde{u_0}(-3) \\ &+ \dots + \alpha_i^{L-1} \tilde{u_0}(-L) \\ &= \tilde{u_0}(-1) + \alpha_i \{ \tilde{u_0}(-2) + \alpha_i \{ \tilde{u_0}(-3) \} \end{split}$$

$$+\cdots+\alpha_i\{\tilde{u_0}(-L+1)+\alpha_i\tilde{u_0}(-L)\}\cdots\}\}$$

$$\tilde{d}_1(-1) = \alpha_i \tilde{d}_0(-1)$$
 (19)

で求めることができる.理論上は $L \to \infty$ とする必要 があるが,実際にはある程度大きな L で十分である. 経験上, $L = 20 \sim 40$ で初期値の誤差が十分小さくな る.初期値の計算を考慮すると,1次の全域通過フィ ルタで必要な乗算回数は,1+ $\frac{L}{M}$ であり,加算回数 は,2+ $\frac{L-1}{M}$ である.よって,N 次の全域通過フィル タで構成されたウェーブレットフィルタの場合,必要 な乗算回数 N_M と加算回数 N_A は,

$$N_M = N\left(1 + \frac{L}{M}\right)$$

$$N_A = N\left(2 + \frac{L-1}{M}\right) + 1$$
(20)

となる.例として,M = 512,L = 20, $N = 2 \sim 4$ の場合に必要な演算量が表 1 に示されている.

4. 実験結果

提案した IIR ウェーブレットフィルタを評価するた めに,画像を6レベルまで分割し,文献[10]のSPIHT を用いて実際に画像圧縮を行った.演算量を低減す るために,算術符号化を使用しないSPIHTのパイナ リバージョンを使用した.文献[10]に示されたよう に,算術符号化を使用すると,大きな演算量の代わり にPSNR がおよそ 0.3 ~ 0.6 dB 改善される.評価画 像として,画像サイズ 512×512,8 bppのBarbara, Lena, Boat, Goldhill 等の標準画像を使用した.評 価値としては,原画像と再構成画像の間のPSNRを 用いる.使用する IIR ウェーブレットフィルタは最大 平たんフィルタである.

4.1 遅延器の次数の影響

3.1 で述べたように,遅延器の次数 K がフィルタ の振幅特性に大きな影響を与えるので,ここで,画像 圧縮性能に対する影響について調べる.画像 Barbara に対し, $N = 2 \ge N = 3$ のときの圧縮結果を図 9 と図 10 に示す.図 9 と図 10 からわかるように,遅 延器の次数がある程度大きくなると圧縮性能が悪くな る.また,N = 2 のような偶数の場合,遅延器の次 数を K = 0 または K = 3 とすると,K = 1 また は K = 2 より圧縮結果が良くなる.N = 3 のような 奇数の場合,K = 1 または K = 2 で良い圧縮性能 が得られる.これは,**3.1** で述べた遷移域に存在する

Fig. 9 Influence of delay order K (N = 2).

Fig. 10 Influence of delay order K (N = 3).

余分なリプルの影響と考えられる.よって,全域通過 フィルタの次数 N が偶数の場合は,最適な遅延器の 次数は K = 0 または K = 3 であり,奇数の場合は, K = 1 または K = 2 である.以下は,全域通過フィ ルタが偶数次の場合には K = 0,奇数次の場合には K = 1 とする.

4.2 全域通過フィルタの次数の影響

全域通過フィルタの次数を高く設定すると,ウェー ブレットのレギュラリティが高くなるが,必要な演算量 は増加する.そのため,フィルタの次数が画像圧縮性 能に与える影響を調べる必要がある.Barbaraを用い たときの圧縮結果を図11に示す.ここで,N=0の 場合は従来のHaarウェーブレットに相当する.図11

図 11 全域通過フィルタの次数 N の影響 (Barbara) Fig. 11 Influence of allpass filter order N (Barbara).

図12 全域通過フィルタの次数 N の影響 (Lena) Fig. 12 Influence of allpass filter order N (Lena).

の結果から,全域通過フィルタの次数が4次以上では 圧縮性能がほとんど改善されず,N = 3またはN = 4で最も良い圧縮性能が得られる.また,Lenaを用いた ときの圧縮結果を図12に示す.Lenaの場合は低域周 波数成分が多いので,全域通過フィルタの次数が3次 以上では圧縮性能の改善がない.よって,Lenaのよう な低域周波数成分を多く含む画像に対しては,N = 2またはN = 3,Barbaraのような高周波数成分を含 んだ画像ではN = 3またはN = 4で十分であるこ とがわかった.

4.3 従来のウェーブレットとの比較

ここでは,本論文で提案したN = 2,3,4のIIR ウェーブレットフィルタを従来のFIR ウェーブレッ

表1 演算量の比較

Table 1 Comparision of computational complexity.

Filter Type	N_M	N_A
Allpass-2	2.08	5.07
Allpass-3	3.12	7.11
Allpass-4	4.16	9.15
Daubechies-9/7	4.50	7.00

表2 圧縮性能の比較(F	SNR.	in dB)
--------------	------	--------

Table 2 Comparision of coding performance (PSNR in dB).

Image	bpp	All-2	All-3	All-4	D-9/7
	1.000	38.36	38.32	38.25	38.34
Boat	0.500	33.81	33.78	33.74	33.74
	0.250	30.29	30.27	30.22	30.34
	0.125	27.55	27.53	27.48	27.70
	1.000	35.90	35.91	35.89	35.86
Goldhill	0.500	32.55	32.54	32.52	32.57
	0.250	30.04	30.03	30.01	30.16
	0.125	28.24	28.21	28.19	28.18
	1.000	39.99	39.99	39.97	39.90
Lena	0.500	36.83	36.84	36.80	36.74
	0.250	33.72	33.74	33.69	33.62
	0.125	30.68	30.67	30.60	30.61
	1.000	37.46	37.64	37.71	36.79
Barbara	0.500	32.24	32.45	32.51	31.60
	0.250	28.05	28.17	28.19	27.60
	0.125	24.95	24.97	24.90	24.89

図 13 原画像 (Barbara) Fig. 13 Original image (Barbara).

トフィルタと比較する.比較対象として,Lossy 圧縮 の場合に最も良いとされる Daubechies-9/7 ウェーブ レットを選んだ [13].まず,演算量の比較を表1 に 示す.表1 からわかるように,N = 2,3,4の場合 は Daubechies-9/7 ウェーブレットに比べて必要な乗 算回数は少なくなる.一方,加算回数を比較すると,

- 図 14 再構成画像 (Daubechies-9/7, 0.50 bpp, 31.59 dB)
- Fig. 14 Reconstructed image with Daubechies-9/7 at 0.50 bpp (31.59 dB).

図 15 再構成画像 (Allpass-2, 0.50 bpp, 32.24 dB) Fig. 15 Reconstructed image with Allpass-2 at 0.50 bpp (32.24 dB).

N = 2では Daubechies-9/7 ウェーブレットより少な くなるが, N = 3,4では多くなる.よって, 乗算回数 と加算回数の両方を考慮すると, 乗算回数は加算回数 よりも演算量への影響が大きいので, N = 2,3の場 合は Daubechies-9/7 ウェーブレットよりも演算量が 少なく, N = 4の場合はほぼ同等である.また, 画像 圧縮性能の比較を表 2 に示す.表 2 から, ほとんど の場合において, Daubechies-9/7 ウェーブレットよ り良い圧縮性能が得られた.特に, Barbaraの場合,

図 16 再構成画像 (Allpass-3, 0.50 bpp, 32.45 dB) Fig. 16 Reconstructed image with Allpass-3 at 0.50 bpp (32.45 dB).

図 17 再構成画像 (Allpass-4, 0.50 bpp, 32.51 dB) Fig. 17 Reconstructed image with Allpass-4 at 0.50 bpp (32.51 dB).

最も多くの改善量が見られた.例えば,ビットレート が1bppの場合,およそ1dB改善された.主観的な 評価のため,原画像Barbaraとそれぞれの再構成画像 を図13~17に示す.Daubechies-9/7ウェーブレット とN = 2,3,4の再構成画像を比較すると,主観的に はほとんど差がないことがわかる.したがって,本論 文で提案したN = 2,3,4のIIRウェーブレットフィ ルタは,Daubechies-9/7ウェーブレットに比べて同 等以上の圧縮性能が得られることがわかった.参考の ため,N = 2,3,4の全域通過フィルタの極をそれぞれ 表3 全域通過フィルタの極(N = 2, K = 0) Table 3 Allpass filter's poles (N = 2, K = 0).

α_1	-0.177979816042304
α_2	-2.622020183957696

表 4	全域通過フ	ィルタの極(N=3 ,	K = 1)
Table	4 Allpass	filter's poles	(N = 3.	K = 1

α_1	-0.023421767325093
α_2	-0.498798453756221
α_3	-3.334922678918686

表 5 全域通過フィルタの極 (N = 4, K = 0)

Table 5 Allpass filter's poles (N = 4, K = 0).

α_1	-0.051223616462570
α_2	-0.407729187986630
α_3	-1.694174258880685
α_4	-9.846872936670111

表3,表4と表5に示す.

5. む す び

本論文では、画像圧縮のために全域通過フィルタを 用いた IIR ウェーブレットフィルタの有効な実現方法 を提案した . IIR ウェーブレットフィルタを用いること により,完全直線位相と正規直交条件を同時に満たす ことができ,かつ,少ない演算量で実現できる.また, SPIHT を用いて実際に画像圧縮を行い, IIR ウェーブ レットフィルタの評価を行った.全域通過フィルタと 遅延器の次数が圧縮性能に与える影響を調べ,最適な 遅延器の次数は,全域通過フィルタの次数 N が偶数 のとき,K = 0またはK = 3であり,Nが奇数のと き,K = 1またはK = 2であることを明らかにした. また,実験結果から,全域通過フィルタの次数 N は, 自然画像の圧縮に対して, $N = 2 \sim 4$ で十分であるこ とがわかった.最後に,Daubechies-9/7ウェーブレッ トと比較し,少ない演算量で同等以上の圧縮性能が得 られた。

文 献

- I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992.
- [2] P.P. Vaidyanathan, Multirate systems and filter banks, Englewood Cliffs, NJ: Prentice Hall, 1993.
- [3] M. Vetterli and J. Kovacevic, Wavelets and subband coding, Prentice Hall PRT, Upper Saddle River, New Jersey, 1995.
- [4] A.N. Akansu and M.J.T. Smith, Subband and wavelet transforms: design and applications, Kluwer Academic Publishers, Boston, MA, 1996.
- [5] M.J.T. Smith and S.L. Eddins, "Analysis/ synthesis

techniques for subband image coding," IEEE Trans. ASSP, vol.38, no.8, pp.1446–1456, Aug. 1990.

- [6] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, "Image coding using wavelet transform," IEEE Trans. Image Processing, vol.1, no.2, pp.205– 220, April 1992.
- [7] M. Vetterli and C. Herley, "Wavelets and filter banks: Theory and design," IEEE Trans. Signal Processing, vol.40, no.9, pp.2207–2232, Sept. 1992.
- [8] C. Herley and M. Vetterli, "Wavelets and recursive filter banks," IEEE Trans. Signal Processing, vol.41, no.8, pp.2536-2556, Aug. 1993.
- J.M. Shapiro, "Embedded image coding using zerotree of wavelets coefficients," IEEE Trans. Signal Processing, vol.41, no.12, pp.3445–3462, Dec. 1993.
- [10] A. Said and W.A. Pearlman, "A new, fast, and efficient image codec based on set partitioning in hierarchical trees," IEEE Trans. CAS for Video Technology, vol.6, no.3, pp.243–249, June 1996.
- [11] I.W. Selesnick, "Formulas for orthogonal IIR wavelet filters," IEEE Trans. Signal Processing, vol.46, no.4, pp.1138–1141, April 1998.
- [12] X. Zhang, T. Muguruma, and T. Yoshikawa, "Design of orthonormal symmetric wavelet filters using real allpass filters," Signal Processing, vol.80, no.8, pp.1551–1559, Aug. 2000.
- [13] M.D. Adams and F. Kossentini, "Reversible integerto-integer wavelet transforms for image compression: Performance evaluation and analysis," IEEE Trans. Image Processing, vol.9, no.6, pp.1010–1024, June 2000.

(平成 12 年 7 月 7 日受付, 8 月 29 日再受付)

上村 晴也 (学生員)

平 11 長岡技科大・電気電子システム工 学卒.現在,同大大学院修士課程在学中. ウェーブレットの研究に従事.

熙(正員)

1984 中国南京航空航天大学電子工程系 卒.1993 電気通信大学大学院修士課程了. 工博.1984 南京航空航天大学助手.1993 電気通信大学助手.現在,長岡技術科学大 学助教授.1987 年度中国国家科学技術進 歩三等賞受賞.ディジタル信号処理,近似

理論,ウェーブレット等の研究に従事.IEEE 会員.

張

吉川 敏則 (正員)

昭46東工大・電子卒.昭51同大大学院 博士課程了.工博.埼玉大工学部助手,同 大講師を経て,昭58より長岡技術科学大 学助教授.現在,同大教授.ディジタル信 号処理,コンピュータのソフトウェア応用 等の研究に従事.IEEE会員.