論

Υ.

IIR 直線位相フィルタバンクを用いた画像ロスレス符号化

Lossless Image Coding Using IIR Filter Banks with Linear Phase

Hiroshi ABE[†], Xi ZHANG^{†a)}, Toshinori YOSHIKAWA[†], and Yoshinori TAKEI[†]

あらまし 画像ウェーブレット符号化においては,従来,FIR 直線位相フィルタバンクが主に用いられてき た.周知のように,FIR フィルタに比べて,IIR フィルタは同等な次数でより良い周波数特性が得られるため, 画像圧縮に適用する際,より良い圧縮性能が期待できる.本論文では,IIR 直線位相フィルタバンクを画像ロス レス符号化に適用し,リフティング構成に基づいた有効な実現方法を提案する.提案する IIR フィルタバンクで は,有名なリフティング構成を用いるため,フィルタリング後に整数化処理を行い,ロスレス符号化に必要な可 逆ウェーブレット変換が容易に実現できる.また,各々の自然画像に対し,それらの画像に適したフィルタパラ メータを実験結果から明らかにする.最後に,IIR 直線位相フィルタバンクを使用することにより,従来のFIR フィルタより良い画像圧縮性能が得られることを示す.

キーワード IIR 直線位相フィルタ, ウェーブレット符号化, ロスレス符号化, 画像圧縮

1. まえがき

近年,パソコンなどの普及により,ディジタル画像 が扱われる機会が増えてきている.ディジタル画像は, その情報量が膨大であることから,それを伝送・蓄積 する際,圧縮が不可欠となる.その中で,フィルタバ ンクを用いた画像ウェーブレット符号化が盛んに研究 されており [1]~ [14], 既に画像の国際標準 JPEG2000 と MPEG4 に採用されている [15]. 画像ウェーブレッ ト符号化において,2チャネル完全再構成フィルタバ ンクが重要な役割を果たしている.また,画像圧縮の 際,もとの画像をいくつかのサブバンド画像に分解し た後の総画素数が増加しないために,一般に対称拡張 法が用いられている[5]. そのため, フィルタバンク の分解と合成フィルタには,完全直線位相特性が要求 される.従来,完全直線位相特性が容易に実現できる という理由から,画像ウェーブレット符号化には,主 に FIR フィルタが使用されてきた [6] [10]~[12] [14]. 周知のように, FIR フィルタに比べて, IIR フィルタ は同等な次数でより良い周波数特性を得ることがで

きる.また,画像処理においては,非因果的なフィル タが使用可能のため,完全直線位相特性を有する IIR フィルタが実現できる.よって,IIR 直線位相フィルタ バンクを画像圧縮に適用することにより,良い圧縮性 能が期待できる.画像圧縮には,高圧縮率の非可逆符 号化と画像の完全復元を目指す可逆(ロスレス)符号 化がある.ロスレス符号化には,リフティング構成を 用いた方法[12]が最も有名であり,FIR 直線位相フィ ルタが主に用いられている[11],[14],[15].しかし,リ フティング構成による IIR 直線位相フィルタの実現法 がいまだに提案されていない.

本論文では,完全直線位相特性を有する IIR フィル タバンクを画像ロスレス符号化に適用し,リフティン グ構成に基づいた有効な実現方法を提案する.提案す るフィルタバンクでは,有名なリフティング構成[12] を用いるので,フィルタリング後に整数化処理を行う ことにより,可逆ウェーブレット変換が実現でき,画 像ロスレス符号化が可能となる.フィルタバンクの設 計に関しては,完全直線位相特性を得るためのフィル タ係数等が満たすべき条件を示し,最大平たん振幅特 性を有するフィルタ係数の解析解を与える.また,任 意の平たん度を有するフィルタの設計については,文 献[13]で提案された設計法を利用する.そして,対称 拡張法を用いて,リフティング構成に基づいた IIR 直

[†] 長岡技術科学大学工学部電気系,長岡市

Department of Electrical Engineering, Nagaoka University of Technology, Nagaoka-shi, 940–2188 Japan

a) E-mail: xiz@nagaokaut.ac.jp

線位相フィルタの実現と処理過程を示す.次に,様々 な自然画像について,提案した IIR 直線位相フィルタ バンクの画像圧縮性能を調査する.その実験結果から, 各画像の圧縮に適したフィルタパラメータを明らかに する.最後に,JPEG2000で採用されている FIR フィ ルタバンクである Daubechies-5/3 ウェーブレットと 画像圧縮性能について比較を行う.その結果,提案し た IIR 直線位相フィルタバンクは,従来の FIR フィル タバンクより良い画像圧縮性能が得られることを示す.

2. 画像ロスレス符号化

画像圧縮は,非可逆(ロシー)符号化と可逆(ロス レス)符号化に分けられる.ロシー符号化とは,人間 の視覚特性を利用し,目立たない部分を削除すること で,高圧縮率を得る符号化である.しかし,伸長した 際,もとの画像を完全に復元することができない.一 方,ロスレス符号化とは,圧縮した画像を伸長した後, もとの画像を完全に復元できる符号化であり,医療や 美術などの分野で主に利用されている[10].図1 に ウェーブレット変換を用いた画像ロスレス符号化の概 略図を示す.

図1では,まず,原画像を可逆ウェーブレット変 換 (RWT: Reversible Wavelet Transform) し, いく つかのサブバンド画像に分解する.次に,得られたサ ブバンド画像を,そのエントロピーに応じて符号化す る. 伝送・蓄積した後,符号化したサブバンド画像を復 号し, 逆ウェーブレット変換 (IWT: Inverse Wavelet Transform)を用いてもとの画像に復元する.ここで, エントロピー符号化には,一般にハフマン符号化や算 術符号化などの可逆符号化が用いられている.また, ウェーブレット変換に対しても,同様に可逆である必 要がある.すなわち,入力が整数であるとき,変換後 の出力も整数でなければならない、ウェーブレット変 換は,2 チャネル完全再構成フィルタバンクより実現 できる.3レベルまでの1次元ウェーブレット分解を 図 2 に示す.画像のような 2 次元信号の場合は,縦 方向と横方向に対してそれぞれ分解を行い,4個のサ ブバンド画像が得られる.そして,低域画像に対して 同様な分解を繰り返すことによって,図3に示され るようなサブバンド画像が得られる.また,逆ウェー ブレット変換はウェーブレット変換と逆の順序で行わ れる.

図 1 画像ロスレス符号化

図 2 1次元ウェーブレット分解 Fig. 2 1-D wavelet decomposition.

LL ³ HL ³ LH ³ HH ³ LH ²	HL ² HH ²	ΗL ¹
L	.H ¹	ΗΗ ¹

図 3 2次元ウェーブレット分解 Fig. 3 2-D wavelet decomposition.

3. IIR 直線位相フィルタバンクの設計

本論文で使用される 2 チャネルフィルタバンクは, 図 4 に示されるリフティング構成に基づいたものであ る.リフティング構成では,入力画像の輝度値が整数 であるのに対し,フィルタ P(z) と Q(z) を通した後 の出力は一般に実数である.そこで,図 4 に示される ように P(z) と Q(z) の後に丸め操作を挿入すること で,整数値の出力を得ることができ,ロスレス符号化 に必要な可逆ウェーブレット変換が可能となる.また, 合成側では,分解側と逆の処理を行うことで,もとの 画像を完全に復元できる.以下では,分解側について のみ説明する.

次に, $P(z) \ge Q(z)$ の設計について考える. $H_0(z)$

図 4 リフティング構成 Fig. 4 Lifting structure.

を分解側の低域通過フィルタ, *H*₁(*z*) を高域通過フィ ルタとする.その伝達関数は,

$$\begin{cases} H_0(z) = 1 + Q(z^2)H_1(z) \\ H_1(z) = z^{-1} - P(z^2) \end{cases}$$
(1)

となる.本論文では,P(z)とQ(z)をIIRフィルタとして,その伝達関数は次のように定義される.

$$\begin{cases} P(z) = z^{N} \sum_{n=0}^{N_{1}} a_{n} z^{-n} / \sum_{m=0}^{M_{1}} b_{m} z^{-m} \\ Q(z) = z^{M} \sum_{n=0}^{N_{2}} c_{n} z^{-n} / \sum_{m=0}^{M_{2}} d_{m} z^{-m} \end{cases}$$
(2)

ここで, a_n , b_m , c_n , d_m は実数のフィルタ係数であ り, $b_0 = d_0 = 1$ である.フィルタの位相特性が完全 直線位相となるため,その係数は対称でなければなら ない.すなわち,

$$\begin{cases}
 a_n = a_{N_1 - n} & (n = 0, 1, \dots, N_1) \\
 b_m = b_{M_1 - m} & (m = 0, 1, \dots, M_1) \\
 c_n = c_{N_2 - n} & (n = 0, 1, \dots, N_2) \\
 d_m = d_{M_2 - m} & (m = 0, 1, \dots, M_2)
\end{cases}$$
(3)

である.ここで, $M_1 \ge M_2$ が奇数のとき, $P(z) \ge Q(z)$ の極がz = -1に存在するため,不安定となる.したがって, $M_1 \ge M_2$ は偶数でなければならない.また,直線位相条件から, N_1, N_2, M_1, M_2, N, M は次式を満たさなければならない.

$$\begin{aligned}
 N_1 &= 2I_1 + 1 \\
 M_1 &= 2I_2 \\
 N &= \frac{N_1 - M_1 - 1}{2} = I_1 - I_2 \\
 N_2 &= 2I_3 + 1 \\
 M_2 &= 2I_4 \\
 M &= \frac{N_2 - M_2 + 1}{2} = I_3 - I_4 + 1
 \end{aligned}$$
(4)

ここで , I_1, I_2, I_3, I_4 は整数である . よって , P(z) と Q(z) の周波数特性は ,

$$\begin{cases} P(e^{j\omega}) = e^{-j\frac{\omega}{2}} \frac{\sum_{n=0}^{I_1} a_n \cos\left(I_1 - n + \frac{1}{2}\right)\omega}{\frac{1}{2}b_{I_2} + \sum_{m=0}^{I_2 - 1} b_m \cos(I_2 - m)\omega} \\ Q(e^{j\omega}) = e^{j\frac{\omega}{2}} \frac{\sum_{n=0}^{I_3} c_n \cos\left(I_3 - n + \frac{1}{2}\right)\omega}{\frac{1}{2}d_{I_4} + \sum_{m=0}^{I_4 - 1} d_m \cos(I_4 - m)\omega} \end{cases}$$
(5)

となり,完全直線位相特性であることがわかる.よって, $H_0(z)$ と $H_1(z)$ の振幅特性 $\hat{H}_0(e^{j\omega}), \hat{H}_1(e^{j\omega})$ は,

$$\hat{H}_0(e^{j\omega}) = 1 + \hat{H}_1(e^{j\omega})\hat{Q}(e^{j2\omega})$$
 (6)

$$\hat{H}_1(e^{j\omega}) = 1 - \hat{P}(e^{j2\omega})$$
 (7)

となる.ただし, $\hat{P}(e^{j\omega}), \hat{Q}(e^{j\omega})$ はP(z)とQ(z)の振幅特性である.次に, $H_1(z)$ を高域通過フィルタとするため,P(z)の所望振幅特性は,

$$\hat{P}_d(e^{j2\omega}) = \begin{cases} 1 & (0 \le \omega \le \omega_p) \\ -1 & (\omega_s \le \omega \le \pi) \end{cases}$$
(8)

である.ここで, ω_p と ω_s は,それぞれ低域通過 フィルタ $H_0(z)$ の通過域と阻止域端周波数であり, $\omega_p + \omega_s = \pi$ である.よって,

$$\hat{P}_d(e^{j\omega}) = 1 \quad (0 \le \omega \le 2\omega_p) \tag{9}$$

となるように設計すればよい.同様に, $H_0(z)$ を低域 通過フィルタとするため,Q(z)の所望振幅特性は,

$$\hat{Q}_d(e^{j\omega}) = \frac{1}{2} \quad (0 \le \omega \le 2\omega_p) \tag{10}$$

である[13].

ウェーブレットのレギュラリティ条件から,良い圧 縮性能を得るためには,フィルタに平たんな振幅特性 が要求される.ここでは,P(z)の設計について考え る.Q(z)も同様に設計できるため,ここでは省略す る. $H_1(z)$ の平たん条件は,

$$\frac{\partial^k \hat{H}_1(e^{j\omega})}{\partial \omega^k} \bigg|_{\omega=0} = 0$$

$$(k = 0, 1, \dots, 2J_1 + 1)$$

$$(k = 0, 1, \dots, 2J_1 + 1)$$

で表される.ここで, J_1 は整数で, $0 \le J_1 \le I_1 + I_2$ である. $J_1 = I_1 + I_2$ であるとき,最大平たんフィル タとなる.式 (11)の平たん条件から,次式の線形方 程式を得ることができる.

$$\begin{cases} \sum_{n=0}^{I_1} a_n - \sum_{m=0}^{I_2-1} b_m - \frac{1}{2} b_{I_2} = 0 & (k=0) \\ \sum_{I_1}^{I_1} a_n \left(I_1 - n + \frac{1}{2} \right)^{2k} - \sum_{m=0}^{I_2-1} b_m (I_2 - m)^{2k} \\ = 0 & (k=1,2,\dots,J_1) \end{cases}$$
(12)

ただし, $b_0 = 1$ である.よって, $J_1 = I_1 + I_2$ とする とき,フィルタ係数 a_n, b_m は解析的に求められ,そ の閉じた形の解は,

である.また,任意の平たん度を有するフィルタを設計 する場合は,文献 [13] で提案された設計法を利用する. 一つの設計例として, $N_1 = N_2 = 1 \ge M_1 = M_2 = 2$ のときの最大平たんフィルタの振幅特性を図 5 に示す.

図 5 分解側フィルタの振幅特性 Fig. 5 Magnitude responses of analysis filters.

4. IIR 直線位相フィルタバンクの実現

ここでは,図4のリフティング構成を用いた IIR 直 線位相フィルタの実現法と処理過程について述べる. 4.1 サブバンド分解

まず,分解側のフィルタの実現について説明する. 説明のため,図6に分解側のリフティング構成を再び 示す.もとの信号 x(n)の長さをLと仮定する.P(z)とQ(z)の位相特性が完全直線位相であるため,対称 拡張法を用いて,図7に示されるように,x(n)を周 期信号 $\tilde{x}(n)$ に拡張する. $\tilde{x}(n)$ の周期は2(L-1)と なる.また,そのz変換を $\tilde{X}(z)$ とする.以下,小文 字は時間信号,大文字はそのz変換として表し,上付 きチルダは周期信号を意味する.この周期信号 $\tilde{x}(n)$

図 6 分解側フィルタ Fig. 6 Analysis filters.

図 7 サブバンド分解過程 Fig. 7 Subband decomposition process.

を分解フィルタの入力信号とする.次に, L = 8 の場 合を例にして,サプバンド分解過程について説明する. 図 7 に示されるように,まず, $\tilde{x}(n)$ をダウンサンプ リングし,周期 L-1をもつ周期信号 $\tilde{u}_0(n)$ と $\tilde{u}_1(n)$ を得る.次に,信号 $\tilde{u}_0(n)$ をフィルタ P(z) に通し て,丸め処理を行い, $\tilde{v}_0(n)$ を得る.P(z)が,式(5) よりハーフサンプル遅延の直線位相フィルタであるた め, $\tilde{v}_0(n)$ は, $\tilde{u}_1(n)$ と同様な対称関係をもつ. $\tilde{u}_1(n)$ から $\tilde{v}_0(n)$ を引くことより, $\tilde{y}_1(n)$ を得る.同様に, $\tilde{y}_1(n)$ を Q(z) に通して,丸め処理を行い, $\tilde{u}_0(n)$ と 同様な対称関係の $\tilde{v}_1(n)$ を得て, $\tilde{u}_0(n)$ に加えること により, $\tilde{y}_0(n)$ を得る.以上のように,低域と高域サ プバンド信号 $\tilde{y}_0(n), \tilde{y}_1(n)$ が得られる.

4.2 フィルタリング処理

次に, $P(z) \geq Q(z)$ のフィルタリング処理につい て考える.ここでは, P(z)のフィルタリング処理に ついて述べる.Q(z)も同様に処理できるため,省略 する.本論文で提案するフィルタバンクは,完全直線 位相特性をもつため,その極が単位円内と外の両方に 存在する.その場合,P(z)は,

$$P(z) = P_s(z)P_u(z) \tag{14}$$

のように,極がすべて単位円内に存在する因果的安定 なフィルタ $P_s(z)$ と, 極がすべて単位円外に存在す る逆因果的安定なフィルタ $P_u(z)$ の二つのサブフィ ルタに分解することができる.因果的安定なフィル タ $P_s(z)$ は,そのまま実現できるが,逆因果的安定な フィルタ $P_u(z)$ はできない. 逆因果的安定なフィルタ $P_u(z)$ は,図8に示されるように,まず入力信号を 時間反転させ,因果的安定なフィルタ $P_u(z^{-1})$ を通 して処理を行い,出力信号を再度時間反転させること により,実現することができる.また,入力信号が周 期信号であるため, IIR フィルタで信号を処理する際, 初期値計算が必要となる.本論文では,文献[5]を参 考に、フィルタのインパルス応答を用いて初期値を計 算する. IIR フィルタのインパルス応答は, 理論的に は無限長であるが,実際には,安定なフィルタの場合, そのエネルギーが有限区間内にしか存在しない.よっ て,ある程度十分な長さのインパルス応答を用いれば, 初期値を計算することができる.次に,フィルタリン グ過程を説明する.図 9 では,まず, $\tilde{u}_0(z)$ を $P_s(z)$ に通し, $\tilde{w}_0(z)$ を得る.次に, $\tilde{w}_0(z)$ を時間反転させ, $P_u(z^{-1})$ に通し,再び時間反転させる.ここで,時間 反転操作は,余分な処理が必要とせず,単に信号の入

図 8 フィルタリング処理 Fig. 8 Filtering processing.

図 9 フィルタリング処理過程 Fig. 9 Filtering processing.

カ順序を逆にするのみでよい.また, P(z) は直線位 相フィルタであるため,出力信号 $\tilde{v}_0(z)$ が対称関係を 保つ.よって,その半周期分のみが得られれば,出力 信号のすべてがわかる.以上の点を考慮すると,フィ ルタリング処理する信号のサンプル数は1周期分では なく,その半分でよい.また,初期値計算に必要なサ ンプル数も考慮に入れなければならない.説明のため, その一例として,図9に点線で囲まれたサンプルは初 期値計算に必要なサンプルを示している.

5. 実験結果

上述した IIR 直線位相フィルタバンクを用いて,そ の画像圧縮性能について調査する.評価画像として, Barbara や Lena 等 (512 × 512, 8bpp)の自然画像を 用いた.各画像を 6 レベルまでサブバンド分解し,評 価尺度として,次式の Entropy を使用する.

Entropy =
$$-\sum_{x} p_x \log_2 p_x$$
 [bpp] (15)

ここで, px は各輝度値 x の出現確率である.

まず,フィルタ次数 $N_1 = N_2 = 1 \ge M_1 = M_2 = 2$ の最大平たん IIR フィルタの圧縮性能を調べ,その結果 を表1に示す.ここでは,このフィルタを P1M-Q1M と名づけた.比較の対象として,国際標準 JPEG2000 で採用された FIR フィルタである Daubechies-5/3 ウェーブレットを選んだ.表1より,提案した IIR 直線位相フィルタは,Goldhill 以外の画像において, Daubechies-5/3 ウェーブレットより良い圧縮性能を

表 1	画像圧縮性能	能の	比較 (E	Entropy	in bpp)
Table 1	$\operatorname{Comparison}$	\mathbf{of}	image	coding	performance
	(Entropy in]	bpr	o).		

Image	D-5/3	P1M-Q1M
Barbara	4.9912	4.7556
Boat	4.5411	4.5181
Crowd	4.3624	4.2719
Goldhill	4.8407	4.8425
Lena	4.3478	4.2918
Man	4.7406	4.7173
Mandrill	6.1102	6.0816
Peppers	4.5810	4.5804
Woman	3.3929	3.3356
Zelda	3.9284	3.8568

示した.これは, IIR 直線位相フィルタが FIR フィル タに比較して,より良い周波数特性を有するからと考 えられる.

5.1 フィルタ次数の影響

表 1 からわかるように , 分母の次数 $M_1 = M_2 = 2$ の場合, FIR フィルタ $(M_1 = M_2 = 0)$ より良い圧縮 性能が得られた.分子と分母の次数が高くなると,最 大平たんフィルタの平たん度が高くなり,圧縮性能が 良くなると思われるが,高次数のフィルタの場合,平 たん度以外の要素が圧縮性能に影響を及ぼす可能性が 考えられるので,フィルタの次数について調査した. まず,画像 Barbara を用いて, $M_1 = M_2 = 0$ の FIR 最大平たんフィルタについて調査し,その結果を表2 に示す. 表 2 から, 分子次数 N_1 と N_2 が高くなるに つれ,エントロピーが低くなっていくことがわかる.し かし,その改善量は次第に少なくなり, $N_1 = N_2 = 15$ 以上の場合,ほとんど改善が見られなかった.また, $M_1 = M_2 = 2$ の IIR 最大平たんフィルタの圧縮結果 を表 3 に示す.表 3 では, $M_1 = M_2 = 0$ の場合と 異なり, 分子次数 $N_1 \ge N_2$ が高くなるとき, エント ロピーが低くなるとは限らない.しかし,低い次数で より低いエントロピーが得られている.したがって, IIR フィルタを用いることにより, 従来の FIR フィル タより良い圧縮性能が得られる.そこで,分子と分母 の次数が, $N_1 \leq 19, N_2 \leq 19$ と $M_1 \leq 6, M_2 \leq 6$ の すべての組合せに対し,その圧縮性能を調査した.そ の中で,画像圧縮性能が最も良くなるフィルタ次数と そのときのエントロピーを表4に示す.表4で示さ れたエントロピーが,表1の結果よりもっと低くなっ ていることがわかる.表4では,BoatやGoldhill等 の画像に対し, FIR フィルタが良い圧縮性能を示す が, Barbara や Lena 等の画像に対しては, IIR フィ

ルタが良い圧縮性能を示している.これは,Barbara やLena等の画像には,細かい縞模様等が他の画像よ リ多く含まれ,高周波数成分が多いからと考えられる. また,Barbara等の画像において,高次のフィルタが 必要となる.これも画像に含まれる高周波数成分の影 響と考えられる.よって,細かい縞模様等を多く含む 画像には,FIR フィルタより IIR フィルタが有効と 思われる.したがって,各画像に適したフィルタを選 ぶことにより,更なる改善ができることがわかる.画 像の特徴などに基づいて,どのようにフィルタのパラ メータを選ぶ一般的な指針を示すことが重要となるが, 更なる研究が必要である.

5.2 平たん度の影響

フィルタ次数が高くなるにつれ,画像圧縮を行う際 に必要な演算量が多くなる.よって,高次のフィルタ が必要な画像に対し、圧縮性能を維持しながら、フィ ルタの次数を下げて演算量の低減を図る必要がある. ここで,画像 Barbara を例に,最大平たんフィルタの 代わりに,任意の平たん度をもつフィルタを適用した. $N_1 = 3$, $M_1 = 2$ のとき, 平たん度 J_1 と, 通過域端 周波数 ω_{p1} を変化させたときのエントロピーを図 10 に示す.ここで, $\omega_{n1} = 0$ のときは,最大平たんフィ ルタとなる.図10からわかるように,最大平たんフィ ルタの圧縮性能が最も良くなるとは限らず,エントロ ピーが一番低くなる ω_{n1} が存在する. すなわち, 平た ん度が画像圧縮性能を左右する唯一の要素でなく,他 の要素も影響を及ぼしていることがわかる.よって, ある程度の平たん度を確保しながら、他のパラメータ を調整すると圧縮性能が改善できる.そこで,平たん 度と通過域端周波数を変化させ, すべてのフィルタに 対し画像圧縮性能を調査した.その中から,表4とほ ぼ同等のエントロピーでより低い次数のフィルタを三 つ選んだ.そのフィルタのパラメータを表5に示す. この表では, $J_1 = 0$ の場合,フィルタが平たん度をも たないでなく , 式 (11)からわかるように , $\omega=0$ に おける $H_1(z)$ の振幅特性は 1 次までの微係数がゼロ である.高次数のフィルタが必要とする画像には,一 般に高周波数成分が多く含まれ,必要なフィルタの振 幅特性がよりシャープになる.図 10 と表 5 の結果か ら,同次数の最大平たんフィルタよりある程度の通過 域幅を有するフィルタが良い圧縮性能を示しているこ とがわかる.その結果,任意の平たん度を有するフィ ルタを使用すると,多少圧縮性能が悪くなるが,低次 数で演算量を低減できる.

	$N_2 = 1$	$N_2 = 3$	$N_2 = 5$	$N_2 = 7$	$N_2 = 9$	$N_2 = 11$	$N_2 = 13$	$N_2 = 15$
$N_1 = 1$	4.9912	4.9717	4.9663	4.9640	4.9636	4.9638	4.9639	4.9641
$N_1 = 3$	4.8568	4.8256	4.8145	4.8091	4.8063	4.8052	4.8041	4.8039
$N_1 = 5$	4.8101	4.7729	4.7599	4.7533	4.7507	4.7484	4.7469	4.7461
$N_1 = 7$	4.7882	4.7494	4.7343	4.7273	4.7241	4.7217	4.7198	4.7187
$N_1 = 9$	4.7778	4.7369	4.7208	4.7129	4.7095	4.7076	4.7055	4.7052
$N_1 = 11$	4.7722	4.7309	4.7136	4.7059	4.7021	4.6994	4.6968	4.6963
$N_1 = 13$	4.7700	4.7271	4.7092	4.7015	4.6965	4.6942	4.6916	4.6908
$N_1 = 15$	4.7688	4.7253	4.7068	4.6983	4.6940	4.6917	4.6889	4.6874

表 2 画像 Barbara のエントロピー [bpp] $(M_1 = M_2 = 0)$ Table 2 Entropy [bpp] of Barbara $(M_1 = M_2 = 0)$.

表 3 画像 Barbara のエントロピー [bpp] $(M_1 = M_2 = 2)$ Table 3 Entropy [bpp] of Barbara $(M_1 = M_2 = 2)$.

	$N_2 = 1$	$N_2 - 3$	$N_2 = 5$	$N_2 = 7$	$N_2 = 9$	$N_2 - 11$	$N_2 = 13$	$N_2 - 15$
	102 - 1	102 = 0	$1_{2} = 0$	112 - 1	102 = 3	102 = 11	102 = 10	102 = 10
$N_1 = 1$	4.7556	4.7431	4.7410	4.7408	4.7412	4.7420	4.7423	4.7426
$N_1 = 3$	4.7094	4.6944	4.6903	4.6881	4.6878	4.6882	4.6876	4.6881
$N_1 = 5$	4.7037	4.6852	4.6806	4.6785	4.6770	4.6762	4.6763	4.6759
$N_1 = 7$	4.7038	4.6849	4.6779	4.6749	4.6737	4.6723	4.6715	4.6705
$N_1 = 9$	4.7074	4.6863	4.6798	4.6766	4.6750	4.6736	4.6731	4.6725
$N_1 = 11$	4.7102	4.6890	4.6813	4.6785	4.6756	4.6756	4.6747	4.6732
$N_1 = 13$	4.7137	4.6915	4.6841	4.6808	4.6782	4.6776	4.6768	4.6755
$N_1 = 15$	4.7178	4.6947	4.6869	4.6832	4.6804	4.6795	4.6779	4.6776

表 4 各画像に適したフィルタ次数 Table 4 Filter order suited for each image.

Image	N_1	M_1	N_2	M_2	Entropy [bpp]
Barbara	7	2	15	2	4.6705
Boat	3	0	3	0	4.5160
Crowd	5	0	1	0	4.2649
Goldhill	3	0	3	0	4.8321
Lena	1	2	1	2	4.2918
Man	3	0	1	0	4.7080
Mandrill	1	2	7	0	6.0812
Peppers	3	0	3	0	4.5725
Woman	7	0	9	0	3.3348
Zelda	3	2	3	4	3.8481

図 10 通過域端周波数 ω_{p1} の影響 Fig.10 Influence of passband edge frequency ω_{p1} .

表 5 P(z) と Q(z) のフィルタパラメータ Table 5 Filter parameters of P(z) and Q(z).

N_1	M_1	J_1	ω_{p1}	N_2	M_2	J_2	ω_{p2}	Entropy [bpp]
3	2	0	0.34π	3	2	0	0.34π	4.6733
5	2	0	0.23π	3	2	0	0.40π	4.6719
7	2	4	0.00π	3	2	0	0.37π	4.6745

6. む す び

本論文では, IIR 直線位相フィルタバンクを画像ロ スレス符号化に適用し,リフティング構成に基づいた 有効な実現方法を提案した.提案した IIR フィルタバ ンクでは,リフティング構成を用いたため,可逆ウェー ブレット変換が実現でき,画像ロスレス符号化が可能 となった.様々な自然画像に対し,提案した IIR フィル タバンクの圧縮性能を調査し,従来の Daubechies-5/3 ウェーブレットより,良い圧縮性能が得られたことを 示した.次に,フィルタ次数が画像圧縮性能に及ぼす 影響を調査し,各画像に適したフィルタ次数を明らか にした.更に,演算量の低減のため,高次のフィルタ が必要な画像に対し,任意の平たん度をもつフィルタ を適用することにより,ほぼ同等の圧縮性能でフィル タの次数を低く抑えることができた.今後の課題とし て,フィルタ次数や平たん度などの一般的な選択指針 が挙げられる.

文 献

- I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992.
- [2] P.P. Vaidyanathan, Multirate Systems and Filter Banks, Englewood Cliffs, NJ: Prentice-Hall, 1993.
- [3] M. Vetterli and J. Kovacevic, Wavelets and Subband Coding, Prentice-Hall PRT, Upper Saddle River, New Jersey, 1995.
- [4] A.N. Akansu and M.J.T. Smith, Subband and Wavelet Transforms: Design and Applications, Kluwer Academic, Boston, MA, 1996.
- [5] M.J.T. Smith and S.L. Eddins, "Analysis/synthesis techniques for subband image coding," IEEE Trans. Acoust., Speech Signal Process., vol.38, no.8, pp.1446–1456, Aug. 1990.
- [6] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, "Image coding using wavelet transform," IEEE Trans. Image Process., vol.1, no.2, pp.205–220, April 1992.
- [7] M. Vetterli and C. Herley, "Wavelets and filter banks: theory and design," IEEE Trans. Signal Process., vol.40, no.9, pp.2207–2232, Sept. 1992.
- [8] C. Herley and M. Vetterli, "Wavelets and recursive filter banks," IEEE Trans. Signal Process., vol.41, no.8, pp.2536-2556, Aug. 1993.
- [9] S.M. Phoong, C.W. Kim, P.P. Vaidyanathan, and R. Ansari, "A new class of two channel biorthogonal filter banks and wavelet bases," IEEE Trans. Signal Process., vol.43, no.3, pp.649–665, March 1995.
- [10] A. Said and W.A. Pearlman, "An image multiresolution representation for lossless and lossy compression," IEEE Trans. Image Process., vol.5, no.9, pp.1303–1310, Sept. 1996.
- [11] A.R. Calderbank, I. Daubechies, W. Sweldens, and B.L. Yeo, "Lossless image compression using integer to integer wavelet transform," IEEE ICIP'97, vol.1, pp.596–599, Oct. 1997.
- [12] A.R. Calderbank, I. Daubechies, W. Sweldens, and B.L. Yeo, "Wavelet transforms that map integers to integers," Appl. Comput. Harmon. Anal., vol.5, pp.332–369, July 1998.
- [13] X. Zhang and T. Yoshikawa, "Design of two channel IIR linear phase PR filter banks," Signal Process., vol.72, no.3, pp.167–175, Feb. 1999.
- [14] H. Kiya, H. Kobayashi, and O. Watanabe, "Design of integer wavelet filters for image compression," IEICE Trans. Fundamentals, vol.E83-A, no.3, pp.487–491, March 2000.
- [15] M.D. Adams and F. Kossentini, "Reversible integerto-integer wavelet transforms for image compression: performance evaluation and analysis," IEEE Trans. Image Process., vol.9, no.6, pp.1010–1024, June 2000.

(平成 14 年 3 月 20 日受付,7 月 10 日再受付, 10 月 9 日最終原稿受付)

阿部 洋 (学生員)

2000 長岡技科大・電子機器卒.現在,同 大大学院修士課程在学中.画像圧縮等の研 究に従事.

熙(正員)

張

1984 中国南京航空航天大学電子工程系 卒.1993 電通大大学院博士課程了.博士 (工学).1984 南京航空航天大学助手.1993 電気通信大学助手.現在,長岡技術科学大 学助教授.2000 年9月~2001 年6月文 部省在外研究員(米国マサチューセッツ工

科大学). 1987 年度中国国家科学技術進歩賞三等賞, 2002 年度 第 4 回 LSI IP デザイン・アワードチャレンジ賞各受賞. 2002 年から IEEE Signal Processing Letters Associate Editor. ディジタル信号処理,画像処理,フィルタ設計理論,近似理 論,ウェーブレット,画像圧縮等の研究に従事. IEEE Senior Member.

吉川 敏則 (正員)

昭46東工大・電子卒.昭51 同大大学院 博士課程了.工博、埼玉大工学部助手,同 大講師を経て,昭58より長岡技術科学大 学助教授.現在,同大教授.ディジタル信 号処理,コンピュータのソフトウェア応用 等の研究に従事.IEEE 会員.

武井 由智 (正員)

1990 東工大・理・数学卒.1992 同大大学 院修士課程数学専攻了,修士(理学).2000 同大学院博士課程物理情報工学専攻了.博 士(工学).1992 より1995 まで川鉄情報 システム(株).1999 より2000 まで東京 工業大学電気電子工学科助手.2000 年より

現在まで長岡技術科学大学電気系助手.計算の複雑さ,ディジ タル信号処理に関する研究に従事.LA,SIAM,ACM,AMS, IEEE 各会員.