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SUMMARY

In this paper, we propose a method of designing FIR
Nyquist filters with zero intersymbol interference by using
the Remez exchange algorithm directly. First, we present
some magnitude properties of FIR Nyquist filters with zero
intersymbol interference. It is known from the time-domain
condition of zero intersymbol interference that the magni-
tude response of Nyquist filters in the passband is mainly
dependent on the stopband magnitude. Therefore, the de-
sign problem of Nyquist filters becomes optimization of the
magnitude response in the stopband. By using the Remez
exchange algorithm in the stopband directly, we formu-
late the design problem in the form of a linear problem.
The filter coefficients can be computed by simply solv-
ing the linear equations, and the optimal coefficients with
equiripple stopband response are easily obtained after a
few iterations. The proposed procedure is computation-
ally more efficient than the existing procedures. Finally,
we extend the proposed procedure to the design of
matched Nyquist filter pairs, multistage Nyquist filters,
and so on. Some design examples are presented to dem-
onstrate the effectiveness of the proposed procedure.
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1. Introduction

Nyquist filters play an important role in designing
data transmission systems and filter banks. Nyquist filters
are required in order to band-limit the data spectrum and
minimize intersymbol interference. Therefore, with the ex-
ception of one point, the impulse response must exactly
cross zero at the Nyquist rate. Several procedures have been
proposed for designing FIR Nyquist filters with zero in-
tersymbol interference [2—10]. The procedures using linear
programming techniques and nonlinear optimization meth-
ods [3-6] require a large amount of computer time, and it
is difficult to obtain an equiripple stopband response. Com-
pared with these procedures, the design method proposed
in Ref. 8 is computationally efficient. In this approach, the
transfer function of Nyquist filters is split into two parts.
One takes care of the time-domain condition of zero in-
tersymbol interference and is determined by solving a set
of linear equations. The other provides an equiripple stop-
band response for the overall filter, and is designed using
the McClellan—Parks method [1]. Two parts are alternately
adjusted until the time-domain and the frequency-domain
conditions are satisfied simultaneously. Therefore, design-
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ing an FIR Nyquist filter requires several applications of the
McClellan—Parks design program and repeated solution of
a set of linear equations.

In this paper, we propose a method of designing FIR
Nyquist filters with zero intersymbol interference by using
the Remez exchange algorithm directly. First, we investi-
gate some magnitude properties of FIR Nyquist filters with
zero intersymbol interference. From the time-domain con-
dition of zero intersymbol interference, the magnitude re-
sponse of Nyquist filters in the passband is mainly
dependent on the stopband magnitude. Therefore, the de-
sign problem of Nyquist filters becomes the optimization
of the magnitude response in stopband. In this paper, by
using the magnitude response of Nyquist filters with zero
intersymbol interference, we apply the Remez exchange
algorithm in the stopband directly and formulate the design
problem in the form of a linear problem. Then the filter
coefficients can be computed by solving a set of linear
equations, and the optimal coefficients with an equiripple
stopband response can be easily obtained after a few itera-
tions. The proposed procedure requires almost the same
computation time as the McClellan—Parks method, and is
computationally more efficient than the existing proce-
dures. Finally, we extend the proposed procedure to the
design of matched Nyquist filter pairs, multistage Nyquist
filters, and so on. Some design examples are presented to
demonstrate the effectiveness of the proposed procedure.

2. Properties of FIR Nyquist Filters

Let the transfer function H(z) of a linear phase FIR
filter of order 2N be

2N
H(z)=) hnz™" (1)

n=0

where h, = hyy_, are real. When H(z) is used as Nyquist
filter, from the time-domain condition of zero intersymbol
interference, its impulse response is required to exactly
cross zero at the Nyquist rate except for one point, that is,

1 .
=M @
hntiv =0 (6 =%1,42,-..)

where M is an integer. To band-limit the data spectrum, the
desired magnitude response of Nyquist filters is

1 0w wy)
Hy(w) = { 3)
0 (w, Swsm)
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where @, = (1 — p)n/M is the cut-off frequency of the
passband, @, = (1 + p)a/M is the cut-off frequency of the
stopband, and p is the rolloff rate. Using the time-domain
condition of Eq. (2), the magnitude response of FIR Nyquist
filters with zero intersymbol interference is given by

N
—A17 + E ay, cos(nuw) 4

n=1

ntiM

|H(e™)| =

where a, =2hy,, [n=1,2,..., N (2 iM)]. Therefore, the
problem of designing FIR Nyquist filters with zero in-
tersymbol interference will become the problem of ap-
proximating the magnitude response of Eq. (4) to the
desired magnitude response of Eq. (3).

Before designing FIR Nyquist filters, we investigate
some properties of FIR Nyquist filters with zero intersym-
bol interference. The magnitude response of FIR Nyquist
filters with zero intersymbol interference satisfies

M-1
> IH(EEH ) =1 )

k=0
Since, by Eq. (4), | HE@® )| = | H(¢®) |, we can obtain

M-1

> H(E) =1 (6)

k=0

where
k+1 | 2xm
Wy = [—2-} — + (=D,

and [-] denotes the integer part of -. Equation (6) means that
the sum of the magnitude responses of FIR Nyquist filters
with zero intersymbol interference at the frequency points

wp,

_2n _|M|2_ u
—ﬁ'{-w()’""wM—l_[z]M ( l)wo

is always unity regardless of the values of the coefficients a,.
Equation (6) can be rewritten as

M-1
[H(0) =1- ) |H(e™)| ™
k=1

Therefore, as shown in Fig. 1, it is clear that if its stopband
response is approximated to 0, then the magnitude response
in passband will be 1. Let J; be the maximum magnitude
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Fig. 1. Performance of FIR Nyquist filters.

error in the stopband; the maximum magnitude error J,, in
passband is then

bp < (M —1)é, ®)

In practical designs, the passband error is usually much
smaller than this upper limit. Since J, is guaranteed to be
relatively small for a small value of J,, filter design can
concentrate on shaping the stopband response. It can also
be explained according to the zero locations. There are
L(= N — [N/M]) unknown coefficients a, in Eq. (4), and
thus the Nyquist filter has 2L independent zeros. These
independent zeros are used to provide the desired stopband
response and hence must be located on the unit circle to
minimize stopband error. The 2[N/M] remaining zeros are
used to satisfy the time-domain condition of zero intersym-
bol interference, so that passband response is formed in a
natural manner. Therefore, the design of FIR Nyquist filters
with zero intersymbol interference requires that we ap-
proximate the magnitude response of Eq. (4) in the stop-
band only.

3. Design of FIR Nyquist Filters

3.1. Formulation using the remez exchange
algorithm

FIR Nyquist filters with zero intersymbol interfer-
ence have 2L independent zeros. To minimize the magni-
tude error in the stopband, these independent zeros must be
located on the unit circle. When all 2L zeros are located on
the unit circle, there necessarily exist (L + 1) extremal
frequencies in the stopband [w,, 7]. Hence, we can select
(L + 1) extremal frequencies in the stopband as follows;

ws=w<w <--<wp=7m (9
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Using the Remez exchange algorithm, we formulate the
condition for the magnitude response of Eq. (4) in such a
way that the amplitudes are equal and the sign alternating
at these extremal frequencies w,,, that is,

W (wm)lH(“™)| = (-1)™ 6 (10)

where W(w) is a weighting function and 6(> 0) is the
magnitude error. Substituting Eq. (4) into Eq. (10), we have
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which is a set of linear equations. Since there are (L + 1)
unknowns (L filter coefficients a, and one magnitude error
J) and (L + 1) extremal frequencies, the filter coefficients
can be uniquely determined by solving the linear equations
of Eq. (11). Using the obtained filter coefficients a,, we
compute the magnitude response and search for the peak
frequencies w,, in the stopband. However, the initially
selected extremal frequencies @, cannot be guaranteed to
be equal to the peak frequencies w,,. Therefore, we use the
obtained peak frequencies as the extremal frequencies in
the next iteration and solve the linear equations of Eq. (11)
s0 as to obtain the filter coefficients a, again. The above
procedure is iterated until the extremal frequencies ,, and
the peak frequencies ), are consistent. When the extremal
frequencies do not change, we can obtain the optimal
solution with an equiripple stopband response. The design
algorithm is shown in detail as follows.

3.2. Design algorithm

1. Read Nyquist filter specifications N, M, p and
weighting function W(w).

2. Select (L + 1) initial extremal frequencies @,
equally spaced in the stopband as shown in Eq. (9).

3. Solve the linear equations of Eq. (11) to obtain a
set of filter coefficients a,,.

4. Compute the magnitude response of the filter by
using the obtained filter coefficients a,, and search for the
peak frequencies , in the stopband.

5. If |, - w,| <e(m=01,..,L), where g isa
specified small constant, are satisfied, then stop. Otherwise,
go to the next step.

6. Setw,=wy(m=0,1,...,L), then go to step 3.

3.3. Comparison of computations

In this section, we compare the computation time of
the design algorithm proposed in section 3.2 with that of



the conventional methods. In the design of general FIR
linear phase filters, the McClellan—Parks method is well-
known and often used. In this method, the Remez exchange
algorithm is used to formulate the design problem, and the
magnitude response of the filter is computed by using the
Lagrange interpolation formula without solving the linear
equations directly. The peak frequencies are sought via the
obtained magnitude response, and are used as the extremal
frequencies in the next iteration. The above procedure is
iterated until the peak frequencies do not change. Then an
equiripple response is obtained, and a set of filter coeffi-
cients is computed by using the inverse discrete Fourier
transform (IDFT). However, in the proposed method, since
the time-domain condition of zero intersymbol interference
has been included in the magnitude response of the Nyquist
filters, the Lagrange interpolation formula cannot be used.
Thus, we must solve the linear equations of Eq. (11) di-
rectly. From the time-domain condition of zero intersymbol
interference, the number of unknown coefficients in the
Nyquist filters is M — 1/M of the same-order FIR filters, and
the peak frequencies are sought in the stopband only. The
filter coefficients are directly computed by solving the
linear equations, and the IDFT need not be used. After
considering these factors, although the computation time of
the proposed method is slightly higher than in the McClel-
lan—Parks method, they are nearly the same.

In the conventional methods for design of Nyquist
filters, it is clear that procedures using linear programming
techniques and nonlinear optimization methods [3-5] re-
quire large amounts of computation time. In the method
using eigenfilters [6], the optimal solution in the least-
square sense is obtained by finding the minimum eigen-
value. Its computation time is almost the same as the
McClellan—Parks method. However, to obtain an equiripple
response, an iteration procedure with weighting of the
magnitude error is needed. Therefore, its computation time
increases with the number of iterations. In the design
method proposed in Ref. 8, the transfer function of a
Nyquist filter is split into two parts. One deals with the
time-domain condition of zero intersymbol interference
and is determined by solving a set of linear equations. The
other provides an equiripple stopband response for the
overall filter and is designed using the McClellan—Parks
method. Two parts are alternately adjusted until the time-
domain and the frequency-domain conditions are satisfied
simultaneously. Therefore, designing an FIR Nyquist filter
requires several applications of the McClellan—Parks de-
sign program and repeated solution of a set of linear equa-
tions. From the above comparison, it is clear that the
proposed method is computationally more efficient than the
conventional methods.
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4. Design of Matched Nyquist Filter Pairs

In data transmission systems, low-pass filters are
used in the transmitted and received terminals to band-limit
the spectra of the transmitted and received signals, respec-
tively, while the overall impulse response is required to have
zero intersymbol interference [3, 4, 9]. In this section, we
consider design of the matched Nyquist filter pairs that
satisfy the above conditions. Let a pair including the filters
used in the transmitted and received terminals be the overall
filter. The overall filter is an FIR linear phase filter, and its
impulse response must satisfy the time-domain condition
of zero intersymbol interference in Eq. (2). Therefore, the
magnitude response of the overall filter with zero intersym-
bol interference can be expressed by Eq. (4). To obtain
transmitted and received filters with the same magnitude
response, the overall filter is required to have double zeros
on the unit circle [3, 9]. If an overall filter with double zeros
on the unit circle is obtained, we can split the double zeros
and mirror-image pairs into the transmitted and received
filters, respectively; then transmitted and received filters
with the same magnitude response can be obtained. An
overall filter with double zeros on the unit circle cannot be
designed by using the design method proposed in section
3, because the filter obtained by the design algorithm in
section 3.2 does not have double zeros on the unit circle.
Hence, we must increase the magnitude of the obtained
filter so that the zeros on the unit circle become double zeros
[9]. Let H(z) be the FIR Nyquist filter with zero intersymbol
interference designed by using the design algorithm in
section 3.2; its stopband error is

-6, < |H(e*)| < &, (12)

From the filter coefficients A, of H(z), we construct a new
transfer function H(z) as follows:

’_lN=hN+6s=‘L+(Ss
M (13)

Fin = hn (n 4+ N)

Then the magnitude response of H(z) is

|H(e)| = |H(€)| +6, 20 (14)
and an overall filter H(z) with double zeros on the unit circle
is obtained. It is clear from Eq. (13) that if H(z) satisfies the
time-domain condition of zero intersymbol interference,
then H(z) satisfies it also. We can rewrite Eq. (10) as

§ (m : even)

W (wm)|H(e™™)| = { (15)
0 (m : odd)



then the overall filter with double zeros on the unit circle
can be designed directly. The design algorithm is the same
as that described in section 3.2.

5. Design of Multistage Nyquist Filters

When a sharp magnitude response (high stopband
attenuation and narrow transition band) is required in the
design of FIR Nyquist filters, the order of the filter will
increase rapidly and many multipliers will be needed in
order to implement it. In Ref. 8, multistage Nyquist filters
are proposed as a means of splitting the filter into multiple
subfilters, thus allowing an implementation with a decreas-
ing number of multipliers when M can be decomposed into
several integers, for example,

K
Mg = HMI:
k=1

M=MM,-. (16)

The transfer function of a multistage Nyquist filter can be
expressed as

H(z) = Hy(2M*M3 M) H, (Mo Mxc)
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where the k-th subfilter H,(z) is a Nyquist filter of order
2N, If H(z) is designed to satisfy the time-domain condi-
tion of zero intersymbol interference, then the overall filter
H(z) satisfies the condition of zero intersymbol interference
also. In the frequency domain, let the passband and stop-
band cut-off frequencies of H(z) be
, = {1-p}/Mn,w,={1+p}/Mn, and let the stopband er-
ror be ;. Then the frequency specifications of subfilters
H,(z) are as shown in Fig. 2, the passband £2,; and stopband
Q,, of Hy(z) are

1-p_
= |0,
Q= [1 + p7r , )
and the passband £2,, and stopband €2 of Hy(z) are
( Q. =0 1=P7
Ok =0 37305 M 19)
My /2
| u () 2o e
° = M, MM ---M,’
. 2w (1+ p)1r
VoM e ]
mm{M + YA 7} (k22)
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Fig. 2. Specifications of multistage Nyquist filters.

Therefore, we can obtain a multistage Nyquist filter by
using the design method proposed in section 3 to design
H,(z). The order of each subfilter is chosen in such a way
that the magnitude error in the stopband is smaller than J,
so that the order of the overall filter H(z) is 2N:

(20)

N= Z{N. 1'[ My}

=1 k=i4+1

When M can be decomposed into several integers, the
number of multipliers required in order to obtain the same
attenuation in the stopband differs greatly depending on the
ordering sequence. Hence, the ordering is very important.
In practical designs, the wider the transition band of each
subfilter H,(z), the higher the stopband attenuation, and thus
the optimal ordering sequence is

M M £

S Mg-1 £ Mk (21)

and the minimum number of multipliers is needed.

6. Design Examples

[ Example 1 ] { FIR Nyquist Filters }

The specifications of the Nyquist filters are N = 19,
M = 4, and p = 0.15, and the weighting function in the
stopband is W(w) = 1. We use the design algorithm pro-
posed in section 3.2 to design the filter. The magnitude
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Fig. 3. Magnitude response of FIR Nyquist filter.

response, shown in Fig. 3, is equiripple. Since the time-do-
main condition of zero intersymbol interference has been
included in Eq. (4), the impulse response of the resuiting
filter must be an exact zero crossing, and is omitted here.
We compare the magnitude error with that of the conven-
tional methods in Table 1. It is clear from Table 1 that the
proposed method has the same result as that in Ref. 8 and
a smaller error than those in Refs. 5 and 6.

[ Example 2 ] { Matched Nyquist Filter Pairs }

The order of the transmitted and received filters is N
=60, the specifications are M =7, p =0.2, and the weighting
function in the stopband is W(w) = 1. The order of the
overall filter is then 2N = 120. We design the overall filter
and retain one of its double zeros on the unit circle and the
zeros that lie inside the unit circle in the mirror-image pairs
as zeros of the transmitted filter. The resulting transmitted
filter has minimum phase response, and its magnitude
response and group delay are shown in Fig. 4. The receiving
filter has zeros outside the unit circle in the mirror-image
pairs and thus has maximum phase response. Its magnitude
response is the same as the transmitted filter, and its group

Table 1. Comparison of magnitude error in Example 1
Passband Stopband
attenuation (dB) attenuation (dB)
Ref. 5 0.45 33.0
Ref. 6 0.45 332
Ref. 8 0.44 343
Proposed method 0.44 343
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Fig. 4. Frequency responses of matched Nyquist filter
pair.

delay plus one of the transmitted filter is constant N and
omitted here.

[ Example 3 ] { Multistage Nyquist Filters }

The specifications are M = 10, p = 0.1, and the
stopband attenuation is more than 40dB. First we design a
two-stage filter with M; = 2 and M, = 5. To obtain more
than 40dB attenuation in the stopband, the orders of H,(z)
and H,(z) are chosen as 2N =42, 2N, = 18. The magnitude
response of the resulting filter is shown in Fig. 5. Assume
that each subfilter is implemented by direct configuration.
The number of multipliers required is then 21 after consid-
ering the condition of zero intersymbol interference and
symmetry of filter coefficients. If the above specifications
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Fig. 5. Magnitude response of multistage Nyquist filter.



are designed by using one-stage Nyquist filters, the order
will be more than 2N = 160, and the number of muitipliers
is 73. We also design another two-stage filter with M, =5
and M, = 2. The orders of H,(z) and Hy(z) are 2N; = 104,
2N, = 6, and 46 multipliers are required.

7. Conclusions

In this paper we have proposed a method of designing
FIR Nyquist filters with zero intersymbol interference by
using the Remez exchange algorithm directly. We have
investigated some magnitude properties of FIR Nyquist
filters with zero intersymbol interference. We know from
the time-domain condition of zero intersymbol interference
that the magnitude response of Nyquist filters in the pass-
band is mainly dependent on the stopband magnitude.
Therefore, the design problem of Nyquist filters becomes
minimization of the magnitude response in the stopband.
We have formulated the design problem as a linear problem
by using the Remez exchange algorithm directly in the
stopband. Then the filter coefficients can be computed by
simply solving linear equations, and the optimal coeffi-
cients with an equiripple stopband response can be easily
obtained by a small number of iterations. The proposed
procedure is computationally more efficient than the exist-
ing procedures. Finally, we have extended the proposed
procedure to the design of matched Nyquist filter pairs,
multistage Nyquist filters, and so on, in order to demon-
strate its effectiveness.
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