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SUMMARY

This paper presents a new method for designing

orthonormal wavelet filter banks using the Remez exchange

algorithm. It is well known that orthonormal wavelet bases

can be generated by paraunitary filter banks. Thus, synthe-

sis of orthonormal wavelet bases can be reduced to the

design of paraunitary filter banks. From the orthonormality

and regularity of wavelets, we derive some conditions that

must be satisfied for FIR paraunitary filter banks, and

investigate the relationship between the filter coefficients

and their zeros. According to the relationship, we apply the

Remez exchange algorithm in the z-domain directly and

formulate the design problem in the form of a linear prob-

lem. Therefore, we can easily get a set of filter coefficients

by solving the linear equations. Optimal solutions with an

arbitrary regularity can be obtained after using an iteration

procedure. In the proposed method, the main advantage is

that less computational complexity is required as compared

with the conventional methods. © 1998 Scripta Technica.
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1. Introduction

Wavelet transforms were initially introduced by Mor-

let in geophysical signal processing. The connection be-

tween compactly supported wavelets and perfect

reconstruction filter banks was investigated by Daubechies.

Thus, wavelets have received considerable attention in vari-

ous fields of applied mathematics, signal processing, mul-

tiresolution theory, and so on [1�11]. Wavelet transforms

can analyze signals in the time and frequency domains

simultaneously, and can process signals in multiresolution

space. It is well known that wavelet transforms can be

realized by using filter banks. But wavelet bases can also

be generated by designing perfect reconstruction filter

banks [1�5]. In this paper, we will discuss the latter method.

There are some procedures for designing paraunitary filter

banks to construct orthonormal wavelet bases. In general,

the design problem can be reduced to the design of half-

band filters [2, 6�11]. However, only the design of maxi-

mally flat filters and equiripple filters is discussed in Refs.

2, 6, 8, and 9. In Refs. 7, 10, and 11, design methods for

FIR filter banks with an arbitrary regularity are proposed.

The methods of Refs. 10 and 11 use projection minimiza-

tion techniques to optimize the filter, but require long

computation times. Compared with these methods, the

method proposed in Ref. 7 uses the Remez exchange algo-

rithm and is computationally efficient. The Remez ex-

change algorithm is well known in the design of FIR linear

phase filters, and the McClellan�Parks method is compu-

tationally efficient and widely used. However, in the design

of paraunitary filter banks, the transfer function of the filter

is constrained by the orthonormality and regularity condi-

tions, and the Remez exchange algorithm can no longer be

used. In Ref. 7, the transfer function that satisfies the

orthonormality and regularity conditions is first variable-

changed so that the Remez exchange algorithm can be

applied, then the problem is optimized by using the Remez
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exchange algorithm in the variable-changed domain. The

obtained solution is inversely changed to get a set of filter

coefficients. But it requires the operations of variable

change and inversion.

In this paper, we propose a new design method for

orthonormal wavelet filter banks with arbitrary regularity

by using the Remez exchange algorithm in the z-domain

directly. First, from the orthonormality and regularity of

wavelets, we derive some conditions that must be satisfied

for FIR paraunitary filter banks, and we then investigate the

relationship between the filter coefficients and their zeros.

According to the relationship, we apply the Remez ex-

change algorithm in the stopband directly and formulate the

design problem in the form of a linear problem. Therefore,

we can easily get a set of filter coefficients by solving the

linear equations. The optimal solution can be obtained after

using an iteration procedure. In the proposed method, the

regularity can be arbitrarily specified, and less computa-

tional complexity is required as compared with the conven-

tional methods, because the Remez exchange algorithm is

used in the z-domain directly and the operations of variable

change and inversion of Ref. 7 are not required. Section 2

shows the relationship between orthonormal wavelets and

paraunitary filter banks. Section 3 gives a design method

for orthonormal wavelet filter banks. Finally, some exam-

ples are designed in order to demonstrate the effectiveness

of the proposed method.

2. Orthonormal Wavelets and Paraunitary

Filter Banks

Assume that y(t) is a basic wavelet function, that the

wavelet transform to a signal f(t) ( f Î L2 (R)) is defined as

where x* denotes the complex conjugate of x, and that the

dilation/contraction and translation parameters are

a Î R+, b Î R. When discretized, a = 2-k and b = 2-km (k,

m: integer), in general.

It is well known that wavelet bases can be generated

by a paraunitary filter bank {H(z),G(z)} as shown in Fig. 1.

In Fig. 1, H(z) is a lowpass filter, and G(z) is highpass. When

the filter bank is infinitely iterated on the lowpass branch at

each step of decomposition, as shown in Fig. 2, a scaling

function f(t) and wavelet function y(t) can be produced.

Assume that f(w) and y(w) are the Fourier transforms of

f(t) and y(t), respectively; the scaling and wavelet function

are related to the paraunitary filter bank {H(z), G(z)} in the

frequency domain as follows:

From the orthonormality of wavelets, the filter bank must

satisfy the following constraints:

Here, we define the product filter as

To satisfy Eq. (4), P(z) must be

where the filter coefficients cn are real. It is known from Eq.

(6) that P(z) is a half-band filter, and its degree is 4N + 2.

Since P(z) has symmetric filter coefficients, its zeros occur

on the unit circle or in mirror-image pairs. If all zeros on

Fig. 1. Paraunitary filter bank (noncausal).

(1)

(2)

(3)

(4)

(5)

(6)

Fig. 2. Multiple-stage filter bank.
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the unit circle are double zeros, we can decompose the

mirror-image pairs and double zeros on the unit circle to get

H(z) as shown in Eq. (5). Then, the degree of H(z) is 2N +

1 and odd. We construct

thus Eq. (4) is satisfied, and the obtained wavelet basis is

orthonormal. Therefore, the design problem of paraunitary

filter banks will become the design of P(z) in Eq. (6) with

double zeros on the unit circle.

Scaling function f(t) and wavelet function y(t), when

iterated to infinity, must converge to continuous functions,

or possibly functions with several continuous derivatives.

This condition is the so-called regularity condition. The

simplest regularity condition for paraunitary filter banks is

that H(z) has at least one zero at z = �1. When H(z) contains

L zeros located at z = �1, we have

and

which means that the wavelet function has L consecutive

vanishing moments. This property is potentially useful in

some practical applications. In the next section, we consider

the design of the product filter P(z) that has the best possible

frequency selectivity for a specified number of vanishing

moments.

3. Design of Orthonormal Wavelet Filter

Banks

3.1. Properties of product filters

Before designing the product filter P(z), we first

investigate the properties of P(z). It is known from Eq. (6)

that P(z) is a half-band filter. All of its even-numbered

coefficients are zero except for c0 = 0.5, namely,

P(z) has a total of 4N + 2 zeros, where 2N zeros are used

for satisfying the time-domain condition of Eq. (10), and

the remaining 2(N + 1) zeros are independent. Therefore,

the design problem of P(z) becomes the location of 2(N +

1) independent zeros. We can obtain the magnitude re-

sponse of P(z) from Eq. (6) by

Then, we get

which means that P(z) has an antisymmetric magnitude

response to point (p /2, 1 / 2). Thus, the magnitude in pass-

band [0, wp] is dependent on that in stopband [ws, p], where

the passband edge frequency wp and stopband edge fre-

quency ws must satisfy wp + ws = p. If the stopband re-

sponse is optimized, we can obtain the total response from

the magnitude symmetry. Therefore, the design problem of

P(z) is to approximate the stopband response by locating

2(N + 1) independent zeros.

3.2. Maximally flat filters

It is known from Eqs. (8) and (9) that to obtain the

maximum number of vanishing moments, the magnitude

response of H(z) must be maximally flat. In Eq. (6), P(z)

has 2(N + 1) independent zeros. Hence, to obtain maximally

flat magnitude response, all 2(N + 1) independent zeros

must be located at z = �1; then P(z) is

where Q(z) is an FIR linear phase filter of degree 2N.

By expanding Eq. (13), we can obtain the coefficients

of Q(z) in such a way that the even-numbered filter

coefficients of P(z) satisfy Eq. (10). From Eq. (13), we

have

Then,

which means that the number of vanishing moments is N

maximally. Substituting the magnitude response of Eq. (11)

into Eq. (14), we get

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(7)
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Therefore, we can obtain a set of filter coefficients cn by

solving linear equations (16), and we can construct the

maximally flat filter H(z) by decomposing the obtained P(z)

as shown in Eq. (5). In this paper, we construct H(z) with a

minimum phase response by using the zeros inside and on

the unit circle. Then, we generate a scaling function f(t) and

wavelet function y(t) by constructing G(z) as shown in Eq.

(7).

3.3. Filters with arbitrary regularity

In section 3.2, we have described the design of maxi-

mally flat filters. The filters are maximally flat at w = 0 and

w = p since all independent zeros are located at z = �1.

However, the filters have a poor frequency selectivity. Of

course, frequency selectivity is also thought of as a useful

property for many applications in signal processing. How-

ever, regularity and frequency selectivity somewhat contra-

dict each other. Maximally flat filters do not have optimal

frequency selectivity, while filters with optimal frequency

selectivity are not maximally flat. For this reason, we

consider the design of the filters with the best possible

frequency selectivity for a specified number of vanishing

moments, that is, H(z) has K zeros at z = �1. It is known

from section 3.2 that K must be

From Eq. (5), P(z) has 2K zeros at z = �1, that is,

where Q(z) is an FIR linear phase filter of degree 2(2N � K

+ 1). Therefore, we have

Similarly to Eq. (16),

Since P(z) has 2(N + 1) independent zeros, the number of

remaining independent zeros is 2(N � K + 1) other than the

zeros at z = �1. These remaining independent zeros must

be located on the unit circle to minimize the magnitude

error of the filter. The zeros of P(z) on the unit circle, other

than z = ±1, occur in complex conjugate pairs, and are

required to be double zeros so that P(z) can be decomposed

as shown in Eq. (5); therefore,

where M is an integer. Hence, when N is odd, K is even.

When N is even, K is odd and H(z) has at least one zero at

z = �1. To force 4M independent zeros of P(z) to be double

zeros on the unit circle, and the magnitude response to be

equiripple, we apply the Remez exchange algorithm.

Since the magnitude response of P(z) is antisymmet-

ric, we need to optimize the magnitude response in the

stopband [ws, p] only. Here, we use the Remez exchange

algorithm in the stopband only.  Since P(z) has 2M zeros on

the upper unit semicircle of the z plane (other than z = �1),

we can select 2M + 1 extremal frequencies wi in the stop-

band as follows:

Considering that all zeros on the unit circle must be double

zeros, we use the Remez exchange algorithm to formulate

where d (> 0) is a magnitude error. Substituting Eq. (11)

into Eq. (23), we can get

We rewrite Eqs. (24) and (20) in matrix form as

where B =  [-1

4
, . . . , -1

4
, 1

4
, 0, . . . , 0,]T, C = [c1, c3, . . . ,

c2N+1, d]T, and the elements Aij of A are

(26)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)
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It is clear that Eq. (25) is a set of linear equations. Because

there are N + 2 unknown parameters (including N + 1 filter

coefficients cn and a magnitude error d) for K + 2M + 1 =

N + 2 equations, we can uniquely obtain a set of filter

coefficients by solving the linear equations of Eq. (25). We

compute the magnitude response of P(z) in the stopband by

using the obtained filter coefficients cn, and search for the

peak frequencies w
__

i. As a result, the initially selected extre-

mal frequencies wi cannot be guaranteed to be equal to the

peak frequencies w
__

i. Then, we set the obtained peak fre-

quencies as the extremal frequencies in the next iteration,

and solve the linear equations of Eq. (25) to obtain the filter

coefficients  cn  again. The above procedure is iterated until

the extremal frequencies wi  and the peak frequencies w
__

i are

consistent. When the extremal frequencies do not change,

we can obtain the optimal solution with an equiripple

magnitude response. The design algorithm is presented in

detail below.

3.4. Design algorithm

1. Read specifications of paraunitary filter banks N,

K and cutoff frequency ws.

2. Select 2M + 1 initial extremal frequencies wi

equally spaced in the stopband as shown in Eq. (22).

3. Solve the linear equations of Eq. (25) to obtain a

set of filter coefficients cn.

4. Compute the magnitude response of P(z) by us-

ing the obtained filter coefficients cn, and search peak

frequencies w
__

i in the stopband.

5. If Si=0
2M |(w

__

i - wi| < e is satisfied, then go to Step

7. Else, go to Step 6, where e is a prescribed small constant.

6. Set wi = w
__

i (i = 0, 1, . . . , 2M), then go to Step 3.

7. Decompose the zeros of P(z) to construct H(z) as

shown in Eq. (5).

8. Construct G(z) from the obtained H(z) as shown

in Eq. (7) to generate a scaling function f(t) and wavelet

function y(t).

3.5. Comparison with conventional methods

In this section, we compare the computational com-

plexity of the design algorithm proposed above with that of

the conventional methods. In the design of FIR paraunitary

filter banks with arbitrary regularity, the methods of Refs.

10 and 11 use projection minimization techniques to opti-

mize the magnitude response, after considering the or-

thonormality and regularity conditions of wavelet

functions. However, the required computational complex-

ity increases with the filter degree. Compared with these

methods, the method proposed in Ref. 7 uses the Remez

exchange algorithm, and thus is computationally efficient.

In Ref. 7, the transfer function satisfying the orthonormality

and regularity conditions is first variable-changed so that

the Remez exchange algorithm can be applied, then the

problem is formulated in the form of a linear problem by

using the Remez exchange algorithm in the variable-

changed domain. Finally, the obtained solution is inverted

to get a set of filter coefficients. In this paper, we first

investigate the properties of the product filters and the

relationship between the magnitude response and the inde-

pendent zeros. According to the relationship, we can obtain

the linear equations of Eq. (20) from the regularity condi-

tions, and the linear equations of Eq. (24) by using the

Remez exchange algorithm in the stopband directly. Then,

the design problem of the filter banks can be reduced to a

linear problem. Similarly to Ref. 7, the proposed method

can easily obtain a set of filter coefficients by solving the

linear equations. Further, the operations of variable change

and inversion such as are used in Ref. 7 are not required and

the computational complexity can be reduced, since the

Remez exchange algorithm is used in the z-domain directly.

In the design algorithm proposed in section 3.4, the main

computation is that of the linear equations of Step 3 and the

magnitude response of Step 4 in each iteration. The  same

is true of the method of Ref. 7. However, in Ref. 7, the

obtained solution must be inverted to get a set of filter

coefficients when the iteration procedure is completed. This

operation is used to solve the linear equations of the same

size as that in Step 3. Considering the change of the design

specifications before designing, the required computation

is almost the same as that of one iteration. In the practical

design, the proposed method requires three to five iterations

in general. If the method of Ref. 7 converges with the same

number of iterations, the operations of variable change and

inversion are equal to one additional iteration. Therefore,

the proposed method requires less computational complex-

ity as compared with the conventional methods.

4. Design Examples

Example 1. {Maximally Flat Filters}

The specification of a maximally flat filter is N = 10.

The degree of P(z) is 42. By solving the linear equations of

Eq. (16), we show the obtained filter coefficients cn of P(z)

in Table 1. From these filter coefficients, we construct

Table 1. Filter coefficients of Example 1
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maximally flat filter H(z) with minimum phase response by

computing the zeros of P(z). The degree of H(z) is 21, and

the magnitude response is shown in Fig. 3 by the solid line.

In Fig. 3, the magnitude responses of N = 8 and N = 12 are

also shown. It is clear in Fig. 3 that the magnitude response

of the filter becomes flatter with increasing N. When N =

10, we construct G(z) from H(z) as shown in Eq. (7), and

show its magnitude response in Fig. 3. The scaling function

f(t) and wavelet function y(t) generated by the above filter

bank are shown in Figs. 4 and 5, respectively.

Example 2. {Filters with Arbitrary Regularity}

The filter specifications are N = 10, K = 7, and

ws = 0.67p. We design the filter by using the proposed

procedure, and show the obtained filter coefficients cn of

P(z) in Table 2. We construct H(z) with minimum phase

response from P(z), and show the magnitude response in

Fig. 6 as a solid line. The filters of K = 5 and K = 9 are also

designed, and the magnitude responses are shown in Fig. 6.

It is clear from Fig. 6 that the filters of K = 7 and K = 5 have

two and three ripples in the stopband, while the filter of K

= 9 has only one ripple. Therefore, the magnitude error will

become smaller with decreasing K. When K = 7, we con-

struct G(z) as shown in Eq. (7), and show its magnitude

Fig. 3. Magnitude responses of Example 1.

Fig. 4. Scaling function of Example 1.

Fig. 5. Wavelet function of Example 1.

Fig. 6. Magnitude responses of Example 2.

Table 2. Filter coefficients of Example 2

Fig. 7. Scaling function of Example 2.
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response in Fig. 6. From the magnitude responses of H(z)

and G(z), it can be seen that they are paraunitary filter banks.

The scaling function f(t) and wavelet function y(t) gener-

ated by the above filter bank are shown in Figs. 7 and 8,

respectively. In this example, the required number of itera-

tions is three to five.

5. Conclusions

In this paper, we have proposed a new method for

designing orthonormal wavelet filter banks with arbitrary

regularity by using the Remez exchange algorithm in the

z-domain directly. From the orthonormality and regularity

of wavelets, we have derived some conditions that must be

satisfied for FIR paraunitary filter banks, and have investi-

gated the relationship between the filter coefficients and the

zeros of the filter. According to the relationship, we have

used the Remez exchange algorithm in the stopband di-

rectly and have formulated the design problem in the form

of a linear problem. Therefore, we can easily get a set of

filter coefficients by solving the linear equations. The opti-

mal solution can be obtained after using an iteration proce-

dure. In the proposed method, the main advantages are that

the regularity can be arbitrarily specified and that less

computational complexity is required as compared with the

conventional methods.
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