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SUMMARY

In the design of two channel perfect reconstruction

filter banks, most of the conventional methods optimize the

frequency response of each filter to meet the perfect recon-

struction condition. However, quantization of the filter co-

efficients results in some errors in the frequency response,

so it is not guaranteed that the perfect reconstruction con-

dition is still satisfied. In this paper, we present a new

method for designing biorthogonal FIR linear phase filter

banks with structurally perfect reconstruction. From the

perfect reconstruction condition, we first describe a class of

structurally perfect reconstruction implementations. Since

the proposed filter banks structurally satisfy the perfect

reconstruction condition, the design problem becomes the

magnitude approximation of the analysis or synthesis fil-

ters. Design of these filters can be reduced to the design of

half-band filters. We then give a new method to design FIR

linear phase half-band filters with arbitrary flatness. There-

fore, the proposed filter banks can be designed easily by

using the proposed method. Additionally, the magnitude

responses of the low- and high-pass filters can be arbitrarily

controlled by using two different half-band filters. © 1998

Scripta Technica, Electron Comm Jpn Pt 3, 82(1): 1�8,

1999
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1. Introduction

In recent years, two channel perfect reconstruction

(PR) filter banks have received considerable attention in

many signal processing applications, including subband

coding of speech and image signals [1�15]. In the design

of two channel PR filter banks using FIR linear phase filters,

some design methods are known [2�15]. Most of these

methods optimize the frequency response of each filter to

meet the perfect reconstruction condition. Then, the filter

coefficients obtained satisfy the PR condition with infinite

accuracy. However, when implemented with finite accu-

racy, coefficient quantization results in errors in the fre-

quency responses, hence, it is not guaranteed that the

perfect reconstruction condition is still satisfied. Compared

with these methods, lattice structures [4, 5] have been

proposed that structurally satisfy the PR condition even

though the filter coefficients are quantized. However, to

optimize the filter coefficients in lattice structures a non-

linear optimization procedure is required and this entails a

large amount of computation. One additional method has

been also proposed that first designs the PR filter bank and

then transforms it into a lattice structure [9, 13]. In Ref. 15,

a class of structurally PR filter banks was described for

which the design problem can be reduced to the design of

one half-band filter. Hence, the filter banks can be easily

designed by using the conventional design method for

half-band filters. However, the magnitude responses of the

low- and high-pass filters cannot be separately designed,

since they are dependent on the same transfer function. In

Ref. 11, the PR filter banks are similarly designed by using

half-band filters, but the maximum stopband attenuation in
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the high pass filter is not obtained since the maximally flat

function is used.

In this paper, we propose a new method for designing

biorthogonal FIR linear phase filter banks that structurally

satisfy the PR condition. From the PR condition, we first

show a class of structurally perfect reconstruction imple-

mentations. Since the proposed filter banks are basically the

same as those of  Ref. 15, the PR condition is structurally

satisfied even though the filter coefficients are quantized.

In contrast to the half-band filter used in  Ref. 15, we use

two different half-band filters in this paper. This is a differ-

ent issue from  Ref. 15. By using two different transfer

functions, we can arbitrarily control the magnitude re-

sponses of the low- and high-pass filters, which cannot be

designed separately in  Ref. 15. The design problem of the

proposed filter banks can be reduced to the magnitude

approximation of two half-band filters. We then give a new

method to design FIR half-band filters. In the conventional

methods for designing half-band filters, only maximally

flat and equiripple filters are considered. In this paper, from

the regularity condition of wavelets, we consider the design

of FIR linear phase half-band filters with arbitrary flatness.

According to the symmetric property of the magnitude

response of half-band filters, after considering the given

flatness condition, we use the Remez exchange algorithm

and formulate the design problem in linear form. Therefore,

we can easily obtain a set of filter coefficients by solving a

set of linear equations, and the optimal solution is obtained

by applying an iteration procedure. Finally, some examples

are employed to demonstrate the effectiveness of the pro-

posed method.

2. Structurally PR Filter Banks

In the two channel filter bank shown in Fig. 1, assume

that Hi(z), Gi(z) are analysis and synthesis filters, respec-

tively. To obtain a PR filter bank, these filters must satisfy

where K is integer. By using the polyphase matrix descrip-

tion of Hi(z) and Gi(z),

the PR condition of Eq. (1) becomes

It is well known that

Therefore, if

then the PR condition of Eq. (4) is satisfied regardless of

the values of A(z) and B(z), i.e., the PR filter banks can be

still obtained even when the filter coefficients of A(z) and

B(z) are quantized. The structurally PR implementation is

shown in Fig. 2. Therefore, the design problem of the filter

banks becomes a design for analysis or synthesis filters. The

transfer functions for analysis filters are

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Fig. 1. Two channel filter bank.

(9)
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and the transfer functions for synthesis filters are

In the following, we consider design of the analysis filters

Hi(z).

3. Design of PR Filter Banks

In this section, we describe the design of Hi(z) using

FIR filters. The transfer functions A(z) and B(z) are defined

as

where the filter coefficients an and bn are real. To obtain an

exact linear phase, the filter coefficients of A(z) and B(z)

must be symmetric, i.e., an = aL
1
-n, bn = bL

2
-n. 

3.1. Desired magnitude responses

From Eq. (9), the transfer function H1(z) is

If L1 = 2N + 1, then it is clear that H1(z) is a linear phase

half-band filter. H1(z) can be designed as low- or high-pass

filter. Here, we consider design of lowpass filter. When

highpass filter is needed, it can be obtained by replacing

A(z2) with -A(z2) in the lowpass filter obtained. Assume that

the passband of H1(z) is  [0, wp] and the stopband is

[ws, p], where wp + ws = p. It is well known that the half-

band filter H1(z) has an antisymmetric magnitude response.

Therefore, the desired magnitude response of A(z) is

From Eq. (9), the transfer function H0(z) is

In the stopband [ws, p] of H1(z), since the magnitude of

H1(z) is 0, the magnitude of H0(z) is 1, and it becomes the

passband. In the passband [0, wp] of H1(z), since

H1(z) = z-2N-1, ideally, then,

Hence, if we choose L2 = 2(M - N) - 1, H0(z) of Eq. (15)

will become a linear phase half-band filter. To force H0(z)
to be the stopband, the desired magnitude response of

B(z) is

Therefore, approximating A(z) and B(z) by the desired

magnitude response of Eqs. (13) and (16), the PR filter

banks can be easily designed.

3.2. Half-band filters with arbitrary flatness

In this section, we describe design of half-band fil-

ters. In the conventional methods for designing half-band

filters, only maximally flat and equiripple filters have been

considered. In recent years, wavelet transforms have been

applied in various fields of signal processing. In many

applications, the wavelet functions are required to be con-

tinuous. This is the so-called regularity condition. The

regularity corresponds to a flatness condition for the filter

banks [2, 8]. Therefore, we consider the design of half-band

filters with an arbitrary flatness. The magnitude response

of A(z) is given by

(10)

Fig. 2. Structurally perfect reconstruction filter bank.

(11)

(12)

(13)

(14)

(15)

(16)

3



Assume that A(z) has flatness of order 2J1 at w = 0, i.e.,

where J1 must satisfy

When J1 = 0, it is an equiripple filter that minimizes the

maximum magnitude error. When J1 = N + 1, it becomes a

maximally flat filter. Therefore, from Eq. (18), we have

To force the magnitude response of A(z) to be equiripple,

we use the Remez exchange algorithm. First, we select

I(= N - J1 + 2) extremal frequencies wi in  the band

[0, 2wp]

Then, we formulate |A(ejw)| at these extremal frequencies,

i.e.,

where d is a magnitude error. By substituting the magnitude

response of Eq. (17) into Eq. (22), we obtain

We can rewrite Eqs. (23) and (20) in matrix form

where A = [a0, a1, . . . , aN, d]T, Q = [1
2
, . . . , 1

2
, 1

2
, 0, . . . , 0,]T,

and the elements Pij of P are

It is clear that Eq. (24) is a set of linear equations. Because

there are N + 2 unknown parameters (including N + 1 filter

coefficients an and one magnitude error d) from the

I + J1 = N + 2 equations, we can uniquely obtain a set of

filter coefficients by solving the linear equations of Eq.

(24). We compute the magnitude response of A(z) by using

the filter coefficients obtained an, and search for the peak

frequencies w
__
i. As a result, the initially selected extremal

frequencies wi cannot be guaranteed to be equal to the peak

frequencies w
__
i. We then set the peak frequencies obtained

to be the extremal frequencies in the next iteration, and

solve the linear equations of Eq. (24) to obtain the filter

coefficients an again. The above procedure is iterated until

the extremal frequencies wi and the peak frequencies w
__
i are

consistent. When the extremal frequencies do not change,

we obtain the optimal solution with an equiripple magni-

tude response. The design algorithm is described in detail

in the next section.

3.3. Design algorithm

1. Read filter specifications N, J1 and the cutoff

frequency wp.

2. Select I initial extremal frequencies wi equally

spaced in the band [0, 2wp] as shown in Eq. (21).

3. Solve the linear equations of Eq. (24) to obtain a

set of filter coefficients an.

4. Compute the magnitude response of A(z) by us-

ing the obtained filter coefficients an, and search for the

peak frequencies w
__
i.

5. If 

å|

i = 0

I - 1

w
__
i - wi| < e,

then exit. Else, go to 6, where e is a prescribed small

constant.

6. Set wi = w
__
i(i = 0, 1, . . . , I - 1), then go to 3.

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)
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3.4. Design of H0(z)

We can design A(z) by using the method proposed in

section 3.2 to obtain H1(z) with arbitrary flatness. The

obtained H1(z) has the maximum magnitude error

ds1 = da /2 in the stopband, where da is the maximum mag-

nitude error of A(z). According to the symmetric property

of the magnitude response of half-band filters, the magni-

tude error of H1(z) in the passband is the same as the

stopband error. We can design B(z) similarly. However, even

when the magnitude responses of A(z) and B(z) are designed

to be equiripple, it can be seen from Eq. (9) that the

magnitude response of H0(z) cannot be guaranteed to be

equiripple. In the most cases, we cannot obtain an equirip-

ple response for H0(z). In Ref. 15, H0(z) becomes equiripple

by setting B(z) = A(z), but both H0(z) and H1(z) are depend-

ent on the same transfer function A(z). Hence, the magni-

tude responses of both cannot be designed separately. In

particular, the maximum magnitude error ds0 of H0(z) in the

stopband is

In other words, the stopband error of H0(z) is three times

larger than that of H1(z), even though the filter order is

higher than for H1(z). In this paper, we directly design

B(z) to force H0(z) to have an equiripple magnitude re-

sponse. By using different B(z), we can arbitrarily control

the magnitude error of H0(z). To force H0(z) to have an

equiripple response in the stopband, we have to design an

equiripple magnitude response of B(z2)H1(z). Hence, we

can consider the magnitude response of H1(z) as a weight-

ing function W(w), i.e., we can reformulate

hence H0(z) has an equiripple response. The design algo-

rithm is the same as that described in section 3.3. From Eq.

(9), the magnitude response of H0(z) is

Therefore, in the passband of H0(z), its maximum magni-

tude error dp0 is

where db is the maximum magnitude error of B(z). There-

fore, in the passband of H0(z), since its magnitude error is

mainly determined by A(z), it is seen that an almost equirip-

ple response can be obtained. Assume that B(z) has flatness

of order 2J2 at w = 0. It is clear from Eq. (28) that the

flatness of H0(z) is determined by the smallest flatness

between A(z) and B(z). That is, it has flatness of order 2

Min{J1, J2}. In other words, the flatness of H0(z) is not

higher than H1(z), and at most is the same as H1(z), even

when J2 is larger than J1. Therefore, in the practical design

it is required that the larger flatness filter between low- and

high-pass filters must be designed by H1(z), and the lower

flatness filter by H0(z).

4. Design Examples

Example 1 (Equiripple Filters)

The specifications for the filter banks are N = 8, M =

19 and wp = 0.4p. The orders of A(z) and B(z) are 17 and

21, respectively. We design the equiripple filters by setting

J1 = J2 = 0. The filter coefficients obtained an, bn of A(z)

and B(z) are shown in Tables 1 and 2, and their magnitude

responses are shown in Fig. 3. It is clear from Fig. 3 that the

magnitude response of A(z) is equiripple, while the magni-

tude response of B(z) is not equiripple. However, it can be

seen in Fig. 4 that the magnitude responses of both H0(z)

and H1(z) are equiripple. For comparison purposes, the

magnitude response of H0(z) obtained by setting

B(z) = A(z) in the conventional method of Ref. 15 is also

shown in Fig. 4. In that case, the order of B(z) was 17, and

M = 17. It can be seen in Fig. 4 that there is a difference of

about 10 dB in the stopband attenuation between H0(z) and

H1(z) when B(z) = A(z). Therefore, by directly designing

(26)

(27)

(28)

(29)

Table 1. Filter coefficients of A(z) in Example 1

Table 2. Filter coefficients of B(z) in Example 1
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B(z) to be different from A(z), the magnitude error of

H0(z) can be arbitrarily controlled.

Example 2 (Filters with Arbitrary Flatness)

The specifications of filter banks are N = 8, M = 19,

and wp = 0.4p. The order of A(z) and B(z) are 17 and 21,

respectively. First, we designed the filter bank by setting

J1 = J2 = 4 and using the proposed method. The obtained

filter coefficients an, bn of A(z) and B(z) are shown in Tables

3 and 4, and their magnitude responses are shown in Fig. 5

in the solid line. In this case, H0(z) and H1(z) have the same

flatness, their magnitude responses are shown in Fig. 6 in

the solid line, and both are equiripple. We also made the

design with J1 = 9 and J2 = 4. When J1 = 9, H1(z) is a maxi-

mally flat filter, and has a higher flatness than H0(z). The

obtained magnitude responses of A(z) and B(z) are shown

in Fig. 5, and those of Ho(z) and H1(z)  in Fig. 6 using dotted

solid line, respectively. It is clear from Fig. 6 that the

magnitude responses of H0(z) are equiripple.

Fig. 3. Magnitude responses of A(z) and B(z) in

Example 1.

Fig. 4. Magnitude responses of H0(z) and H1(z) in
Example 1.

Table 3. Filter coefficients of A(z) in Example 2

Table 4. Filter coefficients of B(z) in Example 2

Fig. 5. Magnitude responses of A(z) and B(z) in

Example 2.
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5. Conclusions

In this paper, we have proposed a new method for

designing two channel biorthogonal FIR linear phase filter

banks that structurally satisfy the PR condition. We first

showed a class of structurally perfect reconstruction imple-

mentations. Since the PR condition is structurally satisfied

even though the filter coefficients are quantized in the

proposed filter banks, the design problem becomes the

magnitude approximation of analysis or synthesis filters.

Their design can be reduced to the design of half-band

filters. Then a new design method of linear phase FIR

half-band filters with an arbitrary flatness was presented.

After considering the given flatness condition, we used the

Remez exchange algorithm and formulated the design of

FIR half-band filters as a linear problem. Therefore, we can

easily obtain a set of filter coefficients by solving the linear

equations, and the optimal solution is obtained by applying

an iteration procedure. Additionally, by using two half-band

filters, we can arbitrarily design the magnitude responses

of the low- and high-pass filters. Design of stable PR filter

banks using allpass filters remains to be investigated in future.
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